US20170019263A1 - Multicast broadcast multimedia service-assisted content distribution - Google Patents
Multicast broadcast multimedia service-assisted content distribution Download PDFInfo
- Publication number
- US20170019263A1 US20170019263A1 US15/216,993 US201615216993A US2017019263A1 US 20170019263 A1 US20170019263 A1 US 20170019263A1 US 201615216993 A US201615216993 A US 201615216993A US 2017019263 A1 US2017019263 A1 US 2017019263A1
- Authority
- US
- United States
- Prior art keywords
- http
- metadata
- media data
- mbms
- access client
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000004891 communication Methods 0.000 claims abstract description 15
- 238000012546 transfer Methods 0.000 claims abstract description 7
- 230000003044 adaptive effect Effects 0.000 claims abstract description 6
- 230000011664 signaling Effects 0.000 claims description 10
- 230000004044 response Effects 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 238000012795 verification Methods 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0076—Distributed coding, e.g. network coding, involving channel coding
- H04L1/0077—Cooperative coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0404—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/063—Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0006—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0033—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/08—Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1635—Cumulative acknowledgement, i.e. the acknowledgement message applying to all previous messages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
- H04L1/1819—Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1825—Adaptation of specific ARQ protocol parameters according to transmission conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1874—Buffer management
- H04L1/1877—Buffer management for semi-reliable protocols, e.g. for less sensitive applications like streaming video
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/189—Transmission or retransmission of more than one copy of a message
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1896—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/189—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/28—Flow control; Congestion control in relation to timing considerations
- H04L47/283—Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/50—Queue scheduling
- H04L47/62—Queue scheduling characterised by scheduling criteria
- H04L47/625—Queue scheduling characterised by scheduling criteria for service slots or service orders
- H04L47/6275—Queue scheduling characterised by scheduling criteria for service slots or service orders based on priority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signalling for the administration of the divided path, e.g. signalling of configuration information
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1438—Negotiation of transmission parameters prior to communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1438—Negotiation of transmission parameters prior to communication
- H04L5/1446—Negotiation of transmission parameters prior to communication of transmission speed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
-
- H04L65/601—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/75—Media network packet handling
- H04L65/752—Media network packet handling adapting media to network capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/75—Media network packet handling
- H04L65/756—Media network packet handling adapting media to device capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
-
- H04L67/2842—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/568—Storing data temporarily at an intermediate stage, e.g. caching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/258—Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
- H04N21/25808—Management of client data
- H04N21/25841—Management of client data involving the geographical location of the client
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/41—Structure of client; Structure of client peripherals
- H04N21/414—Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance
- H04N21/41407—Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance embedded in a portable device, e.g. video client on a mobile phone, PDA, laptop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/64—Addressing
- H04N21/6408—Unicasting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/04—Traffic adaptive resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0231—Traffic management, e.g. flow control or congestion control based on communication conditions
- H04W28/0236—Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0252—Traffic management, e.g. flow control or congestion control per individual bearer or channel
- H04W28/0263—Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0278—Traffic management, e.g. flow control or congestion control using buffer status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/24—Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
- H04W52/0235—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal where the received signal is a power saving command
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1273—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/27—Control channels or signalling for resource management between access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/566—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
- H04W72/569—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
- H04W74/0841—Random access procedures, e.g. with 4-step access with collision treatment
- H04W74/085—Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0069—Cell search, i.e. determining cell identity [cell-ID]
- H04J11/0073—Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0025—Transmission of mode-switching indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/64—Addressing
- H04N21/6405—Multicasting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/143—Downlink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Embodiments of the present invention relate generally to the field of communications, and more particularly, to multicast broadcast multimedia service-assisted content distribution.
- DASH dynamic adaptive streaming over hypertext transfer protocol
- UE user equipment
- 3GPP Third Generation Partnership Project
- TS 26.247 V.10.2.0 Third Generation Partnership Project 26.247 V.10.2.0
- ISO/IEC DIS 23009-1 in MPEG.
- the media content is typically accessed by the UE via unicast HTTP signaling between the UE and a remote HTTP media server that stores the media content.
- the UE sends an HTTP request that is routed to the remote HTTP media server, and the remote HTTP media server transmits the requested media content to the UE via HTTP in response. This may create high signaling overhead in the network and add delay to the distribution of the media content.
- a media presentation description (MPD) metadata file provides information on the structure and different versions of the media content representations stored in the server (including different bitrates, frame rates, resolutions, codec types, etc.).
- DASH also specifies the segment formats, e.g., includes information on the initialization and media segments for a media player (the media player looks at initialization segment to understand container format and media timing info) to ensure mapping of segments into a media presentation timeline for switching and synchronous presentation with other representations.
- MPD metadata information that describes the relation of the segments and how they form a media presentation, clients may request the segments using HTTP GET or partial GET methods.
- Multimedia Broadcast Multicast Services specified in 3GPP TS 26.346 is a point-to-multipoint system utilized on cellular networks operating in accordance with one of the cellular standards promulgated by the 3GPP. It is designed for efficient delivery of popular content to many receivers based on broadcast and multicast techniques and was first introduced in release six of the 3GPP Universal Mobile Telecommunications System (UMTS) specification as an optional feature. MBMS was further optimized in the later 3GPP releases based on several enhancements such as multicast broadcast single frequency network (MBSFN) functionality.
- MMSFN multicast broadcast single frequency network
- MBMS also defines delivery protocols for both streaming of multimedia content and reliable download of files, based on the transport-layer protocol based on the user datagram protocol (UDP), using real-time transmission protocol (RTP) for streaming and File Delivery over Unidirectional Transport (FLUTE) for file delivery.
- UDP user datagram protocol
- RTP real-time transmission protocol
- FLUTE File Delivery over Unidirectional Transport
- MBMS has been adopted as the enhanced MBMS (eMBMS) mode in 3GPP-based Long Term Evolution (LTE) standards development corresponding to 3GPP releases eight and onwards.
- LTE Long Term Evolution
- DASH-formatted content could be delivered to the UE using both MBMS download delivery methods and/or HTTP-based delivery methods.
- MBMS-based DASH delivery option may not be available in some service areas, in which case those services might be alternatively provided via unicast.
- FLUTE transport protocol may be used.
- FLUTE as defined in RFC3926 permits to deliver DASH segments over MBMS such that the client observes them being delivered over HTTP/TCP.
- HTTP-URL is assigned to each delivered object in FLUTE and the HTTP-URL maps the Segment URLs in the MPD. The UE would identify the received DASH representations based on the comparison of the HTTP URLs contained in the MPD and the URL information included in the FLUTE packets.
- FIG. 1 schematically illustrates a wireless communication network in accordance with various embodiments.
- FIG. 2 is a block diagram of a user equipment in accordance with various embodiments.
- FIG. 3 is a block diagram of a proxy terminal in accordance with various embodiments.
- FIG. 4 is a flowchart illustrating a method of facilitating distribution of media data to a UE that may be performed by a proxy terminal in accordance with various embodiments.
- FIG. 5 is a block diagram illustrating an example computing system in accordance with various embodiments.
- Illustrative embodiments of the present disclosure include, but are not limited to, methods, systems, and apparatuses for multicast broadcast multimedia service-assisted content distribution.
- the phrase “in some embodiments” is used repeatedly. The phrase generally does not refer to the same embodiments; however, it may.
- the terms “comprising,” “having,” and “including” are synonymous, unless the context dictates otherwise.
- the phrase “A and/or B” means (A), (B), or (A and B).
- the phrase “A/B” means (A), (B), or (A and B), similar to the phrase “A and/or B”.
- the phrase “at least one of A, B and C” means (A), (B), (C), (A and B), (A and C), (B and C) or (A, B and C).
- the phrase “(A) B” means (B) or (A and B), that is, A is optional.
- module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
- ASIC Application Specific Integrated Circuit
- processor shared, dedicated, or group
- memory shared, dedicated, or group
- FIG. 1 schematically illustrates a wireless communication network 100 in accordance with various embodiments.
- Wireless communication network 100 may be an access network of a 3rd Generation Partnership Project (3GPP) long-term evolution (LTE) network such as evolved universal mobile telecommunication system (UMTS) terrestrial radio access network (E-UTRAN).
- the network 100 may include a proxy terminal 104 configured to communicate with a user equipment (UE) 108 via a wireless or wired connection.
- the network 100 may further include a broadcast multicast service center (BMSC) 112 that delivers the MBMS services to various MBMS clients and a media server 116 that stores and distributes media content.
- BMSC broadcast multicast service center
- the proxy terminal 104 may be a base station, e.g., an evolved Node B (eNB) configured to wirelessly communicate with the UE 108 over network 100 .
- the proxy terminal 104 may be another UE.
- the other UE may communicate with the BMSC 112 and/or other components of network 100 via an eNB.
- the other UE may operate as a “hot spot” to allow the UE 108 to access the network 100 .
- the proxy terminal 104 may be included in the UE 108 , i.e., the functionalities of the proxy terminal 104 and those of the UE 108 may be hosted in a single terminal.
- the UE 108 may include a media client 220 and a hypertext transfer protocol (HTTP) access client 224 coupled to one another at least as shown.
- HTTP hypertext transfer protocol
- the HTTP access client 224 may be further coupled with one or more of a plurality of antennas 228 of the UE 108 for communicating wirelessly over network 100 .
- the UE 108 may include any suitable number of antennas 228 .
- One or more of the antennas 228 may be alternately used as transmit or receive antennas. Alternatively, or additionally, one or more of the antennas 228 may be dedicated receive antennas or dedicated transmit antennas.
- proxy terminal 104 may include a multimedia broadcast multicast service (MBMS) access client 332 , an HTTP server module 336 , and a memory 340 coupled to one another at least as shown.
- the MBMS access client 332 and/or HTTP server module 336 may be further coupled with one or more antennas 344 of the proxy terminal 104 .
- the proxy terminal 104 may include at least as many antennas 344 as a number of simultaneous transmission streams transmitted to the UE 108 and/or received from the BMSC 112 , although the scope of the present disclosure may not be limited in this respect.
- One or more of the antennas 344 may be alternately used as transmit or receive antennas. Alternatively, or additionally, one or more of the antennas 344 may be dedicated receive antennas or dedicated transmit antennas.
- the MBMS access client 332 of the proxy terminal 104 may receive an MBMS transmission including media data and metadata.
- the proxy terminal 104 may cache the media data and/or metadata (e.g., store the media data and/or metadata in memory 340 ) for later transmission to the UE 108 .
- the MBMS access client 332 may receive the MBMS transmission wirelessly from the BMSC 112 .
- the MBMS access client 332 may receive the MBMS transmission via file delivery over a unidirectional transport (FLUTE) protocol and/or an internet protocol (IP) multicast protocol.
- the MBMS access client 332 may receive the media data and metadata from the BMSC 112 via user service discovery (USD) signaling.
- USD user service discovery
- the MBMS transmission may include dynamic adaptive streaming over HTTP (DASH) formatted media content and associated MPD metadata.
- the BMSC 112 may transmit the MBMS transmission to a plurality of proxy terminals including the proxy terminal 104 .
- the HTTP access client 224 of the UE 108 may also be referred to as a DASH client.
- the BMSC 112 may receive the media data and/or metadata from the media server 116 .
- the BMSC 112 may retrieve the media data and metadata from the media server 116 via HTTP signaling.
- the communication link between the BMSC 112 and the media server 116 may be wireless and/or wired.
- the HTTP server module 336 of the proxy terminal 104 may transmit at least a portion of the media data and metadata to the UE 108 via an HTTP transmission.
- the HTTP access client 224 in the UE 108 may receive at least a portion of the media data and metadata from the HTTP server module 336 of the proxy terminal 104 by issuing HTTP GET or HTTP partial GET requests.
- the MBMS transmission may be used to efficiently distribute the media data and/or metadata to a plurality of proxy terminals.
- the proxy terminals may then distribute the media data and/or metadata to associated UEs via HTTP.
- the media data and metadata may be in a DASH format.
- the media data may include a plurality of media segments associated with a media presentation, such as a video, audio, and/or multimedia presentation.
- the media segments may be associated with different periods of the media presentation and/or be different versions of the same period of the media presentation.
- the versions may include different properties, such as bit rate, frame rate, resolution, codec type, and/or other properties.
- the metadata for DASH-formatted content may include a media presentation description (MPD) metadata associated with the media data.
- MPD metadata may include information related to the content and/or properties of the media segments included in the media data, and/or parameters associated with the MBMS transmission that includes the media data.
- the media client 220 of the UE 108 may also request one or more media segments from the BMSC 112 or media server 116 , using HTTP requests (e.g., via the HTTP access client 224 ), based on the MPD metadata.
- the media client 220 may request media segments of successive periods to present the media presentation to a user of the UE 108 .
- the media client 220 may dynamically change which media segment version to request based on one or more conditions, such as available bandwidth, network conditions, user preferences, device capabilities (e.g., display resolution, processing capabilities, memory resources, etc.), and/or device conditions (e.g., other processing/memory overhead).
- the HTTP server module 336 of the proxy terminal 104 may receive the HTTP request from the HTTP access client 224 of the UE 108 .
- the HTTP server module 336 may transmit the requested media segment to the UE 108 via HTTP in response to the request.
- the HTTP request by the UE 108 is forwarded to remote HTTP servers through one or more intermediary devices (e.g., an eNB, HTTP cache, etc.).
- the proxy terminal 104 discussed herein responds directly to the HTTP request by the UE 108 .
- the HTTP request may not be forwarded to the media server 116 .
- the proxy terminal 104 may provide reduced signaling over network 100 and/or reduced delay (e.g., startup delay) for UE 108 to access the media presentation.
- the MBMS-assisted process described herein may be transparent to the UE 108 .
- the proxy terminal 104 may be used to distribute any suitable type of media data and/or metadata to UE 108 .
- the proxy terminal 104 may receive and/or cache only a portion (e.g., selected media segments) of the media data for a given media presentation that is available from the BMSC.
- the proxy terminal 104 may receive a first MPD metadata from the BMSC 112 associated with the media data that is available from the BMSC 112 .
- the proxy terminal 104 may generate and/or transmit to the UE 108 a second MPD metadata associated with a subset or superset of the media data that is available for HTTP transmission to the UE.
- the proxy terminal 104 may receive and/or cache only a portion of the media data, for example, due to scheduling restraints, memory restraints, network conditions, and/or to allow memory/bandwidth for other media presentations.
- the proxy terminal 104 may cache a subset of available media segments corresponding to a subset of the representations (e.g., quality levels) for a given portion of the media presentation.
- a subset of the representations e.g., quality levels
- the proxy terminal 104 may cache a subset of available media segments that corresponds to a beginning portion of the media presentation. This may facilitate fast startup of the media presentation when playback of the media presentation is requested by the user. Additional media segments may be requested after playback is requested.
- the media presentations and/or media segments cached by the proxy terminal 104 may be selected based on any suitable criteria, such as a determined or anticipated popularity of the media presentation and/or media segment.
- a media presentation may be selected based on a user indication that identifies the media presentation (e.g., indicating that the user wishes to playback the media presentation when it becomes available and/or at a later time). This may be particularly helpful in embodiments in which the proxy terminal 104 is included in the UE 108 , although it is not limited in that regard.
- the UE 108 may also indicate one or more capabilities of the UE 108 and/or quality/experience preferences of the user to facilitate selection of one or more suitable representations of the media presentation. For example, the user may prefer a lower bitrate presentation with less playback delay compared with a higher bitrate presentation.
- the MBMS access client 332 of the proxy terminal 104 may include one or more MBMS capabilities to receive and/or cache the MBMS transmission.
- the MBMS access client 332 may activate MBMS service with the BMSC 112 and receive the MPD metadata via USD signaling.
- the MBMS access client 332 may decode an application layer forward error correction (AL-FEC) code, such as a Raptor code, associated with the MBMS transmission.
- A-FEC application layer forward error correction
- the MBMS access client 332 may perform one or more recovery procedures to retrieve incorrectly received portions of the media data and/or metadata.
- the MBMS access client 332 may send a report to the BMSC 112 with delivery verification information and/or reception statistics.
- the proxy terminal 104 may be included in an eNB or another UE of network 100 .
- the UE 108 may have a communications link with the eNB or other UE to transmit and/or receive other data, in addition to the media data and metadata, over the network 100 .
- the proxy terminal 104 may be included in the UE 108 , i.e., functionalities of the proxy terminal 104 and those of the UE 108 may be hosted in a single terminal.
- the HTTP server module 336 may have a wired or wireless connection with the HTTP access client 224 of the UE 108 .
- FIG. 4 illustrates a method 400 of facilitating distribution of media data to an HTTP access client of a UE (e.g., HTTP access client 224 of UE 108 ) in accordance with various embodiments.
- Method 400 may be performed by a proxy terminal (e.g., proxy terminal 104 ).
- the proxy terminal may be, for example, included in an eNB or another UE. Alternatively, the proxy terminal may be included in the same UE terminal that includes the HTTP access client.
- the proxy terminal may include and/or have access to one or more computer-readable media having instructions stored thereon, that, when executed, cause the proxy terminal to perform the method 400 .
- the proxy terminal may activate MBMS service with a BMSC (e.g., BMSC 112 ).
- the proxy terminal may activate the MBMS service proactively, e.g., not in response to instructions from the UE.
- the proxy terminal may receive metadata (e.g., MPD metadata) from the BMSC via USD signaling.
- the metadata may be associated with media data that will be broadcasted by the BMSC.
- the metadata may be passed on to the UE.
- the metadata may be modified before being passed on to the UE.
- the metadata may be modified to include information related to a subset or superset of the media data that is available for HTTP transmission to the UE.
- the proxy terminal may receive an MBMS transmission from the BMSC that includes the media data.
- the media data may be in a DASH format and include a plurality of media segments associated with a media presentation.
- the proxy terminal may cache the received media data.
- the caching may include storing the media data in local storage on the proxy terminal.
- the proxy terminal may receive an HTTP request from an HTTP access client to receive at least a portion of the cached media data.
- the HTTP request may identify one or more media segments of the cached media data.
- the HTTP access client may be hosted in the UE 108 .
- the MBMS access client, memory, HTTP server and HTTP access client functionalities may be hosted in a single terminal.
- the MBMS access client, memory, and HTTP server may be hosted in another terminal, such as an eNB or another UE.
- the proxy terminal may transmit the requested media data to the HTTP access client via HTTP signaling.
- the proxy terminal may retrieve the requested media data from local storage for transmission. Accordingly, the HTTP request from the HTTP access client may be intercepted by the proxy terminal and not forwarded to a remote server.
- the proxy terminal may thereafter receive additional HTTP requests from the UE to retrieve other portions of the media data.
- FIG. 5 illustrates, for one embodiment, an example system 500 comprising one or more processor(s) 504 , system control logic 508 coupled with at least one of the processor(s) 504 , system memory 512 coupled with system control logic 508 , non-volatile memory (NVM)/storage 516 coupled with system control logic 508 , a network interface 520 coupled with system control logic 508 , and input/output (I/O) devices 532 coupled with system control logic 508 .
- processor(s) 504 system control logic 508 coupled with at least one of the processor(s) 504
- system memory 512 coupled with system control logic 508
- NVM non-volatile memory
- storage 516 coupled with system control logic 508
- network interface 520 coupled with system control logic 508
- I/O input/output
- the processor(s) 504 may include one or more single-core or multi-core processors.
- the processor(s) 504 may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, baseband processors, etc.).
- System control logic 508 may include any suitable interface controllers to provide for any suitable interface to at least one of the processor(s) 504 and/or to any suitable device or component in communication with system control logic 508 .
- System control logic 508 for one embodiment may include one or more memory controller(s) to provide an interface to system memory 512 .
- System memory 512 may be used to load and store data and/or instructions, for example, for system 500 .
- System memory 512 for one embodiment may include any suitable volatile memory, such as suitable dynamic random access memory (DRAM), for example.
- DRAM dynamic random access memory
- NVM/storage 516 may include one or more tangible, non-transitory computer-readable media used to store data and/or instructions, for example.
- NVM/storage 516 may include any suitable non-volatile memory, such as flash memory, for example, and/or may include any suitable non-volatile storage device(s), such as one or more hard disk drive(s) (HDD(s)), one or more compact disk (CD) drive(s), and/or one or more digital versatile disk (DVD) drive(s), for example.
- HDD hard disk drive
- CD compact disk
- DVD digital versatile disk
- the NVM/storage 516 may include a storage resource physically part of a device on which the system 500 is installed or it may be accessible by, but not necessarily a part of, the device.
- the NVM/storage 516 may be accessed over a network via the network interface 520 and/or over Input/Output (I/O) devices 532 .
- I/O Input/Output
- Network interface 520 may have a transceiver 522 to provide a radio interface for system 500 to communicate over one or more network(s) and/or with any other suitable device.
- the transceiver 522 may implement the HTTP access client 120 of UE 108 or the MBMS module and/or HTTP module 132 of proxy terminal 104 .
- the transceiver 522 may be integrated with other components of system 500 .
- the transceiver 522 may include a processor of the processor(s) 504 , memory of the system memory 512 , and NVM/Storage of NVM/Storage 516 .
- Network interface 520 may include any suitable hardware and/or firmware.
- Network interface 520 may include a plurality of antennas to provide a multiple input, multiple output radio interface.
- Network interface 520 for one embodiment may include, for example, a wired network adapter, a wireless network adapter, a telephone modem, and/or a wireless modem.
- At least one of the processor(s) 504 may be packaged together with logic for one or more controller(s) of system control logic 508 .
- at least one of the processor(s) 504 may be packaged together with logic for one or more controllers of system control logic 508 to form a System in Package (SiP).
- SiP System in Package
- at least one of the processor(s) 504 may be integrated on the same die with logic for one or more controller(s) of system control logic 508 .
- at least one of the processor(s) 504 may be integrated on the same die with logic for one or more controller(s) of system control logic 508 to form a System on Chip (SoC).
- SoC System on Chip
- the I/O devices 532 may include user interfaces designed to enable user interaction with the system 500 , peripheral component interfaces designed to enable peripheral component interaction with the system 500 , and/or sensors designed to determine environmental conditions and/or location information related to the system 500 .
- the user interfaces could include, but are not limited to, a display (e.g., a liquid crystal display, a touch screen display, etc.), a speaker, a microphone, one or more cameras (e.g., a still camera and/or a video camera), a flashlight (e.g., a light emitting diode flash), and a keyboard.
- a display e.g., a liquid crystal display, a touch screen display, etc.
- a speaker e.g., a microphone
- one or more cameras e.g., a still camera and/or a video camera
- a flashlight e.g., a light emitting diode flash
- the peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
- a non-volatile memory port may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
- USB universal serial bus
- the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
- the positioning unit may also be part of, or interact with, the network interface 520 to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
- GPS global positioning system
- system 500 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, a smartphone, etc. In various embodiments, system 500 may have more or less components, and/or different architectures.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Communication Control (AREA)
- Radio Transmission System (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Information Transfer Between Computers (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- The present application claims priority to U.S. patent application Ser. No. 14/318,435, filed Jun. 27, 2014, entitled “MULTICAST BROADCAST MULTIMEDIA SERVICE-ASSISTED CONTENT DISTRIBUTION,” which claims priority to U.S. patent application Ser. No. 13/626,661, filed Sep. 25, 2012, entitled “MULTICAST BROADCAST MULTIMEDIA SERVICE-ASSISTED CONTENT DISTRIBUTION,” now U.S. Pat. No. 8,793,743, issued Jul. 29, 2014, which claims priority to U.S. Provisional Patent Application No. 61/612,188, filed Mar. 16, 2012, entitled “WIRELESS COMMUNICATION SYSTEMS AND METHODS,” the entire disclosures of which are hereby incorporated by their references.
- Embodiments of the present invention relate generally to the field of communications, and more particularly, to multicast broadcast multimedia service-assisted content distribution.
- In some wireless communication networks, dynamic adaptive streaming over hypertext transfer protocol (DASH) streaming format is used to deliver media content, such as video, audio, multimedia, and/or other content to a user equipment (UE) over a wireless communication network. DASH has been standardized in Third Generation Partnership Project (3GPP) TS 26.247 V.10.2.0 as well as ISO/IEC DIS 23009-1 in MPEG. The media content is typically accessed by the UE via unicast HTTP signaling between the UE and a remote HTTP media server that stores the media content. The UE sends an HTTP request that is routed to the remote HTTP media server, and the remote HTTP media server transmits the requested media content to the UE via HTTP in response. This may create high signaling overhead in the network and add delay to the distribution of the media content.
- In DASH, a media presentation description (MPD) metadata file provides information on the structure and different versions of the media content representations stored in the server (including different bitrates, frame rates, resolutions, codec types, etc.). In addition, DASH also specifies the segment formats, e.g., includes information on the initialization and media segments for a media player (the media player looks at initialization segment to understand container format and media timing info) to ensure mapping of segments into a media presentation timeline for switching and synchronous presentation with other representations. Based on this MPD metadata information that describes the relation of the segments and how they form a media presentation, clients may request the segments using HTTP GET or partial GET methods.
- Multimedia Broadcast Multicast Services (MBMS) specified in 3GPP TS 26.346 is a point-to-multipoint system utilized on cellular networks operating in accordance with one of the cellular standards promulgated by the 3GPP. It is designed for efficient delivery of popular content to many receivers based on broadcast and multicast techniques and was first introduced in release six of the 3GPP Universal Mobile Telecommunications System (UMTS) specification as an optional feature. MBMS was further optimized in the later 3GPP releases based on several enhancements such as multicast broadcast single frequency network (MBSFN) functionality. At the service layer, MBMS also defines delivery protocols for both streaming of multimedia content and reliable download of files, based on the transport-layer protocol based on the user datagram protocol (UDP), using real-time transmission protocol (RTP) for streaming and File Delivery over Unidirectional Transport (FLUTE) for file delivery. MBMS has been adopted as the enhanced MBMS (eMBMS) mode in 3GPP-based Long Term Evolution (LTE) standards development corresponding to 3GPP releases eight and onwards.
- DASH-formatted content could be delivered to the UE using both MBMS download delivery methods and/or HTTP-based delivery methods. MBMS-based DASH delivery option may not be available in some service areas, in which case those services might be alternatively provided via unicast. In case of DASH-formatted content delivery over MBMS, FLUTE transport protocol may be used. FLUTE as defined in RFC3926 permits to deliver DASH segments over MBMS such that the client observes them being delivered over HTTP/TCP. HTTP-URL is assigned to each delivered object in FLUTE and the HTTP-URL maps the Segment URLs in the MPD. The UE would identify the received DASH representations based on the comparison of the HTTP URLs contained in the MPD and the URL information included in the FLUTE packets.
- Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
-
FIG. 1 schematically illustrates a wireless communication network in accordance with various embodiments. -
FIG. 2 is a block diagram of a user equipment in accordance with various embodiments. -
FIG. 3 is a block diagram of a proxy terminal in accordance with various embodiments. -
FIG. 4 is a flowchart illustrating a method of facilitating distribution of media data to a UE that may be performed by a proxy terminal in accordance with various embodiments. -
FIG. 5 is a block diagram illustrating an example computing system in accordance with various embodiments. - Illustrative embodiments of the present disclosure include, but are not limited to, methods, systems, and apparatuses for multicast broadcast multimedia service-assisted content distribution.
- Various aspects of the illustrative embodiments will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that alternate embodiments may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding of the illustrative embodiments. However, it will be apparent to one skilled in the art that alternate embodiments may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative embodiments.
- Further, various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the illustrative embodiments; however, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
- The phrase “in some embodiments” is used repeatedly. The phrase generally does not refer to the same embodiments; however, it may. The terms “comprising,” “having,” and “including” are synonymous, unless the context dictates otherwise. The phrase “A and/or B” means (A), (B), or (A and B). The phrase “A/B” means (A), (B), or (A and B), similar to the phrase “A and/or B”. The phrase “at least one of A, B and C” means (A), (B), (C), (A and B), (A and C), (B and C) or (A, B and C). The phrase “(A) B” means (B) or (A and B), that is, A is optional.
- Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described, without departing from the scope of the embodiments of the present disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that the embodiments of the present disclosure be limited only by the claims and the equivalents thereof.
- As used herein, the term “module” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
-
FIG. 1 schematically illustrates awireless communication network 100 in accordance with various embodiments. Wireless communication network 100 (hereinafter “network 100”) may be an access network of a 3rd Generation Partnership Project (3GPP) long-term evolution (LTE) network such as evolved universal mobile telecommunication system (UMTS) terrestrial radio access network (E-UTRAN). Thenetwork 100 may include aproxy terminal 104 configured to communicate with a user equipment (UE) 108 via a wireless or wired connection. Thenetwork 100 may further include a broadcast multicast service center (BMSC) 112 that delivers the MBMS services to various MBMS clients and amedia server 116 that stores and distributes media content. - In some embodiments, the
proxy terminal 104 may be a base station, e.g., an evolved Node B (eNB) configured to wirelessly communicate with the UE 108 overnetwork 100. In other embodiments, theproxy terminal 104 may be another UE. In embodiments in which theproxy terminal 104 is another UE, the other UE may communicate with theBMSC 112 and/or other components ofnetwork 100 via an eNB. The other UE may operate as a “hot spot” to allow the UE 108 to access thenetwork 100. In yet other embodiments, theproxy terminal 104 may be included in the UE 108, i.e., the functionalities of theproxy terminal 104 and those of the UE 108 may be hosted in a single terminal. - As shown in
FIG. 2 , theUE 108 may include amedia client 220 and a hypertext transfer protocol (HTTP)access client 224 coupled to one another at least as shown. TheHTTP access client 224 may be further coupled with one or more of a plurality ofantennas 228 of theUE 108 for communicating wirelessly overnetwork 100. TheUE 108 may include any suitable number ofantennas 228. One or more of theantennas 228 may be alternately used as transmit or receive antennas. Alternatively, or additionally, one or more of theantennas 228 may be dedicated receive antennas or dedicated transmit antennas. - As shown in
FIG. 3 ,proxy terminal 104 may include a multimedia broadcast multicast service (MBMS)access client 332, anHTTP server module 336, and amemory 340 coupled to one another at least as shown. TheMBMS access client 332 and/orHTTP server module 336 may be further coupled with one ormore antennas 344 of theproxy terminal 104. In various embodiments, theproxy terminal 104 may include at least asmany antennas 344 as a number of simultaneous transmission streams transmitted to theUE 108 and/or received from theBMSC 112, although the scope of the present disclosure may not be limited in this respect. One or more of theantennas 344 may be alternately used as transmit or receive antennas. Alternatively, or additionally, one or more of theantennas 344 may be dedicated receive antennas or dedicated transmit antennas. - In various embodiments, the
MBMS access client 332 of theproxy terminal 104 may receive an MBMS transmission including media data and metadata. Theproxy terminal 104 may cache the media data and/or metadata (e.g., store the media data and/or metadata in memory 340) for later transmission to theUE 108. TheMBMS access client 332 may receive the MBMS transmission wirelessly from theBMSC 112. For example, theMBMS access client 332 may receive the MBMS transmission via file delivery over a unidirectional transport (FLUTE) protocol and/or an internet protocol (IP) multicast protocol. In various embodiments, theMBMS access client 332 may receive the media data and metadata from theBMSC 112 via user service discovery (USD) signaling. In some embodiments, the MBMS transmission may include dynamic adaptive streaming over HTTP (DASH) formatted media content and associated MPD metadata. TheBMSC 112 may transmit the MBMS transmission to a plurality of proxy terminals including theproxy terminal 104. In the case of DASH formatted media content, theHTTP access client 224 of theUE 108 may also be referred to as a DASH client. - The
BMSC 112 may receive the media data and/or metadata from themedia server 116. In some embodiments, theBMSC 112 may retrieve the media data and metadata from themedia server 116 via HTTP signaling. The communication link between theBMSC 112 and themedia server 116 may be wireless and/or wired. - In various embodiments, the
HTTP server module 336 of theproxy terminal 104 may transmit at least a portion of the media data and metadata to theUE 108 via an HTTP transmission. In some embodiments theHTTP access client 224 in theUE 108 may receive at least a portion of the media data and metadata from theHTTP server module 336 of theproxy terminal 104 by issuing HTTP GET or HTTP partial GET requests. Accordingly, the MBMS transmission may be used to efficiently distribute the media data and/or metadata to a plurality of proxy terminals. The proxy terminals may then distribute the media data and/or metadata to associated UEs via HTTP. - In some embodiments, the media data and metadata may be in a DASH format. For example, the media data may include a plurality of media segments associated with a media presentation, such as a video, audio, and/or multimedia presentation. The media segments may be associated with different periods of the media presentation and/or be different versions of the same period of the media presentation. The versions may include different properties, such as bit rate, frame rate, resolution, codec type, and/or other properties.
- The metadata for DASH-formatted content may include a media presentation description (MPD) metadata associated with the media data. The MPD metadata may include information related to the content and/or properties of the media segments included in the media data, and/or parameters associated with the MBMS transmission that includes the media data.
- In various embodiments, the
media client 220 of theUE 108 may also request one or more media segments from theBMSC 112 ormedia server 116, using HTTP requests (e.g., via the HTTP access client 224), based on the MPD metadata. Themedia client 220 may request media segments of successive periods to present the media presentation to a user of theUE 108. Themedia client 220 may dynamically change which media segment version to request based on one or more conditions, such as available bandwidth, network conditions, user preferences, device capabilities (e.g., display resolution, processing capabilities, memory resources, etc.), and/or device conditions (e.g., other processing/memory overhead). - In various embodiments, the
HTTP server module 336 of theproxy terminal 104 may receive the HTTP request from theHTTP access client 224 of theUE 108. TheHTTP server module 336 may transmit the requested media segment to theUE 108 via HTTP in response to the request. - In conventional systems, the HTTP request by the
UE 108 is forwarded to remote HTTP servers through one or more intermediary devices (e.g., an eNB, HTTP cache, etc.). In contrast, theproxy terminal 104 discussed herein responds directly to the HTTP request by theUE 108. The HTTP request may not be forwarded to themedia server 116. Accordingly, theproxy terminal 104 may provide reduced signaling overnetwork 100 and/or reduced delay (e.g., startup delay) forUE 108 to access the media presentation. Additionally, the MBMS-assisted process described herein may be transparent to theUE 108. - Although the media data and metadata is described herein with reference to DASH-formatted media data and metadata, the present disclosure is not limited in this respect. In other embodiments, the
proxy terminal 104 may be used to distribute any suitable type of media data and/or metadata toUE 108. - In some embodiments, the
proxy terminal 104 may receive and/or cache only a portion (e.g., selected media segments) of the media data for a given media presentation that is available from the BMSC. Theproxy terminal 104 may receive a first MPD metadata from theBMSC 112 associated with the media data that is available from theBMSC 112. Theproxy terminal 104 may generate and/or transmit to the UE 108 a second MPD metadata associated with a subset or superset of the media data that is available for HTTP transmission to the UE. Theproxy terminal 104 may receive and/or cache only a portion of the media data, for example, due to scheduling restraints, memory restraints, network conditions, and/or to allow memory/bandwidth for other media presentations. - In some embodiments, the
proxy terminal 104 may cache a subset of available media segments corresponding to a subset of the representations (e.g., quality levels) for a given portion of the media presentation. - In some embodiments, the
proxy terminal 104 may cache a subset of available media segments that corresponds to a beginning portion of the media presentation. This may facilitate fast startup of the media presentation when playback of the media presentation is requested by the user. Additional media segments may be requested after playback is requested. - The media presentations and/or media segments cached by the
proxy terminal 104 may be selected based on any suitable criteria, such as a determined or anticipated popularity of the media presentation and/or media segment. In some embodiments, a media presentation may be selected based on a user indication that identifies the media presentation (e.g., indicating that the user wishes to playback the media presentation when it becomes available and/or at a later time). This may be particularly helpful in embodiments in which theproxy terminal 104 is included in theUE 108, although it is not limited in that regard. In some embodiments, theUE 108 may also indicate one or more capabilities of theUE 108 and/or quality/experience preferences of the user to facilitate selection of one or more suitable representations of the media presentation. For example, the user may prefer a lower bitrate presentation with less playback delay compared with a higher bitrate presentation. - In various embodiments, the
MBMS access client 332 of theproxy terminal 104 may include one or more MBMS capabilities to receive and/or cache the MBMS transmission. For example, theMBMS access client 332 may activate MBMS service with theBMSC 112 and receive the MPD metadata via USD signaling. In some embodiments, theMBMS access client 332 may decode an application layer forward error correction (AL-FEC) code, such as a Raptor code, associated with the MBMS transmission. Additionally, or alternatively, theMBMS access client 332 may perform one or more recovery procedures to retrieve incorrectly received portions of the media data and/or metadata. In some embodiments, theMBMS access client 332 may send a report to theBMSC 112 with delivery verification information and/or reception statistics. - As discussed above, in some embodiments, the
proxy terminal 104 may be included in an eNB or another UE ofnetwork 100. TheUE 108 may have a communications link with the eNB or other UE to transmit and/or receive other data, in addition to the media data and metadata, over thenetwork 100. In other embodiments, theproxy terminal 104 may be included in theUE 108, i.e., functionalities of theproxy terminal 104 and those of theUE 108 may be hosted in a single terminal. In these embodiments, theHTTP server module 336 may have a wired or wireless connection with theHTTP access client 224 of theUE 108. -
FIG. 4 illustrates amethod 400 of facilitating distribution of media data to an HTTP access client of a UE (e.g.,HTTP access client 224 of UE 108) in accordance with various embodiments.Method 400 may be performed by a proxy terminal (e.g., proxy terminal 104). The proxy terminal may be, for example, included in an eNB or another UE. Alternatively, the proxy terminal may be included in the same UE terminal that includes the HTTP access client. In some embodiments, the proxy terminal may include and/or have access to one or more computer-readable media having instructions stored thereon, that, when executed, cause the proxy terminal to perform themethod 400. - At 404, the proxy terminal may activate MBMS service with a BMSC (e.g., BMSC 112). The proxy terminal may activate the MBMS service proactively, e.g., not in response to instructions from the UE.
- At 408, the proxy terminal may receive metadata (e.g., MPD metadata) from the BMSC via USD signaling. The metadata may be associated with media data that will be broadcasted by the BMSC. The metadata may be passed on to the UE. In some embodiments, the metadata may be modified before being passed on to the UE. For example, the metadata may be modified to include information related to a subset or superset of the media data that is available for HTTP transmission to the UE.
- At 412, the proxy terminal may receive an MBMS transmission from the BMSC that includes the media data. The media data may be in a DASH format and include a plurality of media segments associated with a media presentation.
- At 416, the proxy terminal may cache the received media data. The caching may include storing the media data in local storage on the proxy terminal.
- At 420, the proxy terminal may receive an HTTP request from an HTTP access client to receive at least a portion of the cached media data. For example, the HTTP request may identify one or more media segments of the cached media data. The HTTP access client may be hosted in the
UE 108. In some embodiments, the MBMS access client, memory, HTTP server and HTTP access client functionalities may be hosted in a single terminal. In other embodiments, the MBMS access client, memory, and HTTP server may be hosted in another terminal, such as an eNB or another UE. - At 424, the proxy terminal may transmit the requested media data to the HTTP access client via HTTP signaling. The proxy terminal may retrieve the requested media data from local storage for transmission. Accordingly, the HTTP request from the HTTP access client may be intercepted by the proxy terminal and not forwarded to a remote server.
- The proxy terminal may thereafter receive additional HTTP requests from the UE to retrieve other portions of the media data.
- The
proxy terminal 104,UE 108, and/orBMSC 112 described herein may be implemented into a system using any suitable hardware and/or software to configure as desired.FIG. 5 illustrates, for one embodiment, anexample system 500 comprising one or more processor(s) 504,system control logic 508 coupled with at least one of the processor(s) 504,system memory 512 coupled withsystem control logic 508, non-volatile memory (NVM)/storage 516 coupled withsystem control logic 508, anetwork interface 520 coupled withsystem control logic 508, and input/output (I/O)devices 532 coupled withsystem control logic 508. - The processor(s) 504 may include one or more single-core or multi-core processors. The processor(s) 504 may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, baseband processors, etc.).
-
System control logic 508 for one embodiment may include any suitable interface controllers to provide for any suitable interface to at least one of the processor(s) 504 and/or to any suitable device or component in communication withsystem control logic 508. -
System control logic 508 for one embodiment may include one or more memory controller(s) to provide an interface tosystem memory 512.System memory 512 may be used to load and store data and/or instructions, for example, forsystem 500.System memory 512 for one embodiment may include any suitable volatile memory, such as suitable dynamic random access memory (DRAM), for example. - NVM/
storage 516 may include one or more tangible, non-transitory computer-readable media used to store data and/or instructions, for example. NVM/storage 516 may include any suitable non-volatile memory, such as flash memory, for example, and/or may include any suitable non-volatile storage device(s), such as one or more hard disk drive(s) (HDD(s)), one or more compact disk (CD) drive(s), and/or one or more digital versatile disk (DVD) drive(s), for example. - The NVM/
storage 516 may include a storage resource physically part of a device on which thesystem 500 is installed or it may be accessible by, but not necessarily a part of, the device. For example, the NVM/storage 516 may be accessed over a network via thenetwork interface 520 and/or over Input/Output (I/O)devices 532. -
Network interface 520 may have atransceiver 522 to provide a radio interface forsystem 500 to communicate over one or more network(s) and/or with any other suitable device. Thetransceiver 522 may implement the HTTP access client 120 ofUE 108 or the MBMS module and/or HTTP module 132 ofproxy terminal 104. In various embodiments, thetransceiver 522 may be integrated with other components ofsystem 500. For example, thetransceiver 522 may include a processor of the processor(s) 504, memory of thesystem memory 512, and NVM/Storage of NVM/Storage 516.Network interface 520 may include any suitable hardware and/or firmware.Network interface 520 may include a plurality of antennas to provide a multiple input, multiple output radio interface.Network interface 520 for one embodiment may include, for example, a wired network adapter, a wireless network adapter, a telephone modem, and/or a wireless modem. - For one embodiment, at least one of the processor(s) 504 may be packaged together with logic for one or more controller(s) of
system control logic 508. For one embodiment, at least one of the processor(s) 504 may be packaged together with logic for one or more controllers ofsystem control logic 508 to form a System in Package (SiP). For one embodiment, at least one of the processor(s) 504 may be integrated on the same die with logic for one or more controller(s) ofsystem control logic 508. For one embodiment, at least one of the processor(s) 504 may be integrated on the same die with logic for one or more controller(s) ofsystem control logic 508 to form a System on Chip (SoC). - In various embodiments, the I/
O devices 532 may include user interfaces designed to enable user interaction with thesystem 500, peripheral component interfaces designed to enable peripheral component interaction with thesystem 500, and/or sensors designed to determine environmental conditions and/or location information related to thesystem 500. - In various embodiments, the user interfaces could include, but are not limited to, a display (e.g., a liquid crystal display, a touch screen display, etc.), a speaker, a microphone, one or more cameras (e.g., a still camera and/or a video camera), a flashlight (e.g., a light emitting diode flash), and a keyboard.
- In various embodiments, the peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
- In various embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the
network interface 520 to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite. - In various embodiments, the
system 500 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, a smartphone, etc. In various embodiments,system 500 may have more or less components, and/or different architectures. - Although certain embodiments have been illustrated and described herein for purposes of description, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments described herein be limited only by the claims and the equivalents thereof.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/216,993 US10320552B2 (en) | 2012-03-16 | 2016-07-22 | Multicast broadcast multimedia service-assisted content distribution |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261612188P | 2012-03-16 | 2012-03-16 | |
US13/626,661 US8793743B2 (en) | 2012-03-16 | 2012-09-25 | Multicast broadcast multimedia service-assisted content distribution |
US14/318,435 US9432978B2 (en) | 2012-03-16 | 2014-06-27 | Multicast broadcast multimedia service-assisted content distribution |
US15/216,993 US10320552B2 (en) | 2012-03-16 | 2016-07-22 | Multicast broadcast multimedia service-assisted content distribution |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/318,435 Continuation US9432978B2 (en) | 2012-03-16 | 2014-06-27 | Multicast broadcast multimedia service-assisted content distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170019263A1 true US20170019263A1 (en) | 2017-01-19 |
US10320552B2 US10320552B2 (en) | 2019-06-11 |
Family
ID=48483156
Family Applications (30)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/570,941 Active 2034-10-12 US9526091B2 (en) | 2012-03-16 | 2012-08-09 | Method and apparatus for coordination of self-optimization functions in a wireless network |
US13/591,673 Active 2034-12-21 US9398572B2 (en) | 2012-03-16 | 2012-08-22 | Enhanced physical downlink control channel (ePDCCH) inter-cell interference coordination (ICIC) |
US13/591,865 Active 2034-10-07 US9655086B2 (en) | 2012-03-16 | 2012-08-22 | Enhanced physical downlink control channel (ePDCCH) with physical resource block (PRB) bundling |
US13/593,044 Active 2032-11-08 US8885526B2 (en) | 2012-03-16 | 2012-08-23 | HARQ/ACK codebook size determination |
US13/592,598 Active 2033-06-13 US9288797B2 (en) | 2012-03-16 | 2012-08-23 | Support for asynchronous adaptation to uplink and downlink traffic demands for wireless communication |
US13/598,320 Active 2033-07-17 US9226278B2 (en) | 2012-03-16 | 2012-08-29 | Enhanced physical downlink control channel (ePDCCH) |
US13/600,675 Abandoned US20130242887A1 (en) | 2012-03-16 | 2012-08-31 | Intra-qci scheduler and method for intra-qci scheduling in a wireless access network |
US13/620,093 Active 2032-11-02 US8817734B2 (en) | 2012-03-16 | 2012-09-14 | Physical uplink shared channel (PUSCH) transmission time interval (TTI) bundling |
US13/620,108 Expired - Fee Related US8958379B2 (en) | 2012-03-16 | 2012-09-14 | Physical uplink control channel (PUCCH) resource mapping using an enhanced physical downlink control channel (ePDCCH) |
US13/625,977 Expired - Fee Related US8902741B2 (en) | 2012-03-16 | 2012-09-25 | User equipment and method for reducing delay in a radio access network |
US13/626,661 Active US8793743B2 (en) | 2012-03-16 | 2012-09-25 | Multicast broadcast multimedia service-assisted content distribution |
US13/629,546 Active 2032-11-11 US8989118B2 (en) | 2012-03-16 | 2012-09-27 | Uplink control channel resource mapping for an enhanced PDCCH in LTE systems |
US13/628,923 Expired - Fee Related US9155082B2 (en) | 2012-03-16 | 2012-09-27 | Interference mitigation in the context of heterogeneous networks with coordinated transmission points with a common transmission point identity |
US13/629,928 Active 2033-03-05 US9215701B2 (en) | 2012-03-16 | 2012-09-28 | Random access channel enhancements for LTE devices |
US13/629,682 Active US8923323B2 (en) | 2012-03-16 | 2012-09-28 | Techniques for timers associated with powering receiver circuitry at a wireless device |
US13/631,341 Active 2034-02-23 US9271278B2 (en) | 2012-03-16 | 2012-09-28 | RF chain usage in a dual network architecture |
US13/716,978 Active 2033-11-23 US9686089B2 (en) | 2012-03-16 | 2012-12-17 | Scheduling timing design for a TDD system |
US13/845,328 Active 2034-11-26 US9948475B2 (en) | 2012-03-16 | 2013-03-18 | Providing assistance to a base station from user equipment |
US13/845,278 Active 2033-06-30 US9386571B2 (en) | 2012-03-16 | 2013-03-18 | Switching discontinuous reception parameters |
US13/845,309 Abandoned US20130242831A1 (en) | 2012-03-16 | 2013-03-18 | Client Initiated Idle Mode Transition |
US14/070,243 Active 2033-10-08 US10469240B2 (en) | 2012-03-16 | 2013-11-01 | Providing assistance to a base station from user equipment |
US14/165,311 Active 2033-03-12 US9516628B2 (en) | 2012-03-16 | 2014-01-27 | Method and apparatus for coordination of self-optimization functions in a wireless network |
US14/314,296 Active US9258805B2 (en) | 2012-03-16 | 2014-06-25 | HARQ/ACK codebook size determination |
US14/318,435 Active US9432978B2 (en) | 2012-03-16 | 2014-06-27 | Multicast broadcast multimedia service-assisted content distribution |
US14/536,111 Active US9326278B2 (en) | 2012-03-16 | 2014-11-07 | User equipment and method for reducing delay in a radio access network |
US15/014,770 Active US9615378B2 (en) | 2012-03-16 | 2016-02-03 | Support for asynchronous adaptation to uplink and downlink traffic demands for wireless communication |
US15/164,085 Active 2032-11-02 US10530558B2 (en) | 2012-03-16 | 2016-05-25 | Intra-QCI scheduler and method for intra-QCI scheduling in a wireless access network |
US15/216,993 Active US10320552B2 (en) | 2012-03-16 | 2016-07-22 | Multicast broadcast multimedia service-assisted content distribution |
US15/594,267 Active 2033-01-22 US10374783B2 (en) | 2012-03-16 | 2017-05-12 | Scheduling timing design for a TDD system |
US16/408,724 Active US10637635B2 (en) | 2012-03-16 | 2019-05-10 | Scheduling timing design for a TDD system |
Family Applications Before (27)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/570,941 Active 2034-10-12 US9526091B2 (en) | 2012-03-16 | 2012-08-09 | Method and apparatus for coordination of self-optimization functions in a wireless network |
US13/591,673 Active 2034-12-21 US9398572B2 (en) | 2012-03-16 | 2012-08-22 | Enhanced physical downlink control channel (ePDCCH) inter-cell interference coordination (ICIC) |
US13/591,865 Active 2034-10-07 US9655086B2 (en) | 2012-03-16 | 2012-08-22 | Enhanced physical downlink control channel (ePDCCH) with physical resource block (PRB) bundling |
US13/593,044 Active 2032-11-08 US8885526B2 (en) | 2012-03-16 | 2012-08-23 | HARQ/ACK codebook size determination |
US13/592,598 Active 2033-06-13 US9288797B2 (en) | 2012-03-16 | 2012-08-23 | Support for asynchronous adaptation to uplink and downlink traffic demands for wireless communication |
US13/598,320 Active 2033-07-17 US9226278B2 (en) | 2012-03-16 | 2012-08-29 | Enhanced physical downlink control channel (ePDCCH) |
US13/600,675 Abandoned US20130242887A1 (en) | 2012-03-16 | 2012-08-31 | Intra-qci scheduler and method for intra-qci scheduling in a wireless access network |
US13/620,093 Active 2032-11-02 US8817734B2 (en) | 2012-03-16 | 2012-09-14 | Physical uplink shared channel (PUSCH) transmission time interval (TTI) bundling |
US13/620,108 Expired - Fee Related US8958379B2 (en) | 2012-03-16 | 2012-09-14 | Physical uplink control channel (PUCCH) resource mapping using an enhanced physical downlink control channel (ePDCCH) |
US13/625,977 Expired - Fee Related US8902741B2 (en) | 2012-03-16 | 2012-09-25 | User equipment and method for reducing delay in a radio access network |
US13/626,661 Active US8793743B2 (en) | 2012-03-16 | 2012-09-25 | Multicast broadcast multimedia service-assisted content distribution |
US13/629,546 Active 2032-11-11 US8989118B2 (en) | 2012-03-16 | 2012-09-27 | Uplink control channel resource mapping for an enhanced PDCCH in LTE systems |
US13/628,923 Expired - Fee Related US9155082B2 (en) | 2012-03-16 | 2012-09-27 | Interference mitigation in the context of heterogeneous networks with coordinated transmission points with a common transmission point identity |
US13/629,928 Active 2033-03-05 US9215701B2 (en) | 2012-03-16 | 2012-09-28 | Random access channel enhancements for LTE devices |
US13/629,682 Active US8923323B2 (en) | 2012-03-16 | 2012-09-28 | Techniques for timers associated with powering receiver circuitry at a wireless device |
US13/631,341 Active 2034-02-23 US9271278B2 (en) | 2012-03-16 | 2012-09-28 | RF chain usage in a dual network architecture |
US13/716,978 Active 2033-11-23 US9686089B2 (en) | 2012-03-16 | 2012-12-17 | Scheduling timing design for a TDD system |
US13/845,328 Active 2034-11-26 US9948475B2 (en) | 2012-03-16 | 2013-03-18 | Providing assistance to a base station from user equipment |
US13/845,278 Active 2033-06-30 US9386571B2 (en) | 2012-03-16 | 2013-03-18 | Switching discontinuous reception parameters |
US13/845,309 Abandoned US20130242831A1 (en) | 2012-03-16 | 2013-03-18 | Client Initiated Idle Mode Transition |
US14/070,243 Active 2033-10-08 US10469240B2 (en) | 2012-03-16 | 2013-11-01 | Providing assistance to a base station from user equipment |
US14/165,311 Active 2033-03-12 US9516628B2 (en) | 2012-03-16 | 2014-01-27 | Method and apparatus for coordination of self-optimization functions in a wireless network |
US14/314,296 Active US9258805B2 (en) | 2012-03-16 | 2014-06-25 | HARQ/ACK codebook size determination |
US14/318,435 Active US9432978B2 (en) | 2012-03-16 | 2014-06-27 | Multicast broadcast multimedia service-assisted content distribution |
US14/536,111 Active US9326278B2 (en) | 2012-03-16 | 2014-11-07 | User equipment and method for reducing delay in a radio access network |
US15/014,770 Active US9615378B2 (en) | 2012-03-16 | 2016-02-03 | Support for asynchronous adaptation to uplink and downlink traffic demands for wireless communication |
US15/164,085 Active 2032-11-02 US10530558B2 (en) | 2012-03-16 | 2016-05-25 | Intra-QCI scheduler and method for intra-QCI scheduling in a wireless access network |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/594,267 Active 2033-01-22 US10374783B2 (en) | 2012-03-16 | 2017-05-12 | Scheduling timing design for a TDD system |
US16/408,724 Active US10637635B2 (en) | 2012-03-16 | 2019-05-10 | Scheduling timing design for a TDD system |
Country Status (22)
Country | Link |
---|---|
US (30) | US9526091B2 (en) |
EP (22) | EP2826189B1 (en) |
JP (19) | JP5922261B2 (en) |
KR (12) | KR101823842B1 (en) |
CN (20) | CN104205884B (en) |
AU (7) | AU2013232616B2 (en) |
BE (2) | BE1022184B1 (en) |
BR (2) | BR112014020867B1 (en) |
CA (4) | CA2866352C (en) |
ES (13) | ES2656895T3 (en) |
FI (3) | FI3754877T3 (en) |
FR (1) | FR3055080A1 (en) |
HK (5) | HK1204399A1 (en) |
HU (10) | HUE036111T2 (en) |
IT (2) | ITMI20130394A1 (en) |
MX (3) | MX347863B (en) |
MY (3) | MY178014A (en) |
NL (3) | NL2010448C2 (en) |
RU (8) | RU2604432C2 (en) |
SE (3) | SE537717C2 (en) |
TW (4) | TWI539771B (en) |
WO (17) | WO2013138019A1 (en) |
Families Citing this family (737)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10749582B2 (en) | 2004-04-02 | 2020-08-18 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US10187133B2 (en) | 2004-04-02 | 2019-01-22 | Rearden, Llc | System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network |
US10277290B2 (en) | 2004-04-02 | 2019-04-30 | Rearden, Llc | Systems and methods to exploit areas of coherence in wireless systems |
US9312929B2 (en) | 2004-04-02 | 2016-04-12 | Rearden, Llc | System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS) |
US10985811B2 (en) | 2004-04-02 | 2021-04-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11394436B2 (en) | 2004-04-02 | 2022-07-19 | Rearden, Llc | System and method for distributed antenna wireless communications |
US10200094B2 (en) | 2004-04-02 | 2019-02-05 | Rearden, Llc | Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems |
US9819403B2 (en) | 2004-04-02 | 2017-11-14 | Rearden, Llc | System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client |
US10425134B2 (en) | 2004-04-02 | 2019-09-24 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US9826537B2 (en) | 2004-04-02 | 2017-11-21 | Rearden, Llc | System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters |
US11451275B2 (en) | 2004-04-02 | 2022-09-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11309943B2 (en) | 2004-04-02 | 2022-04-19 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US8542763B2 (en) | 2004-04-02 | 2013-09-24 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US10886979B2 (en) | 2004-04-02 | 2021-01-05 | Rearden, Llc | System and method for link adaptation in DIDO multicarrier systems |
US8654815B1 (en) | 2004-04-02 | 2014-02-18 | Rearden, Llc | System and method for distributed antenna wireless communications |
US9685997B2 (en) | 2007-08-20 | 2017-06-20 | Rearden, Llc | Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems |
WO2009041419A1 (en) * | 2007-09-26 | 2009-04-02 | Sharp Kabushiki Kaisha | Wireless communication system, base station apparatus and mobile station apparatus |
US9210586B2 (en) * | 2009-05-08 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for generating and exchanging information for coverage optimization in wireless networks |
US8917677B2 (en) * | 2010-04-14 | 2014-12-23 | Samsung Electronics Co., Ltd. | Systems and methods for bundling resource blocks in a wireless communication system |
US20110264530A1 (en) | 2010-04-23 | 2011-10-27 | Bryan Santangelo | Apparatus and methods for dynamic secondary content and data insertion and delivery |
KR101825638B1 (en) * | 2011-01-19 | 2018-02-05 | 주식회사 팬택 | Resource Allocation Method For HARQ ACK/NACK And HARQ ACK/NACK Signal Transmitting Method And Apparatus |
WO2012099388A2 (en) * | 2011-01-21 | 2012-07-26 | 주식회사 팬택 | Method and apparatus for processing a harq ack/nack signal |
US9668245B2 (en) | 2011-04-29 | 2017-05-30 | Nokia Solutions And Networks Oy | Method and device for processing uplink control data in a wireless network |
US8965375B2 (en) * | 2011-05-04 | 2015-02-24 | Nokia Siemens Networks Oy | Pathloss based access node wake-up control |
US9007972B2 (en) | 2011-07-01 | 2015-04-14 | Intel Corporation | Communication state transitioning control |
JP5898874B2 (en) * | 2011-07-15 | 2016-04-06 | 株式会社Nttドコモ | User terminal, radio base station apparatus, radio communication system, and radio communication method |
WO2013043023A2 (en) * | 2011-09-23 | 2013-03-28 | 엘지전자 주식회사 | Method for transmitting control information and apparatus for same |
EP2744133B1 (en) * | 2011-09-23 | 2016-04-13 | LG Electronics Inc. | Method for transmitting control information and apparatus for same |
BR112014007456A2 (en) * | 2011-10-04 | 2017-04-04 | Samsung Electronics Co Ltd | a system and method of setting up wireless access network parameters for user equipment connected to a wireless network system |
US9055136B2 (en) * | 2011-10-13 | 2015-06-09 | Qualcomm Incorporated | Controlling streaming delay in networks |
WO2013073855A1 (en) * | 2011-11-16 | 2013-05-23 | 엘지전자 주식회사 | Method and apparatus for transmitting control information in a wireless communication system |
CN106100816B (en) * | 2011-11-25 | 2019-10-22 | 华为技术有限公司 | Realize method, base station and the user equipment of carrier wave polymerization |
WO2013093084A1 (en) * | 2011-12-22 | 2013-06-27 | Rockwool International A/S | Plant growth system |
US9071985B2 (en) * | 2012-02-01 | 2015-06-30 | Qualcomm Incorporated | Apparatus and method for user equipment assisted congestion control |
CN103249087B (en) * | 2012-02-10 | 2016-08-10 | 华为技术有限公司 | A kind of control channel resource transmission method, base station and subscriber equipment |
CA2866363C (en) * | 2012-03-05 | 2019-08-27 | Samsung Electronics Co., Ltd. | Harq-ack signal transmission in response to detection of control channel type in case of multiple control channel types |
US9584266B2 (en) * | 2012-03-09 | 2017-02-28 | Lg Electronics Inc. | Method for transreceiving signals and apparatus for same |
US9526091B2 (en) * | 2012-03-16 | 2016-12-20 | Intel Corporation | Method and apparatus for coordination of self-optimization functions in a wireless network |
US9544876B2 (en) | 2012-03-16 | 2017-01-10 | Intel Corporation | Downlink control information (DCI) validation for enhanced physical downlink control channel (ePDCCH) |
EP2829144B1 (en) * | 2012-03-19 | 2018-05-30 | Telefonaktiebolaget LM Ericsson (publ) | System and method for supporting switching between a packet-switched network and a circuit-switched network |
CN103327614B (en) * | 2012-03-19 | 2016-08-03 | 上海贝尔股份有限公司 | By the method for the eCCE implicit association that the PUCCH resource being used for the extension of ACK/NACK is used with ePDCCH |
CN103327521B (en) * | 2012-03-20 | 2016-12-14 | 上海贝尔股份有限公司 | For distributing and detect method and the equipment of downlink control channel resource |
US8995366B2 (en) * | 2012-03-23 | 2015-03-31 | Google Technology Holdings LLC | Radio link monitoring in a wireless communication device for a enhanced control channel |
US9674855B2 (en) * | 2012-03-29 | 2017-06-06 | Qualcomm Incorporated | H-ARQ timing determination under cross-carrier scheduling in LTE |
US20130258929A1 (en) * | 2012-04-03 | 2013-10-03 | T-Mobile Usa, Inc. | Rule-Based Application Controller for Signaling Reduction |
US9596697B2 (en) | 2012-04-03 | 2017-03-14 | T-Mobile Usa, Inc. | Application controller for quality-of-service configuration of a telecommunication device radio |
EP3567762B1 (en) * | 2012-04-05 | 2020-12-09 | LG Electronics Inc. | Method and apparatus for aggregating carriers in wireless communication systems |
US9438883B2 (en) * | 2012-04-09 | 2016-09-06 | Intel Corporation | Quality of experience reporting for combined unicast-multicast/broadcast streaming of media content |
US9078130B2 (en) * | 2012-04-10 | 2015-07-07 | Qualcomm Incorporated | Secure reception reporting |
US9226203B2 (en) | 2012-04-11 | 2015-12-29 | Apple Inc. | Method for implementing autonomous management of radio resources across dual networks |
US9184810B2 (en) * | 2012-04-13 | 2015-11-10 | Qualcomm Incorporated | Scheduling algorithms for multi-user (MU) multiple-input multiple-output (MIMO) communication systems |
US9143984B2 (en) | 2012-04-13 | 2015-09-22 | Intel Corporation | Mapping of enhanced physical downlink control channels in a wireless communication network |
US9680623B2 (en) * | 2012-04-20 | 2017-06-13 | Lg Electronics Inc. | Method for reporting channel state, and apparatus therefor |
CN109921885B (en) | 2012-04-20 | 2021-11-26 | 北京三星通信技术研究有限公司 | Method for allocating HARQ-ACK channel resources supporting transmission diversity and channel selection |
US9148213B2 (en) * | 2012-05-04 | 2015-09-29 | Futurewei Technologies, Inc. | System and method for radio frequency repeating |
CN104285399B (en) | 2012-05-10 | 2018-03-30 | 瑞典爱立信有限公司 | Method and apparatus for hybrid automatic repeat-request signaling |
US9584297B2 (en) | 2012-05-11 | 2017-02-28 | Qualcomm Incorporated | Interference management for adaptive TDD with frequency domain separations |
US9515759B2 (en) * | 2012-05-11 | 2016-12-06 | Lg Electronics Inc. | Method of demodulating data on new type of carrier wave |
CN103427964A (en) * | 2012-05-25 | 2013-12-04 | 中兴通讯股份有限公司 | Data transmission method, device and system |
US9185620B2 (en) | 2012-05-30 | 2015-11-10 | Intel Corporation | Adaptive UL-DL configurations in a TDD heterogeneous network |
US8743820B2 (en) * | 2012-05-30 | 2014-06-03 | Intel Corporation | PUCCH resource allocation with enhanced PDCCH |
US9338775B2 (en) * | 2012-05-31 | 2016-05-10 | Lg Electronics Inc. | Method for transceiving control signals and apparatus therefor |
JP5990793B2 (en) * | 2012-06-07 | 2016-09-14 | シャープ株式会社 | Terminal device, base station device, communication method, and integrated circuit |
US9749094B2 (en) * | 2012-06-14 | 2017-08-29 | Sharp Kabushiki Kaisha | Devices for sending and receiving feedback information |
EP2862402B1 (en) * | 2012-06-14 | 2017-04-12 | Telefonaktiebolaget LM Ericsson (publ) | Systems and methods for prioritizing a ue in an uplink scheduler |
MX347523B (en) * | 2012-06-14 | 2017-04-27 | Fujitsu Ltd | Determining method and device of uplink control channel resources. |
CN103517420B (en) * | 2012-06-15 | 2017-07-28 | 华为终端有限公司 | Resource is configured with receiving the method and terminal device of Downlink Control Information |
KR101410995B1 (en) * | 2012-06-15 | 2014-07-01 | 주식회사 케이티 | Mobile communication system for providing carrier aggregation between digital units and method for processing signal in the same |
CN111082895B (en) * | 2012-06-18 | 2022-10-14 | 富士通互联科技有限公司 | Triggering method and device for aperiodic feedback in coordinated multipoint transmission |
CN103516499B (en) * | 2012-06-19 | 2017-06-13 | 电信科学技术研究院 | A kind of ACK/NACK number of bits of feedback determines method and device |
US9497747B2 (en) | 2012-06-22 | 2016-11-15 | Qualcomm Incorporated | Data transmission in carrier aggregation with different carrier configurations |
CN103516496B (en) * | 2012-06-27 | 2018-12-25 | 北京三星通信技术研究有限公司 | A method of sending HARQ-ACK feedback information |
CN103516474B (en) * | 2012-06-28 | 2017-11-07 | 中兴通讯股份有限公司 | Physical uplink control channel resource determines method and user equipment |
US9300395B2 (en) * | 2012-07-05 | 2016-03-29 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for carrier aggregation |
KR102086513B1 (en) * | 2012-07-13 | 2020-04-14 | 엘지전자 주식회사 | Method and apparatus for transmitting control information |
WO2014014254A1 (en) * | 2012-07-16 | 2014-01-23 | 엘지전자 주식회사 | Method and apparatus for transmitting reception confirmation in wireless communication system |
SG10201702677YA (en) * | 2012-07-17 | 2017-04-27 | Sun Patent Trust | Terminal device, and buffer partitioning method |
SG10201708734TA (en) * | 2012-07-18 | 2017-12-28 | Sun Patent Trust | Terminal device, and buffer partitioning method |
JP5395229B1 (en) * | 2012-07-20 | 2014-01-22 | 株式会社Nttドコモ | Mobile communication method |
US9444608B2 (en) * | 2012-07-26 | 2016-09-13 | Huawei Device Co., Ltd. | Control channel transmission method and apparatus to implement transmission of ePDCCHs through an eREG in a unit physical resource block |
WO2014017746A1 (en) * | 2012-07-27 | 2014-01-30 | 엘지전자 주식회사 | Method and terminal for performing harq |
US9357504B2 (en) * | 2012-07-27 | 2016-05-31 | Ntt Docomo, Inc. | Radio communication system and radio base station |
SG11201509379TA (en) * | 2012-07-27 | 2015-12-30 | Huawei Device Co Ltd | Method, apparatus, and device for transmitting control channel |
KR102088022B1 (en) * | 2012-08-01 | 2020-03-11 | 엘지전자 주식회사 | Method for signaling control information, and apparatus therefor |
EP3893550A1 (en) | 2012-08-02 | 2021-10-13 | Mitsubishi Electric Corporation | Mobile communication system, source base station, target base station and user equipment |
US9839009B2 (en) | 2012-08-03 | 2017-12-05 | Qualcomm Incorporated | Methods and apparatus for processing control and/or shared channels in long term evolution (LTE) |
US9191828B2 (en) | 2012-08-03 | 2015-11-17 | Intel Corporation | High efficiency distributed device-to-device (D2D) channel access |
CN103580824B (en) * | 2012-08-03 | 2016-12-21 | 上海贝尔股份有限公司 | The method carrying out autonomous retransmission feedback in subscriber equipment in carrier aggregation network |
CN104429150A (en) | 2012-08-03 | 2015-03-18 | 英特尔公司 | Method and system for implementing device-to-device communication |
US8913518B2 (en) | 2012-08-03 | 2014-12-16 | Intel Corporation | Enhanced node B, user equipment and methods for discontinuous reception in inter-ENB carrier aggregation |
MX346047B (en) * | 2012-08-03 | 2017-03-03 | Nokia Solutions & Networks Oy | METHOD AND APPLIANCE |
JP6118409B2 (en) * | 2012-08-03 | 2017-04-19 | ノキア ソリューションズ アンド ネットワークス オサケユキチュア | Control channel element index mechanism |
US9526022B2 (en) | 2012-08-03 | 2016-12-20 | Intel Corporation | Establishing operating system and application-based routing policies in multi-mode user equipment |
HUE040578T2 (en) * | 2012-08-03 | 2019-03-28 | Ericsson Telefon Ab L M | ePDCCH SEARCH SPACE DESIGN |
US9036603B2 (en) | 2012-08-03 | 2015-05-19 | Intel Corporation | Network assistance for device-to-device discovery |
US9554296B2 (en) | 2012-08-03 | 2017-01-24 | Intel Corporation | Device trigger recall/replace feature for 3GPP/M2M systems |
US10433159B2 (en) | 2012-08-03 | 2019-10-01 | Texas Instruments Incorporated | Uplink signaling for cooperative multipoint communication |
US9197376B2 (en) * | 2012-08-03 | 2015-11-24 | Broadcom Corporation | Transmission time interval (TTI) bundling operation within communication systems |
CN104704758B (en) * | 2012-08-06 | 2018-08-28 | 株式会社Kt | Transmit the control information transferring method of receiving point |
GB2504701A (en) * | 2012-08-06 | 2014-02-12 | Nec Corp | Determining current state of a mobile device |
WO2014025140A1 (en) * | 2012-08-06 | 2014-02-13 | Kt Corporation | Control information transmission and uplink control channel resource mapping |
US9660787B2 (en) * | 2012-08-07 | 2017-05-23 | Lg Electronics Inc. | Method and apparatus for transmitting reception acknowledgement in wireless communication system |
KR20150041093A (en) * | 2012-08-08 | 2015-04-15 | 노키아 솔루션스 앤드 네트웍스 오와이 | Self organizing network operation diagnosis function |
US9184886B2 (en) | 2012-08-10 | 2015-11-10 | Blackberry Limited | TD LTE secondary component carrier in unlicensed bands |
US10397942B2 (en) * | 2012-08-10 | 2019-08-27 | Industrial Technology Research Institute | Method of handling communication operation in TDD system and related apparatus |
US9386583B2 (en) * | 2012-08-10 | 2016-07-05 | Alcatel Lucent | Methods and systems for determining uplink resources |
US9655087B2 (en) | 2012-08-16 | 2017-05-16 | Kt Corporation | Configuration and mapping of uplink control channel resource |
US10142242B2 (en) * | 2012-08-30 | 2018-11-27 | T-Mobile Usa, Inc. | Network support node traffic reduction for self-organizing networks |
US10499259B2 (en) | 2012-08-30 | 2019-12-03 | T-Mobile Usa, Inc. | Special events module for self-organizing networks |
US10506460B2 (en) | 2012-08-30 | 2019-12-10 | T-Mobile Usa, Inc. | Self-organizing network mechanism for energy saving during an outage |
US10506558B2 (en) | 2012-08-30 | 2019-12-10 | T-Mobile Usa, Inc. | Performance-based optimization of QoS factors |
EP3657844B1 (en) | 2012-08-30 | 2022-03-09 | LG Electronics Inc. | Method and apparatus for estimating channel in wireless communication system |
US10243794B2 (en) * | 2012-08-30 | 2019-03-26 | T-Mobile Usa, Inc. | Open architecture for self-organizing networks |
US20140071935A1 (en) * | 2012-09-07 | 2014-03-13 | Samsung Electronics Co., Ltd. | Multiplexing resource element groups for control channel elements of control channels |
JP5712261B2 (en) * | 2012-09-11 | 2015-05-07 | 創新音▲速▼股▲ふん▼有限公司 | Method and user device for notifying PPI |
US9756623B2 (en) * | 2012-09-17 | 2017-09-05 | Lg Electronics Inc. | Method and apparatus for receiving downlink signal in wireless communication system |
US9369248B2 (en) * | 2012-09-19 | 2016-06-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and communication node for mapping an enhanced physical downlink control channel, EPDCCH, message |
WO2014043863A1 (en) * | 2012-09-19 | 2014-03-27 | Qualcomm Incorporated | Method and apparatus for separating a cell cluster for lte eimta interference mitigation |
CN103686772A (en) * | 2012-09-20 | 2014-03-26 | 中兴通讯股份有限公司 | Enhancement downlink control channel configuration and detection methods and device, base station and terminal |
WO2014046497A1 (en) * | 2012-09-21 | 2014-03-27 | 엘지전자 주식회사 | Method and device for receiving or transmitting downlink control signal in wireless communication system |
US9295048B2 (en) * | 2012-09-24 | 2016-03-22 | Qualcomm Incorporated | Method and apparatus for supporting hybrid carrier aggregation |
WO2014047788A1 (en) * | 2012-09-25 | 2014-04-03 | Nec(China) Co., Ltd. | Method and apparatus for enhancing coverage |
TWI587677B (en) | 2012-09-26 | 2017-06-11 | 蘋果公司 | Method for simultaneously receiving lte and 1x in srlte device |
KR20140041310A (en) * | 2012-09-27 | 2014-04-04 | 삼성전자주식회사 | Apparatus and method for processing packet |
US9464661B2 (en) * | 2012-09-27 | 2016-10-11 | W. H. Barnett, JR. | Pony rod, connecting rod, and crosshead assemblies and method |
US20140086110A1 (en) * | 2012-09-27 | 2014-03-27 | Lg Electronics Inc. | Method for counting timer for retransmission in wireless communication system and apparatus therefor |
US9622234B2 (en) * | 2012-09-27 | 2017-04-11 | Panasonic Intellectual Property Corporation Of America | Wireless communication terminal, base station device, and resource allocation method |
CN108964846B (en) * | 2012-09-27 | 2021-05-28 | 瑞典爱立信有限公司 | TDD PUCCH HARQ resource allocation method and system |
WO2014047906A1 (en) | 2012-09-28 | 2014-04-03 | 华为技术有限公司 | Method, device and communication system for processing common search area |
US9031021B2 (en) * | 2012-09-28 | 2015-05-12 | Alcatel Lucent | Method and apparatus for indicating physical resource block pairs for EPDCCH |
KR101688877B1 (en) * | 2012-09-28 | 2016-12-22 | 노키아 솔루션스 앤드 네트웍스 오와이 | Pucch resource allocation for e-pdcch in communications system |
US9107162B2 (en) | 2012-09-28 | 2015-08-11 | Intel Corporation | Determination of enhanced physical downlink control channel candidates in a wireless communication network |
US9973315B2 (en) | 2012-09-28 | 2018-05-15 | Intel Corporation | Systems and methods for semi-persistent scheduling of wireless communications |
CN103716121B (en) * | 2012-09-28 | 2019-03-08 | 上海诺基亚贝尔股份有限公司 | A kind of method and apparatus for determining the Downlink Control Information based on ePDCCH |
CN103716887B (en) * | 2012-09-28 | 2017-04-05 | 上海贝尔股份有限公司 | For determining method, device and the equipment of the device channel resource of user equipment |
CN103843421A (en) * | 2012-09-29 | 2014-06-04 | 华为技术有限公司 | Power determination method, user equipment and base station |
CN103716274B (en) * | 2012-09-29 | 2018-08-07 | 中兴通讯股份有限公司 | The transmission method and device of Downlink Control Information |
CN103858500B (en) | 2012-09-29 | 2018-02-06 | 华为技术有限公司 | Control information sending method, method of reseptance and equipment |
CN108833066A (en) * | 2012-09-29 | 2018-11-16 | 索尼公司 | Base station equipment, terminal device and communication system |
JP6228216B2 (en) * | 2012-10-04 | 2017-11-08 | エルジー エレクトロニクス インコーポレイティド | Downlink signal transmission / reception method and apparatus in consideration of antenna port relationship in wireless communication system |
US9088332B2 (en) | 2012-10-05 | 2015-07-21 | Telefonaktiebolaget L M Ericsson (Publ) | Mitigation of interference from a mobile relay node to heterogeneous networks |
US20140098744A1 (en) * | 2012-10-10 | 2014-04-10 | Qualcomm Incorporated | Method for controlling transmission of protocol data units |
WO2014056153A1 (en) * | 2012-10-10 | 2014-04-17 | Broadcom Corporation | Control channel configuration for stand-alone new carrier type |
US20140098725A1 (en) * | 2012-10-10 | 2014-04-10 | Qualcomm Incorporated | Controlling transmission of protocol data units |
US9590786B2 (en) * | 2012-10-14 | 2017-03-07 | Lg Electronics Inc. | Method and apparatus for transmitting acknowledgement in wireless communication system |
US10306594B2 (en) * | 2012-10-30 | 2019-05-28 | Qualcomm Incorporated | Uplink coverage enhancements |
KR102020363B1 (en) * | 2012-10-31 | 2019-09-10 | 삼성전자 주식회사 | Method and apparatus for transmitting and receiving media segment using adaptive streaming |
KR101941996B1 (en) * | 2012-10-31 | 2019-01-24 | 한국전자통신연구원 | Method for device-to-device communications and mobile device using the method |
AU2013339078B2 (en) * | 2012-11-01 | 2016-09-22 | Sharp Kabushiki Kaisha | Mobile station apparatus, base station apparatus, communication method and integrated circuit |
EP2906005B1 (en) * | 2012-11-01 | 2020-03-11 | Huawei Technologies Co., Ltd. | Control channel detection method, user equipment and base station |
GB2507529A (en) * | 2012-11-02 | 2014-05-07 | Sony Corp | Telecommunications apparatus and methods |
GB2507528A (en) * | 2012-11-02 | 2014-05-07 | Sony Corp | Telecommunications apparatus and methods |
US9655103B2 (en) * | 2012-11-02 | 2017-05-16 | General Dynamics C4 Systems, Inc. | Method and apparatus for communicating in an increased coverage area to a wireless communication unit |
US9131368B2 (en) * | 2012-11-02 | 2015-09-08 | General Dynamics C4 Systems, Inc. | Method and apparatus for communicating in an increased coverage area to a wireless communication unit |
EP2915361B1 (en) * | 2012-11-05 | 2018-10-24 | Telefonaktiebolaget LM Ericsson (publ) | Scheduling in mobile communications systems |
EP2922357B1 (en) * | 2012-11-14 | 2020-03-18 | LG Electronics Inc. | Method for operating terminal in carrier aggregation system, and apparatus using said method |
US9386576B2 (en) * | 2012-11-14 | 2016-07-05 | Qualcomm Incorporated | PUCCH resource determination for EPDCCH |
US9699794B2 (en) * | 2012-11-23 | 2017-07-04 | Samsung Electronics Co., Ltd. | Method and apparatus for performing scheduling in wireless communication system |
US11189917B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for distributing radioheads |
US10194346B2 (en) | 2012-11-26 | 2019-01-29 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US11190947B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for concurrent spectrum usage within actively used spectrum |
US11050468B2 (en) | 2014-04-16 | 2021-06-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US9173229B2 (en) * | 2012-11-26 | 2015-10-27 | Apple Inc. | QoS based buffering while TTI bundling is enabled |
CN103841579B (en) * | 2012-11-27 | 2017-10-31 | 上海贝尔股份有限公司 | It is used for frequency spectrum detecting method and device in communication system |
EP2926612A4 (en) * | 2012-11-27 | 2016-07-27 | Ericsson Telefon Ab L M | Base station, user equipment and method for tcp transmission with dynamic tdd reconfiguration |
US9692550B2 (en) * | 2012-11-29 | 2017-06-27 | Huawei Technologies Co., Ltd. | Systems and methods for waveform selection and adaptation |
US9407302B2 (en) | 2012-12-03 | 2016-08-02 | Intel Corporation | Communication device, mobile terminal, method for requesting information and method for providing information |
WO2014087454A1 (en) * | 2012-12-05 | 2014-06-12 | Nec Corporation | Radio communication system and communication control method |
US20150312920A1 (en) * | 2012-12-07 | 2015-10-29 | Alcatel Lucent | Method and apparatus for use in user equipment configured with epdcch for providing downlink radio link condition |
WO2014092364A1 (en) * | 2012-12-14 | 2014-06-19 | 엘지전자 주식회사 | Method and apparatus for receiving downlink signals in wireless communication system |
US20140169246A1 (en) * | 2012-12-17 | 2014-06-19 | Qualcomm Incorporated | Devices and methods for facilitating dynamic power reduction during discontinous reception |
US9635657B2 (en) | 2012-12-21 | 2017-04-25 | Blackberry Limited | Resource scheduling in direct device to device communications systems |
US9295044B2 (en) * | 2012-12-21 | 2016-03-22 | Blackberry Limited | Resource scheduling in direct device to device communications systems |
US9271302B2 (en) | 2012-12-21 | 2016-02-23 | Blackberry Limited | Network-managed direct device to device communications |
US9699589B2 (en) | 2012-12-21 | 2017-07-04 | Blackberry Limited | Managing sessions for direct device to device communications |
JP6294834B2 (en) * | 2012-12-28 | 2018-03-14 | 株式会社Nttドコモ | User apparatus, base station, interference reduction method, and interference reduction control information notification method |
CN103916948A (en) * | 2013-01-08 | 2014-07-09 | 株式会社Ntt都科摩 | Method and device for power control |
US20150234897A1 (en) * | 2013-01-10 | 2015-08-20 | Hitachi, Ltd. | Time series data processing apparatus and method, and storage medium |
CN105075276B (en) * | 2013-01-11 | 2019-04-16 | 瑞典爱立信有限公司 | The technology of client device and server apparatus is operated in broadcast communication network |
US9271242B2 (en) | 2013-01-14 | 2016-02-23 | Intel IP Corporation | Energy-harvesting devices in wireless networks |
US20140199044A1 (en) * | 2013-01-15 | 2014-07-17 | Qualcomm Incorporated | Supporting transport diversity and time-shifted buffers for media streaming over a network |
US9036580B2 (en) * | 2013-01-17 | 2015-05-19 | Sharp Laboratories Of America, Inc. | Systems and methods for dynamically configuring a flexible subframe |
US10420094B2 (en) | 2013-01-17 | 2019-09-17 | Qualcomm Incorporated | Methods and system for resource management in TTI (transmission time interval) bundling for improved phase continuity |
US9936518B2 (en) * | 2013-01-18 | 2018-04-03 | Mediatek Singapore Pte. Ltd. | Method for transport block transmission and blind reception |
KR101757087B1 (en) * | 2013-01-18 | 2017-07-11 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Method, base station, and user equipment for processing feedback information |
US9871636B2 (en) | 2013-01-18 | 2018-01-16 | Qualcomm Incorporated | Enhanced control channel element (ECCE) based physical downlink shared channel (PDSCH) resource allocation for long-term evolution (LTE) |
CN103945556B (en) * | 2013-01-21 | 2017-10-31 | 电信科学技术研究院 | A kind of method of scheduling of resource, system and equipment |
WO2014113938A1 (en) * | 2013-01-23 | 2014-07-31 | Telefonaktiebolaget L M Ericsson (Publ) | Radio base station and method for precoding signal |
EP2949066B1 (en) * | 2013-01-25 | 2018-10-03 | Telefonaktiebolaget LM Ericsson (publ) | Method, wireless communication device and computer-readable product for reporting ack/nack in dynamic tdd configurations |
WO2014113987A1 (en) | 2013-01-28 | 2014-07-31 | Qualcomm Incorporated | Method and apparatus for utilizing a reconfiguration timer for updating tdd configuration |
WO2014117323A1 (en) * | 2013-01-29 | 2014-08-07 | Qualcomm Incorporated | Tdd reconfiguration with consideration of dtx/drx |
KR102214071B1 (en) * | 2013-01-31 | 2021-02-09 | 엘지전자 주식회사 | Method and apparatus for transmitting receipt acknowledgement in wireless communication system |
TWI586187B (en) * | 2013-01-31 | 2017-06-01 | 蘋果公司 | Dynamic adjustment of communication no communication timer |
JP6214878B2 (en) * | 2013-01-31 | 2017-10-18 | 株式会社Nttドコモ | User apparatus, base station, interference reduction method, and interference reduction control information notification method |
WO2014121461A1 (en) * | 2013-02-06 | 2014-08-14 | 华为技术有限公司 | System information scheduling method and device therefor |
KR102071544B1 (en) | 2013-02-18 | 2020-01-30 | 삼성전자주식회사 | Apparatus and method for managing measurement gap in wireless communication system |
DE112013006745T5 (en) * | 2013-02-28 | 2015-11-12 | Empire Technology Development Llc | Configure a time-duplex mode |
EP2962485B1 (en) * | 2013-03-01 | 2019-08-21 | Intel IP Corporation | Wireless local area network (wlan) traffic offloading |
CN104039012B (en) * | 2013-03-06 | 2018-12-28 | 索尼公司 | Method, base station and the terminal of dynamic downstream arrangements are carried out in a wireless communication system |
WO2014137154A2 (en) * | 2013-03-06 | 2014-09-12 | 엘지전자 주식회사 | Method for applying physical resource block (prb) bundling in wireless communications system and apparatus therefor |
US10164698B2 (en) | 2013-03-12 | 2018-12-25 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US9036635B2 (en) | 2013-03-12 | 2015-05-19 | Motorola Solutions, Inc. | Method and apparatus for propagating public safety multicast and broadcast services among public safety personnel |
US9973246B2 (en) | 2013-03-12 | 2018-05-15 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US10488535B2 (en) | 2013-03-12 | 2019-11-26 | Rearden, Llc | Apparatus and method for capturing still images and video using diffraction coded imaging techniques |
US9923657B2 (en) * | 2013-03-12 | 2018-03-20 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US9191930B2 (en) * | 2013-03-13 | 2015-11-17 | Samsung Electronics Co., Ltd. | Transmission of acknowledgement information in adaptively configured TDD communication systems |
US20140269336A1 (en) * | 2013-03-14 | 2014-09-18 | Lg Electronics Inc. | Method and apparatus for monitoring physical downlink control channel in a system having cells |
US9066153B2 (en) * | 2013-03-15 | 2015-06-23 | Time Warner Cable Enterprises Llc | Apparatus and methods for multicast delivery of content in a content delivery network |
RU2767777C2 (en) | 2013-03-15 | 2022-03-21 | Риарден, Ллк | Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output |
JP6534619B2 (en) * | 2013-03-15 | 2019-06-26 | アップル インコーポレイテッドApple Inc. | Future scheduling of secondary component carriers in LTE carrier aggregation |
EP2979488B1 (en) * | 2013-03-25 | 2018-07-11 | Telefonaktiebolaget LM Ericsson (publ) | Method for initiating handover, wireless device and base station |
US20150304997A1 (en) * | 2013-03-26 | 2015-10-22 | Lg Electronics Inc. | Method for transmitting and receiving signal in multiple cell-based wireless communication system, and apparatus for same |
US9331759B2 (en) | 2013-03-29 | 2016-05-03 | Intel IP Corporation | HARQ timing design for a TDD system |
US9179445B2 (en) * | 2013-04-02 | 2015-11-03 | Blackberry Limited | Communication in the presence of uplink-downlink configuration change |
US10305626B2 (en) | 2013-04-05 | 2019-05-28 | Qualcomm Incorporated | Enhanced transmission time interval bundling design for machine type communications |
JP2016119496A (en) * | 2013-04-10 | 2016-06-30 | シャープ株式会社 | Base station device, terminal device, radio communication system, and integrated circuit |
US9084275B2 (en) * | 2013-04-12 | 2015-07-14 | Blackberry Limited | Selecting an uplink-downlink configuration for a cluster of cells |
US9755810B2 (en) * | 2013-04-12 | 2017-09-05 | Qualcomm Incorporated | Precoder resource bundling information for interference cancellation in LTE |
WO2014175918A1 (en) * | 2013-04-25 | 2014-10-30 | Intel Corporation | Millimeter-wave communication device and method for intelligent control of transmit power and power density |
WO2014177193A1 (en) * | 2013-04-30 | 2014-11-06 | Nokia Solutions And Networks Oy | Method of operating a communication network |
EP2996261B1 (en) * | 2013-05-07 | 2018-12-19 | LG Electronics Inc. | Method for performing measurement in wireless communications system and apparatus therefor |
US9692582B2 (en) * | 2013-05-09 | 2017-06-27 | Sharp Kabushiki Kaisha | Systems and methods for signaling reference configurations |
US9432873B2 (en) * | 2013-05-20 | 2016-08-30 | Nokia Technologies Oy | Differentiation of traffic flows for uplink transmission |
US20140341031A1 (en) * | 2013-05-20 | 2014-11-20 | Nokia Corporation | Differentiation of traffic flows mapped to the same bearer |
CN105308917B (en) * | 2013-05-22 | 2019-03-01 | 华为技术有限公司 | A kind of priority dispatching method, user equipment and base station |
US8903373B1 (en) | 2013-05-27 | 2014-12-02 | Cisco Technology, Inc. | Method and system for coordinating cellular networks operation |
JP6102528B2 (en) * | 2013-06-03 | 2017-03-29 | 富士通株式会社 | Signal processing apparatus and signal processing method |
PL3008946T3 (en) | 2013-06-11 | 2019-02-28 | Seven Networks Llc | Offloading application traffic to a shared communication channel for signal optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols |
WO2014198310A1 (en) * | 2013-06-12 | 2014-12-18 | Nokia Solutions And Networks Oy | Method of coordinating a communication network |
CN104243087B (en) * | 2013-06-13 | 2019-02-12 | 中兴通讯股份有限公司 | A kind of sending method of data and control information, method of reseptance, base station and terminal |
US9769681B2 (en) * | 2013-06-17 | 2017-09-19 | Nec Corporation | Apparatus, method, and non-transitory computer readable medium for self-organizing network |
US9468036B2 (en) * | 2013-06-18 | 2016-10-11 | Qualcomm Incorporated | Reduced circuit-switched voice user equipment current using discontinuous transmissions on dedicated channels |
US9832001B2 (en) * | 2013-06-21 | 2017-11-28 | Sharp Kabushiki Kaisha | Terminal device, base station, communication system, and communication method |
US20140376459A1 (en) * | 2013-06-21 | 2014-12-25 | Qualcomm Incorporated | Aggregating data to improve performance at a user equipment (ue) |
JPWO2014208622A1 (en) * | 2013-06-26 | 2017-02-23 | シャープ株式会社 | Wireless communication system, base station apparatus, terminal apparatus, wireless communication method, and integrated circuit |
JP6176325B2 (en) * | 2013-06-28 | 2017-08-09 | 富士通株式会社 | Base station apparatus, mobile station apparatus, service quality control apparatus, and communication method |
US9526099B2 (en) | 2013-07-03 | 2016-12-20 | Qualcomm Incorporated | Apparatus and methods for early transport format determination |
US10057804B2 (en) | 2013-07-03 | 2018-08-21 | Mediatek Inc. | Traffic shaping mechanism for UE power saving in connected mode |
US9723616B2 (en) * | 2013-07-10 | 2017-08-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Predictable scheduler for interference mitigation |
US10051665B2 (en) * | 2013-07-16 | 2018-08-14 | Lg Electronics Inc. | Method and apparatus for performing random access procedure in wireless communication system |
US10555286B2 (en) * | 2013-07-30 | 2020-02-04 | Qualcomm Incorporated | Uplink control information (UCI) transmission with bundling considerations |
JP2015046853A (en) * | 2013-08-02 | 2015-03-12 | 株式会社Nttドコモ | User device, base station, interference reduction method, and notification method of interference reduction control information |
WO2015017978A1 (en) * | 2013-08-06 | 2015-02-12 | Mediatek Inc. | Drx operations in adaptive tdd systems |
EP3429295B1 (en) * | 2013-08-07 | 2019-10-23 | Sun Patent Trust | Communication apparatus and method |
US20150043391A1 (en) * | 2013-08-08 | 2015-02-12 | Sharp Laboratories Of America, Inc. | Systems and methods for reconfiguration signaling |
US9167449B2 (en) * | 2013-08-08 | 2015-10-20 | Blackberry Limited | Dynamic cell clustering |
US20150043434A1 (en) * | 2013-08-08 | 2015-02-12 | Sharp Laboratories Of America, Inc. | Systems and methods for subframe bundling |
US9867108B2 (en) * | 2013-08-13 | 2018-01-09 | Nec Corporation | Wireless parameter control apparatus, wireless base station, wireless communication system, wireless parameter control method, and program |
EP3042539B1 (en) * | 2013-09-03 | 2018-11-07 | Telefonaktiebolaget LM Ericsson (publ) | Radio base station and method therein |
CN104641575B (en) * | 2013-09-03 | 2018-11-13 | 华为技术有限公司 | It is used for transmission the method, apparatus and user equipment of Media Stream |
US9813966B1 (en) * | 2013-09-11 | 2017-11-07 | Sprint Spectrum L.P. | Sub-cell power adjustment |
US20150078188A1 (en) * | 2013-09-13 | 2015-03-19 | Qualcomm Incorporated | Uplink channel design with coverage enhancements |
US9516541B2 (en) | 2013-09-17 | 2016-12-06 | Intel IP Corporation | Congestion measurement and reporting for real-time delay-sensitive applications |
WO2015042835A1 (en) * | 2013-09-26 | 2015-04-02 | Qualcomm Incorporated | METHOD AND APPARATUS FOR EFFICIENT USAGE OF DAI BITS FOR eIMTA IN LTE |
CA2924935C (en) * | 2013-09-23 | 2018-05-29 | Huawei Technologies Co., Ltd. | Communications system, control apparatus, and network management server |
WO2015047237A1 (en) * | 2013-09-25 | 2015-04-02 | Intel Corporation | End-to-end (e2e) tunneling for multi-radio access technology (multi-rat) |
US9510389B2 (en) * | 2013-09-26 | 2016-11-29 | Blackberry Limited | Discontinuous reception configuration |
EP3050236B1 (en) | 2013-09-27 | 2020-07-29 | Nokia Solutions and Networks Oy | Bundling harq feedback in a time division duplexing communication system |
EP3429297B1 (en) * | 2013-09-27 | 2021-04-28 | Huawei Technologies Co., Ltd. | Method for transmitting uplink data and corresponding apparatus and computer-readable storage medium |
US9743452B2 (en) * | 2013-09-30 | 2017-08-22 | Apple Inc. | Adaptive reception of LTE in a single radio wireless device |
WO2015050417A1 (en) * | 2013-10-06 | 2015-04-09 | 엘지전자 주식회사 | Method and apparatus for transceiving signal from device-to-device terminal in wireless communication system |
US9872210B2 (en) | 2013-10-16 | 2018-01-16 | At&T Mobility Ii Llc | Adaptive rate of congestion indicator to enhance intelligent traffic steering |
US20150109971A1 (en) * | 2013-10-22 | 2015-04-23 | Acer Incorporated | User equipment and base station having dynamic resource allocation mechanism and multiple connections |
JP6412122B2 (en) * | 2013-10-24 | 2018-10-24 | コンヴィーダ ワイヤレス, エルエルシー | Service scope management system and method |
WO2015064476A1 (en) * | 2013-10-29 | 2015-05-07 | 京セラ株式会社 | Base station |
US9572171B2 (en) * | 2013-10-31 | 2017-02-14 | Intel IP Corporation | Systems, methods, and devices for efficient device-to-device channel contention |
WO2015064673A1 (en) | 2013-11-01 | 2015-05-07 | 三菱電機株式会社 | Communication system |
CN105594134B (en) * | 2013-11-11 | 2018-01-23 | 华为技术有限公司 | Frequency hopping processing method and processing device |
US9667386B2 (en) * | 2013-11-13 | 2017-05-30 | Samsung Electronics Co., Ltd | Transmission of control channel and data channels for coverage enhancements |
CN104640221A (en) * | 2013-11-13 | 2015-05-20 | 中兴通讯股份有限公司 | Control channel interference coordination methods, control channel interference coordination system, control channel interference coordination device and control channel interference coordination base station |
US9326298B2 (en) * | 2013-11-15 | 2016-04-26 | Verizon Patent And Licensing Inc. | Wireless device background uplink small data packet |
WO2015073937A1 (en) | 2013-11-17 | 2015-05-21 | Ping Liang | Massive mimo multi-user beamforming and single channel full duplex for wireless networks |
AU2013406056A1 (en) | 2013-11-22 | 2016-06-16 | Huawei Technologies Co., Ltd. | Data transmission method, user equipment, and base station |
KR20150060118A (en) | 2013-11-25 | 2015-06-03 | 주식회사 아이티엘 | Apparatus and method for transmitting harq ack/nack |
US9173106B2 (en) | 2013-11-25 | 2015-10-27 | At&T Intellectual Property I, L.P. | Efficient cell site outage mitigation |
WO2015080140A1 (en) | 2013-11-26 | 2015-06-04 | シャープ株式会社 | Terminal device, base station device, communication method, and integrated circuit |
US9838091B2 (en) * | 2013-11-26 | 2017-12-05 | Futurewei Technologies, Inc. | System and method for a scale-invariant symbol demodulator |
US9363333B2 (en) * | 2013-11-27 | 2016-06-07 | At&T Intellectual Property I, Lp | Server-side scheduling for media transmissions |
US9197717B2 (en) | 2013-11-27 | 2015-11-24 | At&T Intellectual Property I, Lp | Server-side scheduling for media transmissions according to client device states |
WO2015088521A1 (en) | 2013-12-11 | 2015-06-18 | Nokia Technologies Oy | Resource allocation and interference management for dense and small cell deployments |
KR102287454B1 (en) | 2013-12-20 | 2021-08-09 | 핑 리앙 | Adaptive precoding in a mimo wireless communication system |
US20150181566A1 (en) * | 2013-12-20 | 2015-06-25 | Broadcom Corporation | Apparatus and method for reducing upstream control channel resources in a communications system |
CN106961739B (en) | 2013-12-20 | 2020-07-24 | 射频数字信号处理公司 | Method for acquiring channel state information in frequency division duplex multi-input and multi-output wireless network |
US11743897B2 (en) * | 2013-12-20 | 2023-08-29 | Qualcomm Incorporated | Techniques for configuring uplink channels in unlicensed radio frequency spectrum bands |
JP6012588B2 (en) * | 2013-12-26 | 2016-10-25 | 株式会社Nttドコモ | User terminal, radio base station, and radio communication method |
US10200137B2 (en) * | 2013-12-27 | 2019-02-05 | Huawei Technologies Co., Ltd. | System and method for adaptive TTI coexistence with LTE |
DE102014019581A1 (en) * | 2013-12-30 | 2015-07-02 | Wi-Lan Labs, Inc. | APPLICATION QUALITY MANAGEMENT IN A COMMUNICATION SYSTEM |
US9307535B1 (en) * | 2014-01-02 | 2016-04-05 | Sprint Spectrum L.P. | Managing transmission power for hybrid-ARQ groups |
US20150195326A1 (en) * | 2014-01-03 | 2015-07-09 | Qualcomm Incorporated | Detecting whether header compression is being used for a first stream based upon a delay disparity between the first stream and a second stream |
US20150195056A1 (en) * | 2014-01-06 | 2015-07-09 | Intel IP Corporation | Systems, methods, and devices to support a fast tdd configuration indication |
EP3092816A1 (en) * | 2014-01-10 | 2016-11-16 | Thomson Licensing | Method for obtaining network information by a client terminal configured for receiving a multimedia content divided into segments |
US10117246B2 (en) * | 2014-01-20 | 2018-10-30 | Qulacomm Incorporated | Techniques for identifying secondary serving cells operating in shared access radio frequency spectrum |
CN110620823A (en) | 2014-01-24 | 2019-12-27 | 北京三星通信技术研究有限公司 | Data transmission method and device based on cache |
KR101918830B1 (en) | 2014-01-29 | 2018-11-14 | 인터디지탈 패튼 홀딩스, 인크 | Resource selection for device to device discovery or communication |
WO2015116070A1 (en) * | 2014-01-29 | 2015-08-06 | Hitachi, Ltd. | Enhanced control channel interference coordination and avoidance |
CN104811946B (en) * | 2014-01-29 | 2020-03-20 | 北京三星通信技术研究有限公司 | Method and device for processing interference signal |
US10153867B2 (en) | 2014-01-30 | 2018-12-11 | Qualcomm Incorporated | Carrier aggregation with dynamic TDD DL/UL subframe configuration |
EP3100555B1 (en) * | 2014-01-31 | 2017-04-12 | Telefonaktiebolaget LM Ericsson (publ) | Methods and nodes relating to system information acquisition during flexible subframe operation |
EP3100389B1 (en) * | 2014-01-31 | 2018-07-25 | Telefonaktiebolaget LM Ericsson (publ) | Reporting serving cell packet loss rate |
US9825748B2 (en) | 2014-02-03 | 2017-11-21 | Apple Inc. | Offloading and reselection policies and rules for mobile devices |
US9577814B2 (en) * | 2014-02-07 | 2017-02-21 | Samsung Electronics Co., Ltd. | Method and apparatus for allocating resources in carrier aggregation system |
EP3105981B1 (en) * | 2014-02-10 | 2019-11-20 | Telefonaktiebolaget LM Ericsson (publ) | Methods and devices for random access preamble shifting |
TWI641278B (en) * | 2014-03-11 | 2018-11-11 | Lg電子股份有限公司 | Method for counting a drx (discontinuous reception) timer in a carrier aggregation system and a device therefor |
CN106105084B (en) * | 2014-03-12 | 2019-07-12 | Lg电子株式会社 | The method and device thereof of uplink control channel are sent in the wireless communication system for the use variation for supporting radio resource |
US9560649B1 (en) * | 2014-03-13 | 2017-01-31 | Sprint Spectrum L.P. | Method of allocating communication resources to a wireless device in a wireless communication network |
US9337983B1 (en) | 2014-03-13 | 2016-05-10 | Sprint Spectrum L.P. | Use of discrete portions of frequency bandwidth to distinguish between ACK and NACK transmissions |
US9370004B2 (en) * | 2014-03-17 | 2016-06-14 | Sprint Spectrum L.P. | Traffic management for user equipment devices |
EP3120598B1 (en) * | 2014-03-18 | 2021-08-18 | Nokia Solutions and Networks Oy | Method and network element for implementing policies in a mobile network |
KR102222132B1 (en) | 2014-03-19 | 2021-03-03 | 삼성전자 주식회사 | Method and appratus of performing cell selection and random access of machine-type communication user equipment in mobile communication system |
EP3120485B1 (en) * | 2014-03-20 | 2018-02-14 | Interdigital Patent Holdings, Inc. | Method and apparatus for non-orthogonal access in lte systems |
US9712981B2 (en) * | 2014-03-25 | 2017-07-18 | Qualcomm Incorporated | Client ID and multi-application support for reception reporting |
US9642034B2 (en) * | 2014-03-27 | 2017-05-02 | Intel Corporation | Systems, methods, and devices to support intra-QCI QoS-aware radio resource allocation |
WO2015145780A1 (en) | 2014-03-28 | 2015-10-01 | 富士通株式会社 | Wireless communication system, base station, terminal, and processing method |
EP2928252B1 (en) * | 2014-04-02 | 2018-01-31 | Telefonaktiebolaget LM Ericsson (publ) | Controlling scheduling requests |
WO2015151335A1 (en) * | 2014-04-04 | 2015-10-08 | 三菱電機株式会社 | Data transport method, data reception apparatus, data transmission apparatus, base station, mobile station, data transmission/reception apparatus, and mobile communication system |
EP3131300A4 (en) | 2014-04-09 | 2018-01-17 | LG Electronics Inc. | Broadcast transmission device, broadcast reception device, operating method of broadcast transmission device, and operating method of broadcast reception device |
US11290162B2 (en) | 2014-04-16 | 2022-03-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US9906977B2 (en) | 2014-04-18 | 2018-02-27 | Apple Inc. | Deterministic RRC connections |
US9497771B2 (en) | 2014-04-18 | 2016-11-15 | Apple Inc. | Deterministic RRC connections |
US10375646B2 (en) | 2014-04-18 | 2019-08-06 | Apple Inc. | Coordination between application and baseband layer operation |
US9516564B2 (en) | 2014-04-25 | 2016-12-06 | At&T Intellectual Property I, L.P. | Enhancement of a cell reselection parameter in heterogeneous networks |
US9635566B2 (en) | 2014-04-25 | 2017-04-25 | At&T Intellectual Property I, L.P. | Enhancement of access points to support heterogeneous networks |
US9986556B1 (en) | 2014-04-29 | 2018-05-29 | Sprint Spectrum L.P. | Enhanced TTI bundling in TDD mode |
CN106464517B (en) * | 2014-04-30 | 2020-11-27 | 诺基亚通信公司 | Authentication in ad hoc networks |
CN106465154B (en) * | 2014-05-05 | 2019-11-19 | 诺基亚通信公司 | The method and apparatus of the potentially conflicting between example for preventing SON function |
US9596071B1 (en) | 2014-05-05 | 2017-03-14 | Sprint Spectrum L.P. | Enhanced TTI bundling in FDD mode |
US20150327104A1 (en) * | 2014-05-08 | 2015-11-12 | Candy Yiu | Systems, methods, and devices for configuring measurement gaps for dual connectivity |
US9722848B2 (en) | 2014-05-08 | 2017-08-01 | Intel Corporation | Techniques for using a modulation and coding scheme for downlink transmissions |
US11357022B2 (en) | 2014-05-19 | 2022-06-07 | Qualcomm Incorporated | Apparatus and method for interference mitigation utilizing thin control |
US11153875B2 (en) | 2014-05-19 | 2021-10-19 | Qualcomm Incorporated | Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals |
KR102188650B1 (en) * | 2014-06-10 | 2020-12-08 | 삼성전자 주식회사 | Method and electronic device for controlling carrier aggregation in a wireless communication system |
US10305654B2 (en) * | 2014-07-07 | 2019-05-28 | Lg Electronics Inc. | Reference signal transmission method in unlicensed band in wireless communication system and apparatus therefor |
CN106538023B (en) * | 2014-07-07 | 2019-08-16 | Lg电子株式会社 | The signaling method and its terminal of device-to-device (D2D) communication in wireless communication system |
US20160014695A1 (en) * | 2014-07-11 | 2016-01-14 | Qualcomm Incorporated | Drx power usage by dynamically adjusting a warmup period |
US9301165B2 (en) * | 2014-07-11 | 2016-03-29 | Verizon Patent And Licensing Inc. | Dynamic control for multi-layer self optimization |
US9591590B2 (en) * | 2014-07-16 | 2017-03-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Apparatus and method for inter cell interference coordination |
CN105306398B (en) * | 2014-07-22 | 2018-04-10 | 普天信息技术有限公司 | EMBMS baseband signals generation method, baseband processing unit and base station |
US10149307B2 (en) * | 2014-08-01 | 2018-12-04 | Samsung Electronics Co., Ltd. | Method and apparatus for providing feedback between base transceiver stations through cooperative communication in wireless communication system |
CN104125598B (en) * | 2014-08-07 | 2017-11-17 | 宇龙计算机通信科技(深圳)有限公司 | Communication means and communication system based on microcell base station |
WO2016019686A1 (en) * | 2014-08-07 | 2016-02-11 | 深圳市中兴微电子技术有限公司 | A method for scheduling transmitting timing of uplink channels and device |
IL234002A (en) | 2014-08-07 | 2016-06-30 | Wireless Technologies Pte Ltd Cellwize | Method of operating a self-organizing network and system thereof |
US10680771B2 (en) * | 2014-08-28 | 2020-06-09 | Qualcomm Incorporated | Reference signal transmission and averaging for wireless communications |
US10999404B2 (en) | 2014-08-29 | 2021-05-04 | Nokia Solutions And Networks Oy | Method, apparatus and system for SON coordination depending on SON function priority |
CN105491670A (en) * | 2014-09-15 | 2016-04-13 | 华为技术有限公司 | Data transmission method and equipment |
US9749113B1 (en) | 2014-09-25 | 2017-08-29 | Sprint Spectrum L.P. | Control channel indication based on power level |
US9591511B1 (en) | 2014-09-25 | 2017-03-07 | Sprint Spectrum L.P. | Control channel selection based on quality of service |
EP3180936A4 (en) * | 2014-09-25 | 2018-02-21 | T-Mobile USA, Inc. | Self-organizing network mechanism for energy saving during an outage |
US9935807B2 (en) * | 2014-09-26 | 2018-04-03 | Telefonaktiebolaget L M Ericsson (Publ) | Discovery signal design |
CN107079415B (en) | 2014-09-30 | 2020-11-10 | 唯亚威通讯技术有限公司 | Methods and apparatus for self-optimization and/or improvement of cloud-based wireless networks |
US9621294B2 (en) | 2014-10-02 | 2017-04-11 | At&T Intellectual Property I, L.P. | Enhancement of inter-cell interference coordination with adaptive reduced-power almost blank subframes based on neighbor cell profile data |
US10158473B2 (en) * | 2014-10-03 | 2018-12-18 | Intel IP Corporation | Methods, apparatuses, and systems for transmitting hybrid automatic repeat request transmissions using channels in an unlicensed shared medium |
KR102263688B1 (en) * | 2014-10-07 | 2021-06-10 | 삼성전자주식회사 | APPARATUS AND METHOD FOR PROVIDING MUlTIPLE CONNECTIONS USING DIFFERENT RADIO ACCESS TECHNOLOGY IN WIRELESS COMMUNICATION SYSTEM |
US9936516B2 (en) * | 2014-10-08 | 2018-04-03 | Qualcomm Incorporated | Transmission coordination for collocated radios |
WO2016056971A1 (en) * | 2014-10-09 | 2016-04-14 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of operating wireless terminals and related wireless terminals |
US10128926B2 (en) * | 2014-10-17 | 2018-11-13 | Lg Electronics Inc. | Method and device for transmitting signal |
WO2016064196A1 (en) * | 2014-10-21 | 2016-04-28 | 엘지전자 주식회사 | Method for transmitting/receiving d2d signal in wireless communication system and apparatus therefor |
US10367621B2 (en) * | 2014-10-27 | 2019-07-30 | Qualcomm Incorporated | Fountain HARQ for reliable low latency communication |
US9591648B1 (en) | 2014-11-03 | 2017-03-07 | Sprint Spectrum L.P. | Semi-persistent secondary signaling channels |
US9326152B1 (en) * | 2014-11-04 | 2016-04-26 | Alcatel Lucent | Dynamic scheduling of non-interfering clusters in a distributed diversity communications system |
WO2016073762A1 (en) * | 2014-11-05 | 2016-05-12 | Intel IP Corporation | Enhanced physical downlink control channel in machine-type communication |
EP3216149B1 (en) | 2014-11-06 | 2020-05-06 | Intel IP Corporation | Early termination of repeated transmissions for mtc |
US10419165B2 (en) | 2014-11-07 | 2019-09-17 | Samsung Electronics Co., Ltd. | Methods for performing hybrid repeat request (HARQ) in cellular operations over unlicensed bands |
US10791546B2 (en) | 2014-11-07 | 2020-09-29 | Qualcomm Incorporated | PUCCH for MTC devices |
US9532376B2 (en) | 2014-11-11 | 2016-12-27 | Intel Corporation | System and method for controlling a licensed shared access radio |
US10039134B2 (en) | 2014-11-14 | 2018-07-31 | Electronics And Telecommunications Research Institute | Method and apparatus for random access in wireless communication system |
US9787377B2 (en) | 2014-12-17 | 2017-10-10 | Qualcomm Incorporated | Mutual WLAN and WAN interference mitigation in unlicensed spectrum |
KR102381574B1 (en) | 2014-12-18 | 2022-04-01 | 삼성전자 주식회사 | Apparatus and method for network-assisted interference cancellation at downlink using orthogonal frequency division multiplexing |
US10667004B2 (en) | 2014-12-22 | 2020-05-26 | Lg Electronics Inc. | Broadcasting signal reception device, and broadcasting signal reception method based on pull mode |
EP3664354B1 (en) | 2014-12-23 | 2021-10-20 | LG Electronics Inc. | Method for configuring and scheduling partial subframe in wireless access system supporting unlicensed band, and device for supporting same |
US20160212731A1 (en) * | 2015-01-21 | 2016-07-21 | Microsoft Technology Licensing, Llc | Mapping between uplink and downlink resources |
US9686064B2 (en) | 2015-01-21 | 2017-06-20 | Intel IP Corporation | Devices and methods for HARQ-ACK feedback scheme on PUSCH in wireless communication systems |
WO2016119442A1 (en) * | 2015-01-27 | 2016-08-04 | 中兴通讯股份有限公司 | Paging method, device, mme, base station, and user equipment |
US10110363B2 (en) * | 2015-01-29 | 2018-10-23 | Qualcomm Incorporated | Low latency in time division duplexing |
US10061531B2 (en) | 2015-01-29 | 2018-08-28 | Knuedge Incorporated | Uniform system wide addressing for a computing system |
US10394692B2 (en) * | 2015-01-29 | 2019-08-27 | Signalfx, Inc. | Real-time processing of data streams received from instrumented software |
US10084577B2 (en) | 2015-01-30 | 2018-09-25 | Motorola Mobility Llc | Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation |
CN105992351B (en) * | 2015-01-30 | 2021-05-11 | 中兴通讯股份有限公司 | Resource allocation method and device and information feedback method and device |
CN104581908B (en) * | 2015-01-30 | 2018-10-26 | 深圳酷派技术有限公司 | The method for parameter configuration and device of discontinuous reception modes |
US10009153B2 (en) * | 2015-01-30 | 2018-06-26 | Motorola Mobility Llc | Apparatus and method for reception and transmission of control channels |
WO2016119221A1 (en) | 2015-01-30 | 2016-08-04 | 华为技术有限公司 | Method and device for transmitting feedback information in communication system |
US9743392B2 (en) | 2015-01-30 | 2017-08-22 | Motorola Mobility Llc | Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation |
US9629066B2 (en) * | 2015-02-24 | 2017-04-18 | Huawei Technologies Co., Ltd. | System and method for transmission time intervals |
US10085266B1 (en) | 2015-02-26 | 2018-09-25 | Sprint Spectrum L.P. | Management of TTI bundling for carrier aggregated communications |
US11558894B2 (en) * | 2015-03-02 | 2023-01-17 | Apple Inc. | Aperiodic scheduling of uplink grants in a wireless communication system |
US10075959B2 (en) | 2015-03-12 | 2018-09-11 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling uplink coverage in wireless communication system |
KR102301818B1 (en) * | 2015-03-12 | 2021-09-15 | 삼성전자 주식회사 | Method and apparatus for controlling an uplink coverage in a wireless communication system |
US9980270B2 (en) | 2015-03-13 | 2018-05-22 | Futurewei Technologies, Inc. | System and method for interference coordination in wireless communications systems |
US9936519B2 (en) | 2015-03-15 | 2018-04-03 | Qualcomm Incorporated | Self-contained time division duplex (TDD) subframe structure for wireless communications |
US10075970B2 (en) | 2015-03-15 | 2018-09-11 | Qualcomm Incorporated | Mission critical data support in self-contained time division duplex (TDD) subframe structure |
US10342012B2 (en) | 2015-03-15 | 2019-07-02 | Qualcomm Incorporated | Self-contained time division duplex (TDD) subframe structure |
US10547415B2 (en) * | 2015-03-15 | 2020-01-28 | Qualcomm Incorporated | Scalable TTI with advanced pilot and control |
WO2016152684A1 (en) * | 2015-03-24 | 2016-09-29 | ソニー株式会社 | Transmission device, transmission method, reception device, and reception method |
CN107005368B (en) | 2015-03-31 | 2020-11-17 | 松下电器(美国)知识产权公司 | Wireless communication method, user equipment and ENODB |
US10531512B2 (en) * | 2015-04-01 | 2020-01-07 | Huawei Technologies Co., Ltd. | System and method for a tracking channel |
US9918344B2 (en) | 2015-04-09 | 2018-03-13 | Intel IP Corporation | Random access procedure for enhanced coverage support |
US10149125B1 (en) | 2015-04-10 | 2018-12-04 | Sprint Spectrum L.P. | Dynamic adjustment of uplink coordinated multipoint service |
CN104735703B (en) * | 2015-04-15 | 2018-11-27 | 北京邮电大学 | A kind of master base station, user terminal and communication system |
US10432368B1 (en) | 2015-04-17 | 2019-10-01 | Sprint Spectrum L.P. | Balancing of transmission time interval bundling and coordinate multipoint |
US10652768B2 (en) | 2015-04-20 | 2020-05-12 | Qualcomm Incorporated | Control channel based broadcast messaging |
WO2016171748A1 (en) * | 2015-04-21 | 2016-10-27 | Intel IP Corporation | User equipment and methods for physical uplink control channel (pucch) resource allocation and communication |
US20160316428A1 (en) * | 2015-04-24 | 2016-10-27 | Mediatek Inc. | Method of Configuring a Number of Antennas and Wireless Device |
KR102350504B1 (en) * | 2015-04-27 | 2022-01-14 | 삼성전자주식회사 | Apparatus and method for controlling downlink throughput in communication system |
US9554375B1 (en) | 2015-05-01 | 2017-01-24 | Sprint Spectrum L.P. | Sector selection for coordinated multipoint based on application type |
US20180255542A1 (en) * | 2015-05-13 | 2018-09-06 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving uplink in wireless communication system |
US9814058B2 (en) | 2015-05-15 | 2017-11-07 | Qualcomm Incorporated | Scaled symbols for a self-contained time division duplex (TDD) subframe structure |
US9504011B1 (en) | 2015-05-19 | 2016-11-22 | Qualcomm Incorporated | Methods for improved single radio long term evolution (SRLTE) mobile termination (MT) call success rate for mobile switching center (MSC)-sub paging scenarios |
EP3298832B1 (en) * | 2015-05-19 | 2020-03-18 | Telefonaktiebolaget LM Ericsson (publ) | Activation of drx parameters |
CN106304391B (en) | 2015-06-10 | 2021-03-30 | 中兴通讯股份有限公司 | PRACH access control method, access method and device |
US10340986B2 (en) * | 2015-06-28 | 2019-07-02 | RF DSP Inc. | Frequency resource allocation in MU-MIMO systems |
US10341820B2 (en) * | 2015-07-10 | 2019-07-02 | Qualcomm Incorporated | Techniques for modular multimedia broadcast and multicast service (MBMS) delivery |
WO2017009525A1 (en) | 2015-07-16 | 2017-01-19 | Nokia Technologies Oy | User-plane enhancements supporting in-bearer sub-flow qos differentiation |
US9992790B2 (en) | 2015-07-20 | 2018-06-05 | Qualcomm Incorporated | Time division duplex (TDD) subframe structure supporting single and multiple interlace modes |
US10652769B2 (en) | 2015-07-25 | 2020-05-12 | Mariana Goldhamer | Coupling loss in wireless networks |
WO2017018768A1 (en) * | 2015-07-25 | 2017-02-02 | 엘지전자 주식회사 | Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method |
US10305767B2 (en) * | 2015-07-28 | 2019-05-28 | Nokia Solutions And Networks Oy | Methods and apparatuses for measurement of packet delay in uplink in E-UTRAN |
EP3800812A1 (en) * | 2015-07-30 | 2021-04-07 | Huawei Technologies Co., Ltd. | Communication method and communication device |
US9949161B2 (en) * | 2015-07-31 | 2018-04-17 | Qualcomm Incorporated | Techniques and apparatuses for virtual radio link monitoring during carrier aggregation and cross-carrier scheduling |
US10270822B2 (en) | 2015-08-04 | 2019-04-23 | Qualcomm Incorporated | Hybrid pocket router |
US10638179B2 (en) * | 2015-08-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Content insertion in streaming media content |
WO2017024539A1 (en) | 2015-08-10 | 2017-02-16 | 华为技术有限公司 | Uplink control information transmission method and apparatus |
US10342005B2 (en) | 2015-08-14 | 2019-07-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods for determining a HARQ-ACK codebook size for a user equipment and base station |
US10575287B2 (en) * | 2015-08-23 | 2020-02-25 | Lg Electronics Inc. | Method for transmitting PUCCH using FDD frame in wireless communication system and device therefor |
US10218457B2 (en) | 2015-08-24 | 2019-02-26 | Qualcomm Incorporated | Techniques for improving feedback processes based on a latency between a transmission time interval (TTI) and a feedback opportunity |
US11159917B2 (en) | 2015-08-27 | 2021-10-26 | Qualcomm Incorporated | MBMS architecture with CDN caching in ENB |
CN106535333B (en) * | 2015-09-11 | 2019-12-13 | 电信科学技术研究院 | A kind of physical downlink control channel transmission method and device |
US10075755B2 (en) * | 2015-09-18 | 2018-09-11 | Sorenson Media, Inc. | Digital overlay offers on connected media devices |
US20170094654A1 (en) * | 2015-09-25 | 2017-03-30 | Qualcomm Incorporated | Service request, scheduling request, and allocation of radio resources for service contexts |
WO2017058068A1 (en) * | 2015-09-29 | 2017-04-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Network node and method in a wireless telecommunications network |
EP3357186A4 (en) * | 2015-09-30 | 2019-05-22 | Nokia Technologies OY | Short physical uplink shared channel arrangement |
WO2017062050A1 (en) * | 2015-10-07 | 2017-04-13 | Intel IP Corporation | Dynamically beamformed control channel for beamformed cells |
CN108292948A (en) * | 2015-10-14 | 2018-07-17 | 威尔逊电子有限责任公司 | The channelizing of Signal Booster |
CN107113276B (en) * | 2015-10-22 | 2020-06-02 | 华为技术有限公司 | A method and device for sending downlink control information DCI |
CN105407494B (en) * | 2015-10-23 | 2018-10-30 | 中国联合网络通信集团有限公司 | Network capacity extension method and device |
CN106656440B (en) * | 2015-10-27 | 2019-07-30 | 上海朗帛通信技术有限公司 | A kind of method and apparatus in narrowband wireless communication |
GB2543800B (en) * | 2015-10-28 | 2020-02-26 | Ayyeka Tech Ltd | Method and system for scheduling transmit time slots for network-connected measurement units |
CN105430691B (en) * | 2015-11-02 | 2019-01-18 | 中国联合网络通信集团有限公司 | A kind of determination method and device of QCI |
CN106686738A (en) * | 2015-11-05 | 2017-05-17 | 索尼公司 | Apparatus and method on base station side and user equipment side, and wireless communication system |
KR102511925B1 (en) * | 2015-11-06 | 2023-03-20 | 주식회사 아이티엘 | Apparatus and method for performing hybrid automatic repeat request operation in wireless communication system supporting carrier aggregation |
US10327187B2 (en) | 2015-12-04 | 2019-06-18 | Time Warner Cable Enterprises Llc | Apparatus and method for wireless network extensibility and enhancement |
US9986578B2 (en) | 2015-12-04 | 2018-05-29 | Time Warner Cable Enterprises Llc | Apparatus and methods for selective data network access |
EP3402091B1 (en) | 2016-01-08 | 2020-05-13 | Huawei Technologies Co., Ltd. | Signal transmission method, receiving method, terminal device, base station and system |
WO2017119931A1 (en) * | 2016-01-08 | 2017-07-13 | Intel IP Corporation | Downlink hybrid automatic repeat request feedback for narrowband internet of things devices |
JP6924702B2 (en) | 2016-01-12 | 2021-08-25 | 富士通株式会社 | Wireless communication equipment, wireless communication systems, and wireless communication methods |
EP3404896B1 (en) | 2016-01-12 | 2022-03-09 | Fujitsu Limited | Wireless communication device, wireless communication system, and wireless communication method |
EP3272045A1 (en) * | 2016-01-15 | 2018-01-24 | Qualcomm Incorporated | Wireless communication |
CN108476121B (en) * | 2016-02-03 | 2021-06-29 | 苹果公司 | Apparatus for physical downlink shared channel transmission with short transmission time interval |
CN105722229B (en) * | 2016-02-05 | 2019-08-27 | 北京佰才邦技术有限公司 | Channel selection method and device |
US9924431B2 (en) * | 2016-02-08 | 2018-03-20 | Smartsky Networks LLC | Seamless relocation of a mobile terminal in a wireless network |
CN108604954A (en) * | 2016-02-24 | 2018-09-28 | 英特尔Ip公司 | UCI channel codings on xPUCCH |
US10492034B2 (en) | 2016-03-07 | 2019-11-26 | Time Warner Cable Enterprises Llc | Apparatus and methods for dynamic open-access networks |
US10321351B2 (en) * | 2017-03-02 | 2019-06-11 | Cable Television Laboratories, Inc. | System and method for grant assignment |
CN108353010B (en) * | 2016-03-10 | 2021-05-25 | 思科技术公司 | Techniques for wireless access and wired network integration |
CN108781100B (en) * | 2016-03-10 | 2021-06-22 | 华为技术有限公司 | Transmission diversity method, equipment and system |
US10492104B2 (en) | 2016-03-10 | 2019-11-26 | Cable Television Laboratories, Inc. | Latency reduction in wireless service |
EP3427514B1 (en) | 2016-03-10 | 2022-01-19 | Cable Television Laboratories, Inc. | Methods for latency reduction |
US10412669B2 (en) * | 2016-03-14 | 2019-09-10 | Apple Inc. | Low power cellular modem system architecture |
CN105813125B (en) * | 2016-03-14 | 2019-04-12 | 中国电信股份有限公司 | Method, user equipment and the device of voice service for user equipment |
US10341952B2 (en) | 2016-03-14 | 2019-07-02 | Apple Inc. | Low power LTE (LP-LTE) paging monitoring |
US10085275B2 (en) | 2016-03-14 | 2018-09-25 | Apple Inc. | Synchronization and interprocessor communication in a low power LTE system architecture |
WO2017166245A1 (en) | 2016-03-31 | 2017-10-05 | 华为技术有限公司 | Resource management method and related equipment |
KR20170112897A (en) * | 2016-03-31 | 2017-10-12 | 삼성전자주식회사 | Method and apparatus for configuring csi reporting mode in wireless communication system |
CN108476384B (en) | 2016-04-01 | 2021-03-23 | 华为技术有限公司 | Data transmission method and related device |
EP3412088B1 (en) * | 2016-04-01 | 2024-07-24 | Lenovo Innovations Limited (Hong Kong) | Carrier determination for a device |
EP3437381A4 (en) * | 2016-04-01 | 2019-11-13 | Intel Corporation | STREAMING OF NON-SURVEILLANCE TRAFFIC IN A LONG-TERM EVOLUTION SYSTEM (LTE) AFTER A PROHIBITION |
US10069613B2 (en) * | 2016-04-01 | 2018-09-04 | Motorola Mobility Llc | Method and apparatus for scheduling uplink transmissions with reduced latency |
US10346049B2 (en) | 2016-04-29 | 2019-07-09 | Friday Harbor Llc | Distributed contiguous reads in a network on a chip architecture |
KR102057212B1 (en) | 2016-05-03 | 2019-12-19 | 주식회사 케이티 | Methods for changing a connection state of a UE and Apparatuses thereof |
CN107347002B (en) * | 2016-05-06 | 2021-11-12 | 北京三星通信技术研究有限公司 | Method and device for transmitting HARQ-ACK feedback information |
WO2017195849A1 (en) * | 2016-05-12 | 2017-11-16 | 株式会社Nttドコモ | User terminal and wireless communication method |
US10548118B2 (en) | 2016-05-13 | 2020-01-28 | Qualcomm Incorporated | Multiple transmission time interval coordination with time division duplexing |
KR102640127B1 (en) * | 2016-05-13 | 2024-02-22 | 레노보 이노베이션스 리미티드 (홍콩) | Data acknowledgment response in wireless communication systems |
US10057742B2 (en) * | 2016-05-18 | 2018-08-21 | Veniam, Inc. | Systems and methods for managing the routing and replication of data in the download direction in a network of moving things |
CN109155942B (en) | 2016-05-18 | 2023-04-14 | 富士通株式会社 | Base station, control device, wireless terminal, and wireless communication system |
US10211907B1 (en) | 2016-05-26 | 2019-02-19 | Sprint Spectrum L.P. | Coordinated multipoint mode selection for relay base station |
WO2017204067A1 (en) * | 2016-05-26 | 2017-11-30 | 京セラ株式会社 | Network apparatus |
US10512065B2 (en) | 2016-05-31 | 2019-12-17 | Qualcomm Incorporated | Flexible control information reporting |
US10164858B2 (en) | 2016-06-15 | 2018-12-25 | Time Warner Cable Enterprises Llc | Apparatus and methods for monitoring and diagnosing a wireless network |
CN112492675A (en) * | 2016-06-28 | 2021-03-12 | 华为技术有限公司 | Transmission mode conversion method and device |
CN107567097B (en) * | 2016-06-30 | 2020-06-12 | 普天信息技术有限公司 | Resource allocation method of downlink control channel |
US11431091B2 (en) * | 2016-07-11 | 2022-08-30 | Radiarc Technologies, Llc | Wireless telecommunication antenna mount and control system and methods of operating the same |
WO2018012774A1 (en) * | 2016-07-15 | 2018-01-18 | 엘지전자 주식회사 | Method for transmission and reception in wireless communication system, and apparatus therefor |
CN109479209B (en) * | 2016-07-15 | 2022-08-09 | 株式会社Ntt都科摩 | User terminal and wireless communication method |
US10541785B2 (en) | 2016-07-18 | 2020-01-21 | Samsung Electronics Co., Ltd. | Carrier aggregation with variable transmission durations |
BR112019001905A2 (en) | 2016-08-01 | 2019-05-07 | Nokia Technologies Oy | method, apparatus, computer program, computer readable non-transient means, and computer readable medium for the use of data transmission control features |
US10492079B2 (en) * | 2016-08-01 | 2019-11-26 | Corning Optical Communications LLC | System and method for citizens band radio spectrum (CBRS) dual cell radio node |
CN114760710B (en) | 2016-08-01 | 2024-12-13 | 三星电子株式会社 | Method and apparatus for managing data communications in a wireless communication network |
CN107682929B (en) * | 2016-08-02 | 2021-10-29 | 上海朗帛通信技术有限公司 | A method and device in wireless transmission |
US20190190572A1 (en) * | 2016-08-03 | 2019-06-20 | Ntt Docomo, Inc. | User terminal and radio communication method |
CN107733592B (en) | 2016-08-10 | 2020-11-27 | 华为技术有限公司 | Transmission scheme indication method, data transmission method, device and system |
US10819475B2 (en) * | 2016-08-12 | 2020-10-27 | Qualcomm Incorporated | Uplink semi-persistent scheduling for low latency communications |
WO2018027941A1 (en) | 2016-08-12 | 2018-02-15 | Microsoft Technology Licensing, Llc. | Selective reception of cell broadcast service |
US11622327B2 (en) * | 2016-08-30 | 2023-04-04 | Microsoft Technology Licensing, Llc | Adaptive reception of cell broadcast service |
CN107801188B (en) * | 2016-08-30 | 2021-07-06 | 上海诺基亚贝尔股份有限公司 | Method for forming virtual cell in heterogeneous network, macro base station and transmission point equipment |
CN113556806B (en) | 2016-09-29 | 2024-07-02 | 英国电讯有限公司 | Base station and method of operating a base station in a cellular telecommunication network |
US11470548B2 (en) | 2016-09-29 | 2022-10-11 | British Telecommunications Public Limited Company | Cellular telecommunications network |
US10306630B2 (en) * | 2016-09-29 | 2019-05-28 | Sharp Kabushiki Kaisha | Systems and methods for determining frame structure and association timing |
US10728844B2 (en) * | 2016-09-29 | 2020-07-28 | British Telecommunications Public Limited Company | Cellular telecommunications network |
US11825482B2 (en) | 2016-10-03 | 2023-11-21 | Qualcomm Incorporated | Techniques for improved control channels |
US10420085B2 (en) | 2016-10-07 | 2019-09-17 | Cable Television Laboratories, Inc. | System and method for grant assignment |
US12225536B2 (en) | 2016-10-07 | 2025-02-11 | Cable Television Laboratories, Inc. | System and method for grant assignment |
US10524257B2 (en) * | 2016-10-09 | 2019-12-31 | Qualcomm Incorporated | TTI bundling for URLLC UL/DL transmissions |
US10925107B2 (en) * | 2016-10-14 | 2021-02-16 | Nokia Technologies Oy | Fast activation of multi-connectivity utilizing uplink signals |
EP3529972B1 (en) * | 2016-10-18 | 2021-07-28 | Expway | A method for transmitting content to mobile user devices |
US10034292B1 (en) | 2016-10-19 | 2018-07-24 | Sprint Spectrum L.P. | Resource allocation in wireless networks |
US11006447B2 (en) * | 2016-10-21 | 2021-05-11 | Nokia Technologies Oy | Random access for NR |
CN109863796B (en) * | 2016-10-28 | 2023-11-07 | 瑞典爱立信有限公司 | Advanced handover strategy for eMBMS MooD |
US10405342B2 (en) | 2016-11-01 | 2019-09-03 | Qualcomm Incorporated | Two step random access procedure |
US10505697B2 (en) * | 2016-11-03 | 2019-12-10 | At&T Intellectual Property I, L.P. | Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator |
PL3491770T3 (en) | 2016-11-04 | 2020-07-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Short physical downlink control channel (spdcch) mapping design |
CN108377581A (en) * | 2016-11-04 | 2018-08-07 | 维沃移动通信有限公司 | A kind of configuration method, mobile terminal and the base station of discontinuous reception DRX parameters |
WO2018083653A1 (en) * | 2016-11-04 | 2018-05-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Mechanism for air interface delay adjustment |
CN108023719B (en) | 2016-11-04 | 2020-01-21 | 华为技术有限公司 | Method for generating hybrid automatic repeat request HARQ codebook and related equipment |
JP6900475B2 (en) * | 2016-11-04 | 2021-07-07 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Controlling the impact of SRS switching on delays associated with carrier aggregation activation |
US10484144B2 (en) * | 2016-11-11 | 2019-11-19 | Qualcomm Incorporated | Hybrid automatic repeat request management for low latency communications |
RU2713377C9 (en) * | 2016-11-14 | 2020-02-18 | Телефонактиеболагет Лм Эрикссон (Пабл) | Extraction of configured output power for consecutive transmission time intervals (tti) in reduced tti templates |
US10764798B2 (en) | 2016-11-16 | 2020-09-01 | Corning Optical Communications LLC | Discovery of neighbor radio access systems by a user mobile communications device serviced by a radio access network (RAN) for reporting discovered systems to a serving system in the RAN |
EP4106259B1 (en) * | 2016-11-22 | 2023-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus for channel estimation and data decoding in wireless communication system |
US10587373B1 (en) * | 2016-12-08 | 2020-03-10 | Sprint Spectrum L.P. | Controlling transmission based on acknowledgement delay |
US10104690B2 (en) | 2016-12-12 | 2018-10-16 | Dell Products, Lp | Method and apparatus for optimizing selection of radio channel frequency and adaptive clear channel assessment threshold for unlicensed small cell WWAN base station |
US10313918B2 (en) | 2016-12-14 | 2019-06-04 | Intel IP Corporation | Management of received internet protocol packet bundling for real time services |
US10396943B2 (en) * | 2016-12-14 | 2019-08-27 | Qualcomm Incorporated | Asymmetric downlink-uplink transmission time interval configurations for low latency operation |
US10172014B2 (en) | 2016-12-18 | 2019-01-01 | Dell Products, Lp | Method and apparatus for optimizing selection of radio channel frequency and adaptive clear channel assessment threshold for WLAN access points |
US10659971B2 (en) | 2016-12-22 | 2020-05-19 | Dell Products, Lp | Method and apparatus for optimizing selection of radio channel frequency and geographic location for WLAN access points |
KR102729839B1 (en) | 2016-12-28 | 2024-11-12 | 삼성전자주식회사 | Method and system for performance boosting for semiconductor device |
JP6770643B2 (en) | 2016-12-29 | 2020-10-14 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Network nodes and methods for configuring PDCP for wireless devices |
CN108271262B (en) | 2017-01-03 | 2024-03-15 | 北京三星通信技术研究有限公司 | Method and equipment for allocating uplink control channel |
CN108282749B (en) | 2017-01-05 | 2021-06-15 | 华硕电脑股份有限公司 | Method and device for determining basic parameters in wireless communication system |
HUE054236T2 (en) * | 2017-01-05 | 2021-08-30 | Guangdong Oppo Mobile Telecommunications Corp Ltd | A method, network device, and terminal for transmitting an uplink control channel |
CN113556822A (en) * | 2017-01-06 | 2021-10-26 | 华为技术有限公司 | Information transmission method, terminal device and access network device |
CN116405165A (en) | 2017-01-09 | 2023-07-07 | 北京三星通信技术研究有限公司 | Method and equipment for transmitting HARQ-ACK/NACK and downlink transmission method and equipment |
CN108289015B (en) | 2017-01-09 | 2023-04-07 | 北京三星通信技术研究有限公司 | Method and equipment for sending HARQ-ACK/NACK (hybrid automatic repeat request/acknowledgement) and downlink transmission method and equipment |
EP3566486A1 (en) * | 2017-01-09 | 2019-11-13 | Telefonaktiebolaget LM Ericsson (publ) | Coordination of duplex directions in nr tdd system |
BR112019014481A2 (en) | 2017-01-13 | 2020-02-11 | Huawei Technologies Co., Ltd. | TECHNIQUES FOR MITIGATING CONGESTION IN A RADIO ACCESS NETWORK |
US10863497B2 (en) * | 2017-01-13 | 2020-12-08 | Idac Holdings, Inc. | Methods, apparatuses and systems directed to phase-continuous frequency selective precoding |
US11252725B2 (en) * | 2017-01-20 | 2022-02-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data communication method and apparatus and storage medium |
KR102012264B1 (en) * | 2017-02-07 | 2019-08-22 | 한국전자통신연구원 | Method and apparatus for compensating outage cell in small cell network |
KR102369320B1 (en) | 2017-02-13 | 2022-02-28 | 삼성전자주식회사 | Apparatus and method for controlling inter cell interference in wireless communication system based on time division duplexing |
JP6778875B2 (en) | 2017-02-27 | 2020-11-04 | パナソニックIpマネジメント株式会社 | Communication control device and QoS control method |
US10178624B2 (en) * | 2017-03-17 | 2019-01-08 | Aireon Llc | Provisioning satellite coverage |
EP3603154A1 (en) | 2017-03-21 | 2020-02-05 | Corning Optical Communications LLC | Systems and methods for dynamically allocating spectrum among cross-interfering radio nodes of wireless communications systems |
US11218900B2 (en) | 2017-03-22 | 2022-01-04 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Uplink transmission method, terminal device and network device |
US10674522B2 (en) * | 2017-03-23 | 2020-06-02 | Qualcomm Incorporated | Scheduling request for one or more uplink transmissions using narrowband communications |
KR102292994B1 (en) | 2017-03-23 | 2021-08-26 | 삼성전자 주식회사 | Method and apparatus for adjusting a timing in a wireless communication system |
CN108123778B (en) * | 2017-03-24 | 2023-04-11 | 中兴通讯股份有限公司 | Transmission and transmission configuration method, device, base station and terminal |
US10749640B2 (en) | 2017-03-24 | 2020-08-18 | Electronics And Telecommunications Research Institute | Method and apparatus for transmitting and receiving uplink control channel in communication system |
WO2018170915A1 (en) * | 2017-03-24 | 2018-09-27 | Motorola Mobility Llc | Indication for portion of time interval |
US11101935B2 (en) * | 2017-03-24 | 2021-08-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Apparatus and method for transmitting packet data units |
CN108631918B (en) | 2017-03-24 | 2021-02-26 | 华为技术有限公司 | Data transmission method and device |
US10237759B1 (en) * | 2017-03-29 | 2019-03-19 | Sprint Spectrum L.P. | Coordinated multipoint set selection based on donor status |
US10925048B2 (en) * | 2017-03-30 | 2021-02-16 | Qualcomm Incorporated | Control resource set for single-carrier waveform |
US10091777B1 (en) | 2017-03-31 | 2018-10-02 | At&T Intellectual Property I, L.P. | Facilitating physical downlink shared channel resource element mapping indicator |
US10819763B2 (en) | 2017-03-31 | 2020-10-27 | At&T Intellectual Property I, L.P. | Apparatus and method of video streaming |
US10484308B2 (en) * | 2017-03-31 | 2019-11-19 | At&T Intellectual Property I, L.P. | Apparatus and method of managing resources for video services |
WO2018192383A1 (en) * | 2017-04-18 | 2018-10-25 | 华为技术有限公司 | Receiving method and transmitting method of feedback information, apparatus, and system |
CN108737010B (en) * | 2017-04-19 | 2024-04-30 | 中兴通讯股份有限公司 | Information interaction method and device |
TWI729286B (en) * | 2017-04-21 | 2021-06-01 | 華碩電腦股份有限公司 | Method and apparatus for improving precoding resource block group in a wireless communication system |
JP6956935B2 (en) | 2017-04-28 | 2021-11-02 | 富士通株式会社 | Wireless terminals, wireless base stations, wireless communication systems, wireless communication methods |
CN109348534B (en) * | 2017-05-04 | 2020-01-03 | 华为技术有限公司 | Method and device for transmitting signals |
DE112018000222T5 (en) * | 2017-05-05 | 2019-09-05 | Intel IP Corporation | Generation and assignment of RS (reference signal) sequence and precoder allocation for NR (new radio) |
US20180343697A1 (en) * | 2017-05-26 | 2018-11-29 | Mediatek Inc. | UE Category and Capability Indication for Co-existed LTE and NR Devices |
US10588153B2 (en) * | 2017-06-01 | 2020-03-10 | Futurewei Technologies, Inc. | System and method for restricting random access procedure-related activity in connection with a background application |
US10645547B2 (en) | 2017-06-02 | 2020-05-05 | Charter Communications Operating, Llc | Apparatus and methods for providing wireless service in a venue |
US10638361B2 (en) | 2017-06-06 | 2020-04-28 | Charter Communications Operating, Llc | Methods and apparatus for dynamic control of connections to co-existing radio access networks |
KR102385420B1 (en) * | 2017-06-15 | 2022-04-12 | 삼성전자 주식회사 | Method and apparatus for reporting network requested buffer status report in next generation mobile communication system |
EP3549380B1 (en) * | 2017-06-16 | 2024-03-27 | ZTE Corporation | System and method for allocating resource blocks |
WO2018227583A1 (en) * | 2017-06-16 | 2018-12-20 | Qualcomm Incorporated | Physical resource group size for precoded channel state information reference signals |
CN109429323B (en) * | 2017-06-30 | 2021-06-25 | 中国电信股份有限公司 | Method, device and system for activating and deactivating synchronization of transmission time interval-B (TTI-B) |
US11272518B2 (en) * | 2017-07-13 | 2022-03-08 | Ntt Docomo, Inc. | User terminal and radio communication method |
US11558854B2 (en) | 2017-07-18 | 2023-01-17 | British Telecommunications Public Limited Company | Cellular telecommunications network |
CN109275192B (en) * | 2017-07-18 | 2022-12-13 | 华为技术有限公司 | Method and device for transmitting information |
US11212669B2 (en) * | 2017-07-26 | 2021-12-28 | Lg Electronics Inc. | Method for handling of a prohibit timer to transmit a RRC message related to UE capability restriction in wireless communication system and a device therefor |
CN110959302B (en) | 2017-08-01 | 2023-07-21 | 日本电气株式会社 | User equipment and method thereof and method performed by base station |
KR102338507B1 (en) * | 2017-08-04 | 2021-12-13 | 삼성전자 주식회사 | Method and apparatus for transmitting and receving downlink control information in wirelss communication system |
KR102651563B1 (en) | 2017-08-04 | 2024-03-28 | 주식회사 윌러스표준기술연구소 | Method, apparatus, and system for transmitting or receiving data channel and control channel in wireless communication system |
EP3667968B1 (en) * | 2017-08-09 | 2023-09-20 | NTT DoCoMo, Inc. | User terminal, base station, and radio communication method |
EP3666005A4 (en) * | 2017-08-09 | 2021-05-12 | Apple Inc. | Method and apparatus for precoder determination and precoder matrix indicator (pmi) indication for uplink transmission |
CN109831827B (en) * | 2017-08-10 | 2020-03-10 | 华为技术有限公司 | Data transmission method, terminal and base station |
CN109391422B (en) | 2017-08-11 | 2020-11-17 | 华为技术有限公司 | Method for determining feedback codebook, terminal equipment and network equipment |
WO2019041340A1 (en) * | 2017-09-04 | 2019-03-07 | Eli Lilly And Company | Lysophosphatidic acid receptor 1 (lpar1) inhibitor compounds |
EP4216479A1 (en) * | 2017-09-07 | 2023-07-26 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Information transmission method, device, and system |
US10856230B2 (en) | 2017-09-13 | 2020-12-01 | Apple Inc. | Low power measurements mode |
EP3996406B1 (en) | 2017-09-14 | 2024-07-31 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method, device, storage medium, and system for determining time-domain resource |
US12084777B2 (en) | 2017-09-25 | 2024-09-10 | Sumitomo Electric Industries, Ltd. | Method for manufacturing hard carbon-based coating, and member provided with coating |
CN111108800B (en) | 2017-09-25 | 2021-10-15 | 华为技术有限公司 | Communication method and device |
KR102415470B1 (en) * | 2017-09-29 | 2022-07-01 | 삼성전자 주식회사 | Apparatus and method for transmitting reference signals in wireless communication system |
US11411685B2 (en) * | 2017-09-29 | 2022-08-09 | Ntt Docomo, Inc. | User terminal and radio communication method |
CN108207036B (en) * | 2017-09-30 | 2022-07-12 | 中兴通讯股份有限公司 | Semi-persistent scheduling method and device |
US11212837B2 (en) | 2017-10-19 | 2021-12-28 | Qualcomm Incorporated | Listen before talk sequence design for wireless communication |
CN109714794B (en) * | 2017-10-26 | 2022-06-03 | 中国移动通信有限公司研究院 | Business model selection method and device and storage medium |
KR102424356B1 (en) | 2017-11-06 | 2022-07-22 | 삼성전자주식회사 | Method, Apparatus and System for Controlling QoS of Application |
US10863334B2 (en) * | 2017-11-08 | 2020-12-08 | Qualcomm Incorporated | Non-orthogonal multiple access techniques for narrowband internet of things and machine type communication |
US20210184801A1 (en) * | 2017-11-15 | 2021-06-17 | Idac Holdings, Inc. | Method and apparatus for harq-ack codebook size determination and resource selection in nr |
WO2019098586A1 (en) * | 2017-11-15 | 2019-05-23 | Lg Electronics Inc. | Method for performing an adaptive bundling transmission in wireless communication system and a device therefor |
US10985877B2 (en) | 2017-11-16 | 2021-04-20 | Sharp Kabushiki Kaisha | Codebook determination of HARQ-ACK multiplexing with fallback downlink control information (DCI) and code block group (CBG) configurations |
CN111357346B (en) * | 2017-11-16 | 2023-09-01 | 诺基亚通信公司 | Adaptive Transmission Direction Selection in Cellular Networks |
EP3711413A4 (en) * | 2017-11-16 | 2021-08-11 | Sharp Kabushiki Kaisha | CODEBOOK DETERMINATION OF HARQ-ACK MULTIPLEXING WITH FALLBACK DOWNLINK CONTROL INFORMATION (DCI) AND CODE BLOCK GROUP (CBG) CONFIGURATIONS |
EP4319007A3 (en) | 2017-11-17 | 2024-02-28 | ZTE Corporation | Codebook feedback for data retransmissions |
US20190182020A1 (en) * | 2017-12-13 | 2019-06-13 | Qualcomm Incorporated | Reliable low latency operations in time division duplex wireless communication systems |
CN109936863A (en) * | 2017-12-15 | 2019-06-25 | 中国移动通信集团浙江有限公司 | A kind of SRVCC switching method and device based on uplink coverage |
WO2019130497A1 (en) * | 2017-12-27 | 2019-07-04 | 株式会社Nttドコモ | User equipment and radio communication method |
WO2019127243A1 (en) * | 2017-12-28 | 2019-07-04 | 北京小米移动软件有限公司 | Method and device for determining transmission direction information |
CN108401483B (en) * | 2017-12-29 | 2021-09-07 | 北京小米移动软件有限公司 | Hybrid automatic repeat request feedback configuration method and device and data receiving equipment |
US11711171B2 (en) * | 2018-01-11 | 2023-07-25 | Huawei Technologies Co., Ltd. | System and method for reliable transmission over network resources |
MX2020007648A (en) * | 2018-01-19 | 2020-09-18 | Ntt Docomo Inc | User terminal and wireless communication method. |
CN110138514B (en) | 2018-02-08 | 2020-10-20 | 电信科学技术研究院有限公司 | Method and terminal for performing hybrid automatic repeat request feedback |
JP7073509B2 (en) * | 2018-02-11 | 2022-05-23 | オッポ広東移動通信有限公司 | Mobile communication systems, methods and equipment |
WO2019157658A1 (en) * | 2018-02-13 | 2019-08-22 | Lenovo (Beijing) Limited | Method and apparatus for fallback operation for semi-static harq-ack codebook determination |
AU2018409155B2 (en) | 2018-02-14 | 2023-11-16 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Radio communication method, terminal device, and network device |
BR112020016671A2 (en) * | 2018-02-15 | 2020-12-15 | Telefonaktiebolaget Lm Ericsson (Publ) | SPS RELEASE HANDLING FOR DYNAMIC HARQ-ACK CODE BOOK BASED ON CODE BLOCK GROUP |
US11452101B2 (en) * | 2018-02-16 | 2022-09-20 | Qualcomm Incorporated | Uplink beam assignment |
US10779315B2 (en) * | 2018-02-20 | 2020-09-15 | Qualcomm Incorporated | Traffic identifier based buffer status reporting |
PL3531795T3 (en) * | 2018-02-26 | 2020-11-16 | Kontron Transportation France Sas | System and enodeb for multicast communication in an lte cellular network |
KR102457331B1 (en) * | 2018-03-07 | 2022-10-21 | 한국전자통신연구원 | Method and apparatus for optimizing mobility-related parameter of network |
CN111919505B (en) * | 2018-03-26 | 2022-10-18 | 华为技术有限公司 | Data processing method and terminal |
CN110324117B (en) * | 2018-03-30 | 2021-10-26 | 大唐移动通信设备有限公司 | Data transmission method, terminal equipment and network equipment |
WO2019191881A1 (en) | 2018-04-02 | 2019-10-10 | Oppo广东移动通信有限公司 | Method for determining reference signal, and network device, ue and computer storage medium |
US10396940B1 (en) | 2018-04-09 | 2019-08-27 | At&T Intellectual Property I, L.P. | Scheduling downlink data with multiple slot feedback channel configuration in wireless communication systems |
CN112106325B (en) * | 2018-05-10 | 2022-10-04 | 华为技术有限公司 | Communication method, communication device and system |
US10999761B2 (en) * | 2018-05-11 | 2021-05-04 | Apple Inc. | Methods to determine a hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook in new radio (NR) systems |
PT3624382T (en) * | 2018-05-11 | 2022-11-28 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Downlink channel receiving method, and terminal apparatus |
WO2019234297A1 (en) * | 2018-06-05 | 2019-12-12 | Nokia Technologies Oy | Management of communication systems |
US10924775B2 (en) * | 2018-06-26 | 2021-02-16 | Qualcomm Incorporated | Uplink and downlink methods for efficient operation of live uplink streaming services |
US10708858B2 (en) * | 2018-06-28 | 2020-07-07 | Qualcomm Incorporated | Techniques for improved power consumption in user equipments |
US11678342B2 (en) * | 2018-06-29 | 2023-06-13 | Beijing Xiaomi Mobile Software Co., Ltd. | Methods and apparatuses for transmitting information and receiving information, base station and user equipment |
US11678215B2 (en) * | 2018-07-10 | 2023-06-13 | Qualcomm Incorporated | Methods and apparatus for indicating user equipment QOS priority over user equipment constraints in a communication system |
US12003974B2 (en) * | 2018-07-30 | 2024-06-04 | Qualcomm Incorporated | Carrier switching and antenna switching for long term evolution and new radio dual connectivity |
WO2020027616A1 (en) * | 2018-08-02 | 2020-02-06 | Samsung Electronics Co., Ltd. | Method and system for indication of a change in multi-radio access technology dual connectivity capability |
US11272540B2 (en) | 2018-08-09 | 2022-03-08 | Ofinno, Llc | Channel access and uplink switching |
CN109196805B (en) * | 2018-08-23 | 2022-03-25 | 北京小米移动软件有限公司 | Method and device for transmitting retransmission codebook |
CN117202330A (en) * | 2018-08-29 | 2023-12-08 | 苹果公司 | Transmit diversity mechanism for power save signals |
US10779188B2 (en) | 2018-09-06 | 2020-09-15 | Cisco Technology, Inc. | Uplink bandwidth estimation over broadband cellular networks |
US12120060B2 (en) * | 2018-09-19 | 2024-10-15 | Qualcomm Incorporated | Acknowledgement codebook design for multiple transmission reception points |
US11218237B2 (en) | 2018-09-27 | 2022-01-04 | Wilson Electronics, Llc | Intermediate frequency (IF) filtering for enhanced crossover attenuation in a repeater |
WO2020066025A1 (en) * | 2018-09-28 | 2020-04-02 | 株式会社Nttドコモ | User terminal and wireless communication method |
WO2020067623A1 (en) * | 2018-09-28 | 2020-04-02 | 엘지전자 주식회사 | Method for transmitting and receiving downlink signal between terminal and base station in wireless communication system and apparatus for supporting same |
EP3633927B1 (en) | 2018-10-01 | 2023-08-16 | Netatmo | Smart adaptation of the functionalities of a remote control in a local area network |
US10945204B2 (en) * | 2018-10-05 | 2021-03-09 | Itron, Inc. | Battery power management for a cellular device |
EP3878119B1 (en) * | 2018-11-08 | 2025-03-19 | NEC Corporation | Method and devices for hybrid automatic repeat request |
US12213072B2 (en) * | 2018-11-09 | 2025-01-28 | Lg Electronics Inc. | Method for operating discontinuous reception of terminal in wireless communication system, and apparatus using same method |
EP4358450A3 (en) | 2018-11-11 | 2024-06-12 | Wilus Institute of Standards and Technology Inc. | Method for generating harq-ack codebook in wireless communication system and device using same |
CN111262661B (en) * | 2018-12-14 | 2022-04-26 | 维沃移动通信有限公司 | System information receiving method, system information sending method and equipment |
KR102638585B1 (en) * | 2018-12-20 | 2024-02-21 | 가부시키가이샤 엔티티 도코모 | Wireless node, and wireless communication method |
CN111356232B (en) * | 2018-12-21 | 2022-08-30 | 中国电信股份有限公司 | Parameter configuration method, device and system and computer readable storage medium |
US11153887B2 (en) * | 2018-12-31 | 2021-10-19 | T-Mobile Usa, Inc. | Uplink performance for bearers |
WO2020034564A1 (en) | 2019-01-07 | 2020-02-20 | Zte Corporation | Timing advance determination in wireless networks |
US11451360B2 (en) * | 2019-01-10 | 2022-09-20 | Qualcomm Incorporated | Priority-based feedback triggering |
EP3681227A1 (en) * | 2019-01-10 | 2020-07-15 | Panasonic Intellectual Property Corporation of America | User equipment involved in transmitting ue assistance information |
EP3912387A4 (en) * | 2019-01-17 | 2022-07-27 | ZTE Corporation | METHODS, DEVICE AND SYSTEMS FOR DATA MAPPING IN A WIRELESS COMMUNICATION |
CN113348602B (en) * | 2019-02-06 | 2025-01-21 | 英国电讯有限公司 | Network device management |
KR20200098178A (en) | 2019-02-12 | 2020-08-20 | 삼성전자주식회사 | Method and apparatus for applying dynamic scheduling to reduce power consumption in next generation communication system |
CN111435901B (en) * | 2019-02-22 | 2023-07-21 | 维沃移动通信有限公司 | Hybrid automatic repeat request acknowledgment feedback method, terminal and network equipment |
EP3932082A1 (en) * | 2019-02-27 | 2022-01-05 | British Telecommunications public limited company | Multicast assisted delivery |
CN118509980A (en) * | 2019-03-12 | 2024-08-16 | 欧芬诺有限责任公司 | Wireless connection activity information update |
CN111726866A (en) * | 2019-03-21 | 2020-09-29 | 华为技术有限公司 | Method and device for reducing transmission bandwidth of network device |
CN111277386B (en) * | 2019-03-28 | 2021-09-17 | 维沃移动通信有限公司 | Downlink allocation index determining method, terminal and network equipment |
EP3952530B1 (en) * | 2019-04-02 | 2024-06-05 | Datang Mobile Communications Equipment Co., Ltd. | Information transmission method and terminal |
JP7339758B2 (en) * | 2019-04-11 | 2023-09-06 | キヤノン株式会社 | Communication device, communication method, and program |
US11013054B2 (en) | 2019-04-12 | 2021-05-18 | Ofinno, Llc | UE-assistance to support multiple systems based on frequency band combinations |
CN119341697A (en) * | 2019-04-23 | 2025-01-21 | 松下电器(美国)知识产权公司 | Base station, terminal and communication method |
US11695531B2 (en) | 2019-05-02 | 2023-07-04 | Intel Corporation | Resources selection for feedback based NR-V2X communication |
US11025399B2 (en) * | 2019-05-02 | 2021-06-01 | Nokia Technologies Oy | Interference suppression |
CN110048818B (en) * | 2019-05-05 | 2020-06-23 | 华中科技大学 | A kind of feedback information confirmation and processing system and processing method for user's TID |
EP3737007B8 (en) | 2019-05-06 | 2023-11-15 | Rohde & Schwarz GmbH & Co. KG | Mobile radio testing device and method for protocol testing |
CN112019488B (en) * | 2019-05-31 | 2023-12-12 | 广州市百果园信息技术有限公司 | Voice processing method, device, equipment and storage medium |
CN112153708A (en) * | 2019-06-29 | 2020-12-29 | 华为技术有限公司 | Communication method and related equipment |
CN112203287B (en) * | 2019-07-08 | 2022-11-22 | 中国移动通信集团浙江有限公司 | Cell capacity adjustment method, device, equipment and storage medium |
US11234054B2 (en) | 2019-07-22 | 2022-01-25 | Qatar Foundation For Education, Science And Community Development | Edge network system for service-less video multicast |
EP3772227B1 (en) | 2019-07-29 | 2022-07-13 | British Telecommunications public limited company | Cellular telecommunications network |
EP3970417B1 (en) | 2019-07-29 | 2022-11-30 | British Telecommunications public limited company | Initiation of transfer of user equipment to base station according to visual data |
CN110446270B (en) * | 2019-08-13 | 2020-07-07 | 北京理工大学 | Dynamic scheduling method for transmission time slot bundling in low-earth-orbit satellite voice communication |
WO2021030947A1 (en) | 2019-08-16 | 2021-02-25 | Qualcomm Incorporated | Bundling and timeline determination for multiple transport blocks scheduled by a single downlink control information message |
US11134473B2 (en) * | 2019-08-28 | 2021-09-28 | Qualcomm Incorporated | Antenna element set selection system |
CN112738318A (en) * | 2019-09-24 | 2021-04-30 | 中松义郎 | Super intelligent telephone and intelligent telephone system |
EP3799374A1 (en) * | 2019-09-26 | 2021-03-31 | Mitsubishi Electric R&D Centre Europe B.V. | Method for transmitting data packets and apparatus for implementing the same |
EP3961949B1 (en) * | 2019-09-30 | 2023-11-15 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods and apparatus for sending and receiving feedback information, terminal, and medium |
US20240048289A1 (en) * | 2019-10-03 | 2024-02-08 | Ntt Docomo, Inc. | Terminal and radio communication method |
WO2021064664A1 (en) * | 2019-10-04 | 2021-04-08 | Enensys Expway | Method for broadcasting dash/hls hybrid multimedia streams |
US11844074B2 (en) * | 2019-10-17 | 2023-12-12 | Marvell Asia Pte Ltd | System and methods to increase uplink data throughput on a TD-LTE (A) system using efficient management of physical uplink control channels |
CN112787767B (en) * | 2019-11-06 | 2022-08-09 | 维沃移动通信有限公司 | Data transmission method, device and medium |
EP4070490A1 (en) * | 2019-12-05 | 2022-10-12 | Telefonaktiebolaget LM Ericsson (publ) | Resolving collision of semi-persistent scheduling data |
US10879982B1 (en) | 2019-12-11 | 2020-12-29 | Industrial Technology Research Institute | Beamforming transmission device and method |
US11309952B2 (en) | 2019-12-11 | 2022-04-19 | Industrial Technology Research Institute | Beamforming transmission device and method |
KR20210077347A (en) * | 2019-12-17 | 2021-06-25 | 삼성전자주식회사 | Method and apparatus to use discontinuous reception in carrier aggregation in the mobile communications |
CN113015177B (en) * | 2019-12-20 | 2022-08-23 | 中国移动通信有限公司研究院 | Cell splitting method, device and medium |
US11895638B2 (en) * | 2020-01-27 | 2024-02-06 | Qualcomm Incorporated | Signaling buffer size capability |
CN117896796A (en) | 2020-02-20 | 2024-04-16 | 华为技术有限公司 | Communication method, device and system |
US11751275B2 (en) * | 2020-02-20 | 2023-09-05 | Qualcomm Incorporated | Management of antenna switching according to a sounding reference symbol antenna switching configuration |
US11924827B2 (en) * | 2020-02-21 | 2024-03-05 | Qualcomm Incorporated | UE processing time for PDSCH repetition in the same slot |
JP7448684B2 (en) * | 2020-04-17 | 2024-03-12 | エルジー エレクトロニクス インコーポレイティド | PDSCH transmission/reception method and device in wireless communication system |
US11711170B2 (en) * | 2020-04-30 | 2023-07-25 | Qualcomm Incorporated | HARQ retransmission termination based on lost redundancy version |
US20230232418A1 (en) * | 2020-05-14 | 2023-07-20 | Qualcomm Incorporated | Piggybacking downlink control information (dci) for semi-persistent scheduling |
US11588876B2 (en) * | 2020-06-16 | 2023-02-21 | T-Mobile Usa, Inc. | Device-side playback restrictions on high throughput networks |
GB2596118B (en) | 2020-06-18 | 2022-07-20 | British Telecomm | Cellular telecommunications network |
WO2021254674A1 (en) * | 2020-06-19 | 2021-12-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for buffer state report |
WO2021255107A1 (en) * | 2020-06-19 | 2021-12-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for buffer state report |
US11706656B2 (en) * | 2020-06-29 | 2023-07-18 | Qualcomm Incorporated | Downlink data prioritization for time-sensitive applications |
GB2597098A (en) | 2020-07-15 | 2022-01-19 | British Telecomm | Computer-implemented automatic security methods and systems |
CN114071552A (en) * | 2020-07-29 | 2022-02-18 | 维沃移动通信有限公司 | Method for transmitting auxiliary information, terminal equipment and network equipment |
EP4176549A4 (en) * | 2020-07-31 | 2023-07-05 | ZTE Corporation | SYSTEM AND METHOD OF SIGNAL TRANSMISSION |
EP4176615A4 (en) * | 2020-08-06 | 2023-08-23 | ZTE Corporation | Valuation for ue assistance information |
WO2022027664A1 (en) * | 2020-08-07 | 2022-02-10 | Zte Corporation | Power saving for mobile devices in wireless communication systems |
GB2598295B (en) | 2020-08-19 | 2023-02-22 | British Telecomm | Content delivery |
US11540164B2 (en) | 2020-09-14 | 2022-12-27 | T-Mobile Usa, Inc. | Data packet prioritization for downlink transmission at sender level |
US11533654B2 (en) | 2020-09-14 | 2022-12-20 | T-Mobile Usa, Inc. | Data packet prioritization for downlink transmission at network level |
US20220109534A1 (en) * | 2020-10-02 | 2022-04-07 | Qualcomm Incorporated | Uplink control information reporting |
KR20230080466A (en) | 2020-10-06 | 2023-06-07 | 오피노 엘엘씨 | Resource Determination in Control Channel Iterations |
CN114339895A (en) | 2020-10-09 | 2022-04-12 | 中国移动通信有限公司研究院 | Data transmission method, device and storage medium |
US11728958B2 (en) * | 2020-10-13 | 2023-08-15 | Charter Communications Operating, Llc | TDD configuration coordination for networks using adjacent bands |
JP7389922B2 (en) | 2020-10-15 | 2023-11-30 | エルジー エレクトロニクス インコーポレイティド | Method and device for transmitting and receiving signals in a wireless communication system |
US11399403B1 (en) | 2020-10-21 | 2022-07-26 | Sprint Communications Company Lp | Addition thresholds for wireless access nodes based on insertion loss |
CN116830496B (en) | 2020-10-21 | 2024-11-26 | 欧芬诺有限责任公司 | Reliable transmission method, device and medium for multicast and broadcast services |
RU2763029C1 (en) * | 2020-10-29 | 2021-12-27 | Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка | Subscriber apparatus, base station and method for wireless communication |
CN112399516B (en) * | 2020-12-02 | 2023-03-24 | 中国联合网络通信集团有限公司 | Service processing method and device under 5G NSA (network spanning Access) shared network |
KR102429902B1 (en) * | 2021-01-18 | 2022-08-08 | 국방과학연구소 | Apparatus for detecting a base station with an outage and method thereof |
US12213130B2 (en) * | 2021-01-29 | 2025-01-28 | Qualcomm Incorporated | Demodulation reference signal bundling and frequency hopping |
EP4319003A4 (en) * | 2021-04-02 | 2025-03-26 | Lg Electronics Inc | Method and device for transmitting and receiving control information in a wireless communication system |
EP4327609A1 (en) * | 2021-04-19 | 2024-02-28 | Qualcomm Incorporated | Uplink scheduling using a timing parameter associated with an internet-of-things (iot) service session |
CN115226106A (en) * | 2021-04-21 | 2022-10-21 | 大唐移动通信设备有限公司 | Resource allocation method, apparatus, network device, and computer-readable storage medium |
US11770171B2 (en) * | 2021-06-29 | 2023-09-26 | Qualcomm Incorporated | Reconfigurable intelligent surface link identification |
US11711862B1 (en) | 2021-07-15 | 2023-07-25 | T-Mobile Usa, Inc. | Dual connectivity and carrier aggregation band selection |
KR102533619B1 (en) * | 2021-09-07 | 2023-05-26 | 주식회사 블랙핀 | Method and Apparatus for reduced capability terminal to determine intra-frequency cell reselection parameter for cell reselection in mobile wireless communication system |
CN114122725B (en) * | 2021-11-04 | 2024-07-26 | 中国联合网络通信集团有限公司 | Antenna angle adaptive method and device for distributed network architecture |
CN116472758A (en) * | 2021-11-17 | 2023-07-21 | 北京小米移动软件有限公司 | A channel measurement method and device thereof |
CN116941209A (en) * | 2021-12-15 | 2023-10-24 | 中兴通讯股份有限公司 | Techniques for constructing hybrid automatic repeat request acknowledgement codebooks |
US12058769B2 (en) | 2021-12-21 | 2024-08-06 | T-Mobile Usa, Inc. | Carrier aggregation restoration |
US12256375B2 (en) * | 2022-03-07 | 2025-03-18 | Qualcomm Incorporated | Wireless traffic prediction |
US12219420B2 (en) | 2022-03-10 | 2025-02-04 | T-Mobile Usa, Inc. | Dynamically adjusting a service plan provided to a UE by a wireless telecommunication network |
EP4468678A4 (en) * | 2022-03-22 | 2025-03-12 | Huawei Tech Co Ltd | COMMUNICATION METHOD AND DEVICE, STORAGE MEDIUM AND COMPUTER PROGRAM PRODUCT |
US20230309182A1 (en) * | 2022-03-23 | 2023-09-28 | Qualcomm Incorporated | User equipment power saving algorithm for discontinuous reception scenarios |
WO2023187496A1 (en) | 2022-03-29 | 2023-10-05 | The Joan and Irwin Jacobs Technion-Cornell Institute | System and method for improving connection stability via deceptive signal quality transmissions |
US12213073B2 (en) | 2022-04-14 | 2025-01-28 | Qualcomm Incorporated | User equipment assistance information and buffer status report extension for green networks |
CN118592077A (en) | 2022-04-22 | 2024-09-03 | 中兴通讯股份有限公司 | Signaling mechanisms for wireless communications |
US20230345288A1 (en) * | 2022-04-22 | 2023-10-26 | Dell Products L.P. | Modifying radio unit operational parameters |
US20240008136A1 (en) * | 2022-06-29 | 2024-01-04 | Apple Inc. | Processor and user equipment for reducing power consumption during drx |
US12238536B2 (en) | 2022-07-13 | 2025-02-25 | Industrial Technology Research Institute | Method for configuring radio units in hierarchical network and electronic device using the same |
KR102543972B1 (en) * | 2022-12-30 | 2023-06-20 | 주식회사 에스티씨랩 | Entry management method and server for automatic adjustment of entry management target based on digital service |
WO2024156192A1 (en) * | 2023-09-28 | 2024-08-02 | Lenovo (Beijing) Limited | Reporting of delay status report |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060072538A1 (en) * | 2004-09-29 | 2006-04-06 | Raith Alex K | Forward error correction for broadcast/multicast service |
US20070071025A1 (en) * | 2003-10-06 | 2007-03-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Mbms acknowledgements on rach |
US20130007814A1 (en) * | 2011-06-30 | 2013-01-03 | Qualcomm Incorporated | Dynamic adaptive streaming proxy for unicast or broadcast/multicast services |
US20130036234A1 (en) * | 2011-08-01 | 2013-02-07 | Qualcomm Incorporated | Method and apparatus for transport of dynamic adaptive streaming over http (dash) initialization segment description fragments as user service description fragments |
US20130173737A1 (en) * | 2011-12-29 | 2013-07-04 | Nokia Corporation | Method and apparatus for flexible caching of delivered media |
Family Cites Families (369)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4914185A (en) * | 1986-04-14 | 1990-04-03 | The Dow Chemical Company | Adducts of metabrominated phenols and polyfunctional epoxides |
US4758886A (en) * | 1986-07-24 | 1988-07-19 | Minnesota Mining And Manufacturing Company | Optimal color half-tone patterns for raster-scan images |
SE0002285L (en) * | 2000-06-19 | 2001-12-20 | Ericsson Telefon Ab L M | Dynamic up and down link resource allocation |
SE524679C2 (en) | 2002-02-15 | 2004-09-14 | Ericsson Telefon Ab L M | Broadcast / multicast broadcast system data transmission information to a local area of a wireless network |
JP3883452B2 (en) | 2002-03-04 | 2007-02-21 | 富士通株式会社 | Communications system |
JP4309629B2 (en) * | 2002-09-13 | 2009-08-05 | 株式会社日立製作所 | Network system |
KR100742244B1 (en) | 2002-12-18 | 2007-07-24 | 노키아 코포레이션 | Method of announcing sessions |
US20040219924A1 (en) | 2003-04-29 | 2004-11-04 | Mpf Technologies, Inc. | Systems and methods for optimizing a wireless communication network |
US7162250B2 (en) | 2003-05-16 | 2007-01-09 | International Business Machines Corporation | Method and apparatus for load sharing in wireless access networks based on dynamic transmission power adjustment of access points |
US7126928B2 (en) | 2003-08-05 | 2006-10-24 | Qualcomm Incorporated | Grant, acknowledgement, and rate control active sets |
EP1511231A1 (en) | 2003-08-28 | 2005-03-02 | Siemens Aktiengesellschaft | A method for transmission of data packets through a network |
US7590099B2 (en) * | 2003-09-25 | 2009-09-15 | Qualcomm Incorporated | Managing traffic in communications system having dissimilar CDMA channels |
US7610495B2 (en) * | 2003-11-25 | 2009-10-27 | Agere Systems Inc. | Method and apparatus for power management using transmission mode with reduced power |
US8406235B2 (en) * | 2003-11-26 | 2013-03-26 | Qualcomm Incorporated | Quality of service scheduler for a wireless network |
GB0407929D0 (en) * | 2004-04-07 | 2004-05-12 | Samsung Electronics Co Ltd | Mobile communications |
JP2005354126A (en) | 2004-06-08 | 2005-12-22 | Hitachi Communication Technologies Ltd | Wireless communication terminal, wireless base station, and wireless communication system |
FR2875667A1 (en) * | 2004-09-22 | 2006-03-24 | France Telecom | PREEMPTION METHOD FOR MANAGING RADIO RESOURCES IN A MOBILE COMMUNICATION NETWORK |
ATE391376T1 (en) * | 2004-10-01 | 2008-04-15 | Matsushita Electric Ind Co Ltd | QUALITY OF SERVICE AWARENESS CONTROL FOR UPWARD TRANSMISSIONS OVER ALLOCATED CHANNELS |
US20070075956A1 (en) * | 2004-11-04 | 2007-04-05 | Matsushita Electric Industrial Co., Ltd. | Mobile terminal apparatus |
US8379553B2 (en) * | 2004-11-22 | 2013-02-19 | Qualcomm Incorporated | Method and apparatus for mitigating the impact of receiving unsolicited IP packets at a wireless device |
CN101077021A (en) * | 2004-12-13 | 2007-11-21 | 艾利森电话股份有限公司 | Latency reduction when setting uplink wireless communications channel |
US8031583B2 (en) * | 2005-03-30 | 2011-10-04 | Motorola Mobility, Inc. | Method and apparatus for reducing round trip latency and overhead within a communication system |
US20080005348A1 (en) * | 2005-06-24 | 2008-01-03 | David Kosiba | System and method for enabling playlist navigation of digital multimedia content |
WO2007008940A2 (en) * | 2005-07-11 | 2007-01-18 | Brooks Automation, Inc. | Intelligent condition-monitoring and dault diagnostic system |
EP1746787B1 (en) * | 2005-07-19 | 2008-03-12 | Samsung Electronics Co., Ltd. | Apparatus and method for scheduling data in a communication system |
KR100703287B1 (en) * | 2005-07-20 | 2007-04-03 | 삼성전자주식회사 | System and method for transmitting / receiving resource allocation information in communication system |
JP4837957B2 (en) | 2005-08-23 | 2011-12-14 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile station, base station, mobile communication system and communication method |
US7852801B2 (en) * | 2005-09-28 | 2010-12-14 | Qualcomm Incorporated | Reducing collision probability for VoIP packets |
HRP20050953B1 (en) * | 2005-11-08 | 2012-04-30 | T-Mobile Hrvatska D.O.O. | MEASURING THE EFFICIENCY OF THE BASE STATION SYSTEM IN THE GSM RADIO COMMUNICATION NETWORK |
US20070189160A1 (en) | 2006-02-14 | 2007-08-16 | Itamar Landau | Method and system for randomized puncturing in mobile communication systems |
MY186557A (en) * | 2006-03-09 | 2021-07-27 | Interdigital Tech Corp | Wireless communication method and system for performing handover between two radio access technologies |
US8073450B2 (en) | 2006-03-20 | 2011-12-06 | Innovative Sonic Limited | Method and apparatus for de-activating hybrid automatic repeat request process in a wireless communications system |
KR101354630B1 (en) * | 2006-03-22 | 2014-01-22 | 삼성전자주식회사 | Method for requesting resource based on timer in mobile telecommunication systems |
GB0607084D0 (en) * | 2006-04-07 | 2006-05-17 | Nokia Corp | Managing connections in a mobile telecommunications network |
US7715353B2 (en) | 2006-04-21 | 2010-05-11 | Microsoft Corporation | Wireless LAN cell breathing |
JPWO2007125910A1 (en) * | 2006-04-25 | 2009-09-10 | パナソニック株式会社 | Wireless communication terminal device, wireless communication base station device, and wireless communication method |
US7680478B2 (en) | 2006-05-04 | 2010-03-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Inactivity monitoring for different traffic or service classifications |
WO2007133034A2 (en) * | 2006-05-13 | 2007-11-22 | Lg Electronics Inc. | Method of performing procedures for initial network entry and handover in a broadband wireless access system |
WO2007144956A1 (en) * | 2006-06-16 | 2007-12-21 | Mitsubishi Electric Corporation | Mobile communication system and mobile terminal |
US7760676B2 (en) | 2006-06-20 | 2010-07-20 | Intel Corporation | Adaptive DRX cycle length based on available battery power |
DE602007009235D1 (en) * | 2006-07-10 | 2010-10-28 | Panasonic Corp | OPTICAL DATA CARRIER DEVICE |
WO2008024282A2 (en) * | 2006-08-21 | 2008-02-28 | Interdigital Technology Corporation | Method and apparatus for controlling arq and harq transmissions and retranmissions in a wireless communication system |
US7746882B2 (en) * | 2006-08-22 | 2010-06-29 | Nokia Corporation | Method and device for assembling forward error correction frames in multimedia streaming |
CN100574276C (en) * | 2006-08-22 | 2009-12-23 | 中兴通讯股份有限公司 | The control method that the TDS-CDMA system enhanced uplink inserts at random |
KR101276462B1 (en) * | 2006-09-27 | 2013-06-19 | 삼성전자주식회사 | SYSTEM AND METHOD FOR REQUESTING AND GRANTTING PoC USER MEDIA TRANSMISSION AUTHORITY |
KR101276839B1 (en) * | 2006-10-02 | 2013-06-18 | 엘지전자 주식회사 | Method for retransmitting in the multicarriers system |
KR100938754B1 (en) * | 2006-10-30 | 2010-01-26 | 엘지전자 주식회사 | Data reception and transmission method using discontinuous reception |
KR100959332B1 (en) * | 2006-11-07 | 2010-05-20 | 삼성전자주식회사 | Apparatus and Method for Eliminating Interference in Broadband Wireless Communication Systems |
CN101558679B (en) * | 2006-11-17 | 2012-11-28 | 艾利森电话股份有限公司 | A mobile station communicating with a base station via a separate uplink when the parameters of channel quality fall below the predefined threholds |
KR100809019B1 (en) * | 2006-12-06 | 2008-03-03 | 한국전자통신연구원 | A Look-Ahead Band Request Method in a Mobile Communication System and a Mobile Terminal Performing the Method |
US7804799B2 (en) * | 2006-12-29 | 2010-09-28 | Intel Corporation | Uplink contention based access with quick access channel |
US7873710B2 (en) * | 2007-02-06 | 2011-01-18 | 5O9, Inc. | Contextual data communication platform |
CN101247388A (en) * | 2007-02-15 | 2008-08-20 | 华为技术有限公司 | Method and system for negotiating media and method for transmitting media description information |
GB2447299A (en) * | 2007-03-09 | 2008-09-10 | Nec Corp | Control of discontinuous Rx/Tx in a mobile communication system |
US20080232310A1 (en) * | 2007-03-19 | 2008-09-25 | Shugong Xu | Flexible user equipment-specified discontinuous reception |
US20100034145A1 (en) * | 2007-03-15 | 2010-02-11 | Samsung Electronics Co., Ltd. | Method for receiving packet in mobile communication system |
US8068821B2 (en) | 2007-03-29 | 2011-11-29 | Alcatel Lucent | Method and apparatus for providing content to users using unicast and broadcast wireless networks |
KR20080092222A (en) * | 2007-04-11 | 2008-10-15 | 엘지전자 주식회사 | Data Transfer Method in TD System |
CN101291447B (en) * | 2007-04-20 | 2011-05-11 | 中国移动通信集团公司 | Status information acquiring method and system based on multicast service of multimedia broadcast |
CN101743717B (en) | 2007-04-23 | 2014-06-18 | 诺基亚公司 | System and method for optimizing download user service delivery to roaming clients |
US8229346B2 (en) * | 2007-05-15 | 2012-07-24 | Nvidia Corporation | Method and apparatus for providing multimedia broadcasting multicasting services |
US8059735B2 (en) * | 2007-06-04 | 2011-11-15 | Texas Instruments Incorporated | Allocation of block spreading sequences |
KR101520116B1 (en) * | 2007-06-18 | 2015-05-13 | 옵티스 와이어리스 테크놀로지, 엘엘씨 | Uplink transmission enhancement by tti bundling |
WO2008156321A2 (en) * | 2007-06-19 | 2008-12-24 | Lg Electronics Inc. | Enhancement of lte random access procedure |
WO2008155732A2 (en) | 2007-06-19 | 2008-12-24 | Nokia Corporation | Resource-block-cluster-based load indication |
US8259673B2 (en) * | 2007-06-19 | 2012-09-04 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for providing voice service in a mobile network with multiple wireless technologies |
CN101350936A (en) | 2007-07-19 | 2009-01-21 | 华为技术有限公司 | Paging method and apparatus for radio communication system |
EP2028890B1 (en) | 2007-08-12 | 2019-01-02 | LG Electronics Inc. | Handover method with link failure recovery, wireless device and base station for implementing such method |
EP2031921A1 (en) * | 2007-08-14 | 2009-03-04 | Alcatel Lucent | Apparatus and method for handling mobile terminal capability informanion |
WO2009022669A1 (en) * | 2007-08-14 | 2009-02-19 | Ntt Docomo, Inc. | Base station device, mobile station device, and communication control method |
EP2028798B1 (en) | 2007-08-22 | 2012-05-02 | Telefonaktiebolaget L M Ericsson (publ) | Data transmission control methods and devices |
KR100937432B1 (en) * | 2007-09-13 | 2010-01-18 | 엘지전자 주식회사 | Radio Resource Allocation Method in Wireless Communication System |
US9210042B2 (en) | 2007-09-14 | 2015-12-08 | Nec Europe Ltd. | Method and system for optimizing network performances |
US7843873B2 (en) * | 2007-09-19 | 2010-11-30 | Motorola Mobility, Inc. | Dynamic compensation for resource stealing in communication systems |
EP2043404A1 (en) * | 2007-09-25 | 2009-04-01 | Nokia Siemens Networks Oy | Communication system including a home base station |
US20090093281A1 (en) * | 2007-10-07 | 2009-04-09 | Mustafa Demirhan | Device, system, and method of power saving in wireless communication |
CN106301711B (en) | 2007-10-23 | 2019-09-13 | 诺基亚技术有限公司 | Method, apparatus and memory for communication |
US8208950B2 (en) * | 2007-11-13 | 2012-06-26 | Research In Motion Limited | Method and apparatus for state/mode transitioning |
US8117198B2 (en) * | 2007-12-12 | 2012-02-14 | Decho Corporation | Methods for generating search engine index enhanced with task-related metadata |
CN101472166B (en) * | 2007-12-26 | 2011-11-16 | 华为技术有限公司 | Method for caching and enquiring content as well as point-to-point medium transmission system |
US20090168708A1 (en) * | 2007-12-26 | 2009-07-02 | Motorola, Inc. | Techniques for maintaining quality of service for connections in wireless communication systems |
EP2241066A1 (en) * | 2008-01-04 | 2010-10-20 | Nokia Siemens Networks OY | System and method for efficient half duplex transceiver operation in a packet-based wireless communication system |
EP2227885B1 (en) | 2008-01-04 | 2016-12-21 | Telefonaktiebolaget LM Ericsson (publ) | Compressed buffer status reports in lte |
TWM355510U (en) * | 2008-01-04 | 2009-04-21 | Interdigital Patent Holdings | Apparatus for performing an enhanced random access channel procedure in a CELL_FACH state |
US8780790B2 (en) * | 2008-01-07 | 2014-07-15 | Qualcomm Incorporated | TDD operation in wireless communication systems |
EP2232722B1 (en) * | 2008-01-17 | 2017-06-21 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement for handling a radio receiver in a wireless communication network |
CN101500142A (en) * | 2008-01-31 | 2009-08-05 | 华为技术有限公司 | Media content fragmenting method, method, apparatus and system for providing media content |
KR101531419B1 (en) * | 2008-02-01 | 2015-06-24 | 엘지전자 주식회사 | Operation Method of Uplink HARQ at Expiration of Time Synchronization Timer |
US8699487B2 (en) | 2008-02-04 | 2014-04-15 | Qualcomm Incorporated | Uplink delay budget feedback |
US8559306B2 (en) | 2008-02-13 | 2013-10-15 | Cisco Technology, Inc. | End-to-end packet aggregation in mesh networks |
CN101946463B (en) | 2008-02-19 | 2015-07-08 | 爱立信电话股份有限公司 | Uplink scheduling in wireless networks |
KR100937299B1 (en) | 2008-03-16 | 2010-01-18 | 엘지전자 주식회사 | How to perform HARC in wireless communication system |
CN103957088B (en) | 2008-03-16 | 2017-09-05 | Lg电子株式会社 | The method for performing hybrid automatic repeat-request HARQ in a wireless communication system |
EP2120493A1 (en) | 2008-03-19 | 2009-11-18 | Nokia Siemens Networks Oy | Mechanism for automated re-configuration of an access network element |
KR20140046076A (en) * | 2008-03-21 | 2014-04-17 | 인터디지탈 패튼 홀딩스, 인크 | Method and apparatus to enable fallback to circuit switched domain from packet switched domain |
US9088998B2 (en) | 2008-03-21 | 2015-07-21 | Koninklijke Philips N.V. | Method for communicating and radio station therefor |
ES2620744T3 (en) * | 2008-03-21 | 2017-06-29 | Telefonaktiebolaget L M Ericsson (Publ) | Prohibition of unnecessary planning requests for uplink concessions |
TW200942060A (en) * | 2008-03-25 | 2009-10-01 | Innovative Sonic Ltd | Method and apparatus for improving DRX functionality |
WO2009120120A1 (en) * | 2008-03-28 | 2009-10-01 | Telefonaktiebolaget L M Ericsson (Publ) | Network driven l3 control signalling prioritization |
US9030948B2 (en) * | 2008-03-30 | 2015-05-12 | Qualcomm Incorporated | Encoding and decoding of control information for wireless communication |
BRPI0910073B1 (en) * | 2008-03-31 | 2020-09-08 | Telefonaktiebolaget L M Ericsson | METHOD IN A BASE STATION TO REQUEST CHANNEL STATUS INDICATOR REPORT, BASE STATION TO CONFIGURE CHANNEL STATUS INDICATOR REPORT, METHOD IN A USER EQUIPMENT TO REPORT CHANNEL STATUS INDICATOR AND USER EQUIPMENT |
WO2009126902A2 (en) * | 2008-04-11 | 2009-10-15 | Interdigital Patent Holdings, Inc. | Methods for transmission time interval bundling in the uplink |
EP2110990B1 (en) | 2008-04-16 | 2014-06-04 | Nokia Solutions and Networks Oy | Managing a network element |
US8942080B2 (en) * | 2008-04-17 | 2015-01-27 | Texas Instruments Incorporated | Transmission of bundled ACK/NAK bits |
EP2269399A4 (en) * | 2008-04-21 | 2013-12-25 | Ericsson Telefon Ab L M | Qci mapping at roaming and handover |
ES2380895T3 (en) * | 2008-05-19 | 2012-05-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Circuit switching deployment in an evolved packet system |
US8542584B2 (en) * | 2008-05-20 | 2013-09-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Partitioning entity and method for partitioning capacity |
US8687573B2 (en) | 2008-05-30 | 2014-04-01 | Nokia Siemens Networks Oy | Allocating resources within communication system |
CN101605024B (en) * | 2008-06-12 | 2013-01-16 | 中兴通讯股份有限公司 | Mixed automatic retransmission requesting method |
WO2009154394A2 (en) | 2008-06-16 | 2009-12-23 | 엘지전자주식회사 | Method for performing a harq in a radio communication system |
US9241276B2 (en) * | 2008-06-17 | 2016-01-19 | Alcatel Lucent | Method for adaptive formation of cell clusters for cellular wