US9087638B2 - Wireless power system and method - Google Patents
Wireless power system and method Download PDFInfo
- Publication number
- US9087638B2 US9087638B2 US13/324,540 US201113324540A US9087638B2 US 9087638 B2 US9087638 B2 US 9087638B2 US 201113324540 A US201113324540 A US 201113324540A US 9087638 B2 US9087638 B2 US 9087638B2
- Authority
- US
- United States
- Prior art keywords
- duty cycle
- power
- receiver
- frequency
- adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000005291 magnetic effect Effects 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000013459 approach Methods 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 description 4
- MWZMHLBLVDPOJE-UHFFFAOYSA-N 1-[4-[[n'-(4,6-dimethylpyrimidin-2-yl)carbamimidoyl]amino]phenyl]sulfonyl-3-phenylurea Chemical compound CC1=CC(C)=NC(N=C(N)NC=2C=CC(=CC=2)S(=O)(=O)NC(=O)NC=2C=CC=CC=2)=N1 MWZMHLBLVDPOJE-UHFFFAOYSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H02J17/00—
-
- H02J5/005—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H02J7/025—
Definitions
- the present invention relates generally to electronics, and specifically to a wireless power system and method.
- the conductive methods use flow of current from a charger and/or power supply into the mobile devices to provide power and receive power through matching contacts on the back of a device and the pad without ‘plugging in’ the device.
- the inductive methods utilize coils or wires in a charger and/or power supply to create a magnetic field in the vicinity of the surface.
- a coil or wire in a receiver embedded into or on a device or battery that is in the vicinity of the surface can sense the magnetic field. Power from the charger and/or power supply can be transferred to the receiver without any wired connection through air or other media in between.
- WPC Wireless Power Consortium
- the receiver being charged, communicates a “Control Error” signal to a transmitter that is providing charging power to the receiver.
- the “Control Error” signal provides an indication of a difference between the power being received and the power that the receiver desires.
- the transmitter generates a proportional integral derivate (PID) response to the error signal and updates the PWM output to provide the desired power to the receiver. Updating of the output has been accomplished in one of two manners traditionally through either frequency modulation or duty cycle modulation.
- PID proportional integral derivate
- Frequency modulation is applicable in a resonant system in which the power can be controlled by adjusting the frequency of the drive signal. The further that the frequency is from the resonant peak, the lower the delivered power.
- Duty cycle modulation operates at a fixed frequency (typically near resonance) and controls the output by varying the on-time/off-time ratio.
- frequency mode control and duty cycle mode control have their own drawbacks and strengths.
- a drawback for frequency mode control is that the resolution of the frequency output may be limited.
- the frequency may be set by adjusting the number of system clock cycles in each period. As the operating frequency increases, the resolution of the adjustment decreases. The coarseness of the adjustment may not be accurate enough to meet the system requirements.
- the supply voltage may be constrained to meet the requirement for the resultant delivered power. This limits the selection of drivers and driver topologies. Other factors besides a specification can also limit operating frequency.
- Duty cycle control can have an advantage of higher output resolution compared to frequency mode control.
- the duty cycle system is typically run close to resonance, which may result in substantial power for even low duty cycles. Combined with the lower limit to duty cycle, this can easily make the system unable to deliver low power loads.
- Another issue is that the resonance of the transmitter can shift due to manufacturing tolerances, or environmental changes. If the operating point gets too far from the resonant frequency, high power levels may become unattainable.
- a wireless power system comprises a transmitting circuit that includes an inductor configured to generate a magnetic field to provide power to a receiver, and a drive controller that provides a switching control signal to drive the transmitting circuit.
- the drive controller is configured to adjust frequency and/or duty cycle of the switching control signal to adjust the power generated and provided to the receiver by the transmitting circuit through the inductor to a desired power in response to a control signal from the receiver.
- the drive controller adjusts the duty cycle to achieve the desired power unless the adjustment of the duty cycle causes the duty cycle to be outside of a predefined duty cycle range.
- the drive controller adjusts the frequency to achieve the desired power if the adjustment of the duty cycle causes the duty cycle to be outside of the predefined duty cycle range.
- a wireless power system comprising a receiver, a load coupled to the receiver, such that the power to the receiver is provided to power the load and/or charge a battery associated with the load, and a transmitter.
- the transmitter comprises a transmitting circuit that includes an inductor configured to generate a magnetic field to provide power to the receiver, and a drive controller that provides a switching control signal to drive the transmitting circuit.
- the drive controller is configured to adjust frequency and/or duty cycle of the switching control signal to adjust the power generated and provided to the receiver by the transmitting circuit through the inductor to a desired power in response to a control error signal from the receiver that provides an indication between the desired power and actual power received by the load.
- the drive controller adjusts the duty cycle to achieve the desired power unless the adjustment of the duty cycle causes the duty cycle to be outside of a predefined duty cycle range.
- the drive controller sets the duty cycle to a preset duty cycle and adjusts the frequency to achieve the desired power if the adjustment of the duty cycle causes the duty cycle to be outside of the predefined duty cycle range.
- a method for providing wireless power comprises setting an initial frequency and duty cycle of a switching control signal that drives a transmitting circuit that includes an inductor configured to generate a magnetic field to provide power to a receiver, receiving a control error signal from the receiver that provides an indication between a desired power and actual power received, and adjusting the duty cycle of the switching control signal to achieve the desired power unless the adjustment of the duty cycle causes the duty cycle to be outside of a predefined duty cycle range.
- the method further comprises adjusting the frequency of the switching control signal to achieve the desired power if the adjustment of the duty cycle causes the duty cycle to be outside of the predefined duty cycle range.
- FIG. 1 illustrates a schematic block diagram of a wireless power system in accordance with an aspect of the present invention.
- FIG. 2 illustrates a method for providing wireless power in accordance with an aspect of the invention.
- a wireless power system and method are provided that employ a hybrid approach to adjusting transmission power of a transmitting circuit to take advantages of the best features of frequency mode adjusting and duty cycle mode adjusting.
- the transmitting circuit can include one or more switches (e.g., field-effect transistors (FETs) driven by a switching control signal to control power to an inductor-capacitor (LC) resonant tank circuit in which the inductor is configured to generate a magnetic field which can provide power to a receiver.
- FETs field-effect transistors
- LC inductor-capacitor
- D MAX a predetermined maximum
- D HPS duty cycle high preset setting
- D LPS duty cycle low preset setting
- FIG. 1 illustrates a wireless power system 10 in accordance with an aspect of the present invention.
- the wireless power system 10 includes a transmitter 12 configured to provide wireless power to a receiver 30 over a wireless communication link 20 .
- the receiver 30 is configured to receive the wireless power and provide the wireless power to a load 38 (e.g., a mobile battery chargeable device).
- the power to the load 38 can be employed for powering of the load and/or for providing charging of a rechargeable batty associated with the load 38 .
- the receiver 30 is also configured to transmit communication signals that may include a control error signal that indicates a difference between a desired received power to the load and an actual received power to the load.
- the transmitter 12 can then modify the duty cycle and/or frequency of a switching control signal to a transmitting circuit 15 (e.g., half-bridge or full bridge inverter circuit) to adjust the power transmitted to the receiver 12 to achieve the desired received power to the load 38 .
- a transmitting circuit 15 e.g., half-bridge or full bridge inverter circuit
- the transmitter 12 includes an AC/DC converter 14 that receives AC input power (ACIN) and generates DC input power (DCIN) to be employed to drive the transmitting circuit 15 .
- the transmitting circuit 15 includes a drive controller 14 that controls the operation of a high-side field-effect transistor (FET) Q 1 and a low-side FET Q 2 .
- FET field-effect transistor
- the high-side FET Q 1 and the low-side FET Q 2 are demonstrated in the example of FIG. 1 as N-type FETs. However, other types of transistors could be used in accordance with an aspect of the invention.
- the transmitting circuit 15 is illustrated as a, half-bridge inverter, but a full bridge inverter could also be employed in accordance with an aspect of the present invention.
- the high-side FET Q 1 is interconnected between the DC input voltage (DCIN) at a drain terminal and a switching node VSW at a source terminal.
- the low-side FET Q 2 is interconnected between the switching node VSW at a drain terminal and a negative voltage rail at a source terminal, the negative voltage rail being demonstrated as ground in the example of FIG. 1 .
- the drive controller 16 thus controls the voltage potential at the switching node VSW by alternately switching between opposing “ON” and “OFF” states of the high-side FET Q 1 and the low-side FET Q 2 .
- the opposing switching of the high-side FET Q 1 and of the low side FET Q 2 is such that only one of the high-side FET Q 1 and the low side FET Q 2 may be activated at a given time to avoid a short circuit between the DC input voltage (DCIN) and ground.
- the transmitting circuit 15 also includes an output inductor L 1 coupled to the switching node VSW at a first end and coupled to a coupling terminal (CT) of two series coupled capacitors C 1 and C 2 .
- the series coupled capacitors C 1 and C 2 are coupled between the DC input voltage (DCIN) and ground.
- the output inductor L 1 generates a magnetic field in response to current conducted through the output inductor L 1 .
- the magnetic field is transmitted to an inductor L 2 of the receiver when the receiver 30 and transmitter 12 are placed in proximity to one another to provide the receiver 30 with wireless power.
- the receiver 30 includes a rectifier 32 coupled to the inductor L 2 .
- the rectifier 32 rectifies the signal generated through the inductor L 2 in response to the magnetic field generated by the inductor L 1 and received by the inductor L 2 .
- the rectified signal is provided to a load conditioner 34 that conditions the signal prior to providing the signal to the load 38 .
- a receiver controller 36 controls and communicates with the rectifier 32 and load conditioner 34 .
- the receiver controller 36 can transmit communication signals over the inductor L 2 to the inductor L 1 that is received by the controller 16 , which may include a control error signal that is an indication of a difference in desired and actual power received by the load 38 .
- the drive controller 16 receives the control error signal and generates a proportional integral derivate (PID) response to the control error signal.
- PID response is employed by the drive controller 16 to adjust a switching control signal (PWM output) to the transmitting circuit 15 to provide the desired power to the receiver 30 .
- the switching control signal alternates between switching opposing “ON” and “OFF” states of the high-side FET Q 1 and the low-side FET Q 2 .
- the drive controller 16 first attempts to modify the duty cycle of the switching control signal as a first adjustment, unless the duty cycle adjustment causes the duty cycle to be outside a predefined range.
- the duty cycle is set to a duty cycle high preset setting (D HPS ) that is at or below the predetermined maximum and the frequency is reduced to achieve the desired power requested by the receiver.
- D HPS duty cycle high preset setting
- D MIN duty cycle low preset setting
- D LPS duty cycle low preset setting
- FIG. 1 illustrates a single transmitter and output inductor L 1 , while it should be appreciated that multiple output inductors could be arranged on a pad driven by one or more transmitter devices. It is further appreciated that the output inductor L 1 and capacitors C 1 and C 2 form a resonant tank circuit such that more power can be delivered when operating at frequencies at or near the resonance of the resonant tank circuit.
- the operating frequency can be set to a range of 110 kHz to 205 kHz.
- the half-bridge topology can limit the duty cycle to 50% on the high side, and the magnetics involved in the power transfer can prevent operation below 20% from working reliably.
- the switching control signal frequency can be selected to be 175 kHz (spec) with a 50% duty cycle.
- the duty cycle is set to a preset point within its range and the frequency adjustment is made to compensate both the requested power change and the adjustment of the duty cycle to the preset point.
- Using a preset point for the duty cycle instead of using a maximum or minimum duty cycle and using frequency control to finish the adjustment leaves the system in a position to use just duty cycle control for subsequent control adjustments. While the ideal preset value might be the midpoint of its operating range (35% in this example), it may be difficult to estimate the appropriate frequency change to compensate for that large of a duty cycle adjustment.
- FIG. 2 illustrates a method 50 for providing wireless power in accordance with an aspect of the present invention.
- E control error signal
- a duty cycle adjustment is calculated based on the control error signal. The methodology then proceeds to 58 .
- a determination is made on whether the current duty cycle (D) plus the duty cycle adjustment (D ADJ ) is greater than a predetermined maximum duty cycle (D MAX ) (i.e., D+D ADJ >D MAX ). If the current duty cycle (D) plus the duty cycle adjustment (D ADJ ) is greater than the predetermined maximum duty cycle (D MAX ) (YES), the duty cycle is set to a duty cycle high preset setting (D D HPS ) that is at or below the predetermined maximum duty cycle (D MAX ) and the frequency is reduced at 62 to achieve the desired power requested by the receiver.
- D MAX a predetermined maximum duty cycle
- the frequency adjustment is calculated and summed for the control error signal (E) and the adjustment in duty cycle from the current duty cycle to the duty cycle high preset setting (D HPS ). The methodology then proceeds to 72 to apply the new duty cycle and new frequency (NEW D, F).
- the methodology proceeds to 64 .
- the duty cycle (D) is set to a duty cycle low preset setting (D LPS ) that is at or above the predetermined minimum duty cycle (D MIN ) and the frequency is increased at 68 to achieve the desired power requested by the receiver.
- the frequency adjustment is calculated and summed for the control error signal (E) and the adjustment in duty cycle from the current duty cycle (D) to the duty cycle low preset setting (D LPS ). The methodology the proceeds to 72 to apply the new duty cycle and new frequency (NEW D, F).
- the following describes a specific example of the drive controller operation of FIG. 1 and the methodology of FIG. 2 for providing wireless power.
- the example confirms to the WPC specification.
- the example assumes that the transmitter is operating at an initial switching control signal frequency of 158 kHz, with a 49% duty cycle.
- the scalings from PID_out to a duty cycle or frequency adjustment are as follows:
- the duty cycle is adjusted toward the center of its range to allow for duty cycle headroom. In this example, the preset point is selected to be 5% in from the limit, or 45%. From our present operating point of 49% this is a 4% additional adjustment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dc-Dc Converters (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Based on the WPC specification, the scalings from PID_out to a duty cycle or frequency adjustment are as follows:
The duty cycle control adjustment can be calculated as follows:
Duty_adjusted=PID_out*duty— Sv=153.75*0.01=1.53 EQ. 2
This is a request for a 1.53% duty cycle increase (which is greater than the maximum predetermined duty cycle of 50%).
So since the adjustment would make the duty cycle greater than the maximum duty cycle, a frequency control adjustment is determined to increase the transmission power as follows:
Freq_adjust=PID_out*freq— Sv=153.75*2.0=307.5 EQ. 3
Therefore, Control_Error=15 is requesting a change of 307.5 Hz in frequency. In addition to the adjustment for Control_Error, the duty cycle is adjusted toward the center of its range to allow for duty cycle headroom. In this example, the preset point is selected to be 5% in from the limit, or 45%. From our present operating point of 49% this is a 4% additional adjustment. The relationship between scaling factors is determined based on the commonality of PID_out such that:
4%/duty— Sv*freq— Sv=4/0.01*2=800 Hz. EQ. 4
So the total frequency adjustment would be 307.5+800=1107.5 Hz and the new operating point would be 156.8925 kHz and 45% duty cycle. Leaving us at a point where the Error should have been compensated, and with available space for future duty cycle adjustments.
Claims (12)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/324,540 US9087638B2 (en) | 2011-12-13 | 2011-12-13 | Wireless power system and method |
JP2014547423A JP6077563B2 (en) | 2011-12-13 | 2012-12-13 | Wireless power system and method |
PCT/US2012/069497 WO2013090565A1 (en) | 2011-12-13 | 2012-12-13 | Wireless power system and method |
CN201280061720.8A CN104011969B (en) | 2011-12-13 | 2012-12-13 | Wireless power supply system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/324,540 US9087638B2 (en) | 2011-12-13 | 2011-12-13 | Wireless power system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130147280A1 US20130147280A1 (en) | 2013-06-13 |
US9087638B2 true US9087638B2 (en) | 2015-07-21 |
Family
ID=48571309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/324,540 Active 2034-03-28 US9087638B2 (en) | 2011-12-13 | 2011-12-13 | Wireless power system and method |
Country Status (4)
Country | Link |
---|---|
US (1) | US9087638B2 (en) |
JP (1) | JP6077563B2 (en) |
CN (1) | CN104011969B (en) |
WO (1) | WO2013090565A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150054344A1 (en) * | 2013-08-26 | 2015-02-26 | The University Of Hong Kong | Wireless Power Transfer System |
US20160094074A1 (en) * | 2013-10-23 | 2016-03-31 | Apple Inc. | Method and Apparatus for Inductive Power Transfer |
US9673784B2 (en) | 2013-11-21 | 2017-06-06 | Apple Inc. | Using pulsed biases to represent DC bias for charging |
US9837866B2 (en) | 2013-10-09 | 2017-12-05 | Apple Inc. | Reducing power dissipation in inductive energy transfer systems |
US9847666B2 (en) | 2013-09-03 | 2017-12-19 | Apple Inc. | Power management for inductive charging systems |
US10122217B2 (en) | 2015-09-28 | 2018-11-06 | Apple Inc. | In-band signaling within wireless power transfer systems |
US10283995B2 (en) | 2014-02-28 | 2019-05-07 | L'oreal | Charge current monitoring or control in a resonance-tuned inductive charger |
US10601250B1 (en) | 2016-09-22 | 2020-03-24 | Apple Inc. | Asymmetric duty control of a half bridge power converter |
US10978899B2 (en) | 2017-02-02 | 2021-04-13 | Apple Inc. | Wireless charging system with duty cycle control |
US11374432B2 (en) | 2019-02-19 | 2022-06-28 | Samsung Electronics Co., Ltd. | Electronic device for wirelessly charging external electronic device |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9837203B2 (en) * | 2012-03-29 | 2017-12-05 | Integrated Device Technology, Inc. | Apparatuses having different modes of operation for inductive wireless power transfer and related method |
US10756558B2 (en) | 2012-03-29 | 2020-08-25 | Integrated Device Technology, Inc. | Establishing trusted relationships for multimodal wireless power transfer |
EP3185262B1 (en) * | 2012-07-09 | 2018-09-12 | Lg Electronics Inc. | Wireless power transfer method, apparatus and system |
KR102074475B1 (en) * | 2012-07-10 | 2020-02-06 | 지이 하이브리드 테크놀로지스, 엘엘씨 | Apparatus and method for detecting foreign object in wireless power transmitting system |
US10211720B2 (en) | 2012-11-09 | 2019-02-19 | Integrated Device Technology, Inc. | Wireless power transmitter having low noise and high efficiency, and related methods |
WO2015013255A1 (en) | 2013-07-22 | 2015-01-29 | Indiana University Research And Technology Corporation | Bidirectional electrical signal converter |
US9887643B2 (en) | 2013-09-20 | 2018-02-06 | Indiana University Research And Technology Corporation | Bidirectional electrical signal converter |
EP2868516A1 (en) * | 2013-10-31 | 2015-05-06 | Brusa Elektronik AG | Method for controlling the energy transfer between two resonators of a system for contactless energy transmission, and resonator device |
GB2524065B (en) * | 2014-03-13 | 2021-03-03 | Tdk Lambda Uk Ltd | Converter |
US9608465B2 (en) | 2014-04-18 | 2017-03-28 | Qualcomm Incorporated | Devices, systems, and method for power control of dynamic electric vehicle charging systems |
WO2016036832A1 (en) * | 2014-09-03 | 2016-03-10 | Kettering University | Wireless power transfer system |
KR102025890B1 (en) * | 2014-09-11 | 2019-09-26 | 주식회사 위츠 | Non-contact type power charging apparatus |
US11631997B2 (en) * | 2015-04-06 | 2023-04-18 | Panasonic Intellectual Property Management Co., Ltd. | Power transmission device for noncontact power supply device |
JP2016220421A (en) * | 2015-05-21 | 2016-12-22 | トヨタ自動車株式会社 | Non-contact power transmission device and power transmission system |
DE102015214774A1 (en) | 2015-08-03 | 2017-02-09 | Robert Bosch Gmbh | Induction charger for inductive energy transfer to an induction battery device and method for inductively charging an induction battery device |
KR101764974B1 (en) | 2015-08-24 | 2017-08-03 | 엘지이노텍 주식회사 | Wireless Power Transfer System and Operating method thereof |
KR101775234B1 (en) * | 2015-10-16 | 2017-09-05 | 엘지이노텍 주식회사 | Wireless Power Transfer System and Operating method thereof |
US20170331364A1 (en) * | 2016-05-13 | 2017-11-16 | General Electric Company | Single-stage current-fed clamped series resonant power factor corrected converter |
KR102561180B1 (en) | 2016-08-23 | 2023-07-28 | 주식회사 위츠 | Wireless power transmitter |
US10483803B2 (en) * | 2016-08-23 | 2019-11-19 | Wits Co., Ltd. | Wireless power transmitter and method for wirelessly transmitting power |
KR101994749B1 (en) | 2016-09-20 | 2019-07-01 | 삼성전기주식회사 | Apparatus for transmiting power wirelessly |
KR102293157B1 (en) | 2016-09-20 | 2021-08-26 | 주식회사 위츠 | Apparatus for transmiting power wirelessly |
CN107919737A (en) * | 2016-10-10 | 2018-04-17 | 三星电机株式会社 | Wireless power transmitter and the method for wirelessly sending electric power |
US10727684B2 (en) | 2016-10-10 | 2020-07-28 | Wits Co., Ltd. | Wireless power transmitter |
KR102602386B1 (en) * | 2016-11-29 | 2023-11-16 | 삼성전자주식회사 | Method for wireless charging and electronic device supporting the same |
US10418857B2 (en) * | 2016-11-29 | 2019-09-17 | Wits Co., Ltd. | Wireless power transmitter |
CN106549457B (en) * | 2016-12-27 | 2019-01-11 | 深圳大学 | A kind of wireless charging driving chip |
US20180219402A1 (en) * | 2017-02-02 | 2018-08-02 | Apple Inc. | Wireless Charging System With Inverter Input Power Control |
JP6590112B2 (en) * | 2017-05-26 | 2019-10-16 | 株式会社村田製作所 | Two-way wireless power transmission system |
KR102152670B1 (en) * | 2017-07-28 | 2020-09-07 | 엘지이노텍 주식회사 | Wireless Power Transfer System and Operating method thereof |
KR101996966B1 (en) * | 2017-08-30 | 2019-10-01 | 엘지이노텍 주식회사 | Wireless Power Transfer System and Operating method thereof |
KR20190051473A (en) * | 2017-11-07 | 2019-05-15 | 삼성전기주식회사 | Wireless power transmitter |
CN108649716B (en) * | 2018-03-29 | 2020-08-18 | 维沃移动通信有限公司 | Signal transmission method, receiving end, sending end and terminal equipment |
US11171804B2 (en) | 2019-05-23 | 2021-11-09 | Texas Instruments Incorporated | Common bus data flow for serially chained devices |
US11329844B2 (en) * | 2019-05-23 | 2022-05-10 | Texas Instruments Incorporated | Selected mode signal forwarding between serially chained devices |
US10904478B2 (en) | 2019-05-23 | 2021-01-26 | Texas Instruments Incorporated | Selected forwarding between serially chained devices |
US11374440B2 (en) | 2020-07-31 | 2022-06-28 | Renesas Electronics America Inc. | Wireless power charging |
US11563336B2 (en) * | 2020-09-23 | 2023-01-24 | Halo Microelectronics Co., Ltd. | Wireless charging receiver circuit and chip, and wireless charging receiver |
KR20230019760A (en) | 2021-08-02 | 2023-02-09 | 주식회사 위츠 | Wireless charging apparatus and wireless charging system including the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030151930A1 (en) | 2001-11-30 | 2003-08-14 | Friwo Geraetebau Gmbh | Inductive contactless power transmitter |
US20090096413A1 (en) * | 2006-01-31 | 2009-04-16 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
US20090174263A1 (en) * | 2008-01-07 | 2009-07-09 | Access Business Group International Llc | Inductive power supply with duty cycle control |
KR20110034664A (en) | 2008-07-09 | 2011-04-05 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Wireless charging system |
KR20110074795A (en) | 2003-02-04 | 2011-07-01 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Adaptive Inductive Power |
US20110193416A1 (en) | 2008-09-27 | 2011-08-11 | Campanella Andrew J | Tunable wireless energy transfer systems |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6772011B2 (en) * | 2002-08-20 | 2004-08-03 | Thoratec Corporation | Transmission of information from an implanted medical device |
KR100792308B1 (en) * | 2006-01-31 | 2008-01-07 | 엘에스전선 주식회사 | Solid state charging device with coil array, solid state charging system and charging method |
-
2011
- 2011-12-13 US US13/324,540 patent/US9087638B2/en active Active
-
2012
- 2012-12-13 JP JP2014547423A patent/JP6077563B2/en active Active
- 2012-12-13 WO PCT/US2012/069497 patent/WO2013090565A1/en active Application Filing
- 2012-12-13 CN CN201280061720.8A patent/CN104011969B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030151930A1 (en) | 2001-11-30 | 2003-08-14 | Friwo Geraetebau Gmbh | Inductive contactless power transmitter |
KR20110074795A (en) | 2003-02-04 | 2011-07-01 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Adaptive Inductive Power |
US20090096413A1 (en) * | 2006-01-31 | 2009-04-16 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
US20090174263A1 (en) * | 2008-01-07 | 2009-07-09 | Access Business Group International Llc | Inductive power supply with duty cycle control |
KR20100110356A (en) | 2008-01-07 | 2010-10-12 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Inductive power supply with duty cycle control |
KR20110034664A (en) | 2008-07-09 | 2011-04-05 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Wireless charging system |
US20110193416A1 (en) | 2008-09-27 | 2011-08-11 | Campanella Andrew J | Tunable wireless energy transfer systems |
Non-Patent Citations (1)
Title |
---|
PCT Search Report mailed Mar. 28, 2013. |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150054344A1 (en) * | 2013-08-26 | 2015-02-26 | The University Of Hong Kong | Wireless Power Transfer System |
US10250072B2 (en) * | 2013-08-26 | 2019-04-02 | The University Of Hong Kong | Wireless power transfer system |
US9847666B2 (en) | 2013-09-03 | 2017-12-19 | Apple Inc. | Power management for inductive charging systems |
US9837866B2 (en) | 2013-10-09 | 2017-12-05 | Apple Inc. | Reducing power dissipation in inductive energy transfer systems |
US20160094074A1 (en) * | 2013-10-23 | 2016-03-31 | Apple Inc. | Method and Apparatus for Inductive Power Transfer |
US9673784B2 (en) | 2013-11-21 | 2017-06-06 | Apple Inc. | Using pulsed biases to represent DC bias for charging |
US10404235B2 (en) | 2013-11-21 | 2019-09-03 | Apple Inc. | Using pulsed biases to represent DC bias for charging |
US10283995B2 (en) | 2014-02-28 | 2019-05-07 | L'oreal | Charge current monitoring or control in a resonance-tuned inductive charger |
US10122217B2 (en) | 2015-09-28 | 2018-11-06 | Apple Inc. | In-band signaling within wireless power transfer systems |
US10601250B1 (en) | 2016-09-22 | 2020-03-24 | Apple Inc. | Asymmetric duty control of a half bridge power converter |
US10978899B2 (en) | 2017-02-02 | 2021-04-13 | Apple Inc. | Wireless charging system with duty cycle control |
US11374432B2 (en) | 2019-02-19 | 2022-06-28 | Samsung Electronics Co., Ltd. | Electronic device for wirelessly charging external electronic device |
US12170447B2 (en) | 2019-02-19 | 2024-12-17 | Samsung Electronics Co., Ltd. | Electronic device for wirelessly charging external electronic device |
Also Published As
Publication number | Publication date |
---|---|
WO2013090565A1 (en) | 2013-06-20 |
JP6077563B2 (en) | 2017-02-08 |
JP2015502131A (en) | 2015-01-19 |
CN104011969A (en) | 2014-08-27 |
US20130147280A1 (en) | 2013-06-13 |
CN104011969B (en) | 2017-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9087638B2 (en) | Wireless power system and method | |
US9923417B2 (en) | Wireless power feeding system | |
US10097012B2 (en) | Power supplying device and wireless power-supplying system | |
WO2013146017A1 (en) | Power transmitting system, and power transmitting apparatus used tehrein | |
US10439438B2 (en) | Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system | |
JP2013078171A (en) | Power receiving device and non-contact power supply system | |
JP6089464B2 (en) | Non-contact power transmission device | |
US9773609B2 (en) | Power supply apparatus and power control method thereof | |
CN103326475A (en) | Wireless power transmission device and method thereof | |
CN104704705A (en) | Auto resonant driver for wireless power transmitter sensing required transmit power for optimum efficiency | |
JP5696681B2 (en) | Power transmission system and power transmission device and power reception device | |
JP2016537951A (en) | Wireless power transmission / reception method and apparatus | |
US20190067997A1 (en) | Wireless power transmitting apparatus and method thereof | |
US10784707B2 (en) | Inductive power transfer system | |
US10063085B2 (en) | Power supplying apparatus and wireless power transmitter | |
US10065510B2 (en) | Power transmission system | |
US10355530B2 (en) | Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system | |
US9787104B2 (en) | Power transmission system | |
CN112203890B (en) | Power transmission system of electric vehicle and control method thereof | |
JP2013176196A (en) | Wireless power transmission device | |
JP2013183548A (en) | Wireless power transmission device | |
JP6685016B2 (en) | Non-contact power feeding device, program, control method of non-contact power feeding device, and non-contact power transmission system | |
JP2015089187A (en) | Non-contact power transmission device, power transmission apparatus and power reception apparatus | |
KR20230042632A (en) | Wireless power transfer power control techniques | |
KR101393852B1 (en) | Apparatus for supplying power and apparatus for transmitting wireless power and method for supplying power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OETTINGER, ERIC GREGORY;REEL/FRAME:027410/0649 Effective date: 20111208 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |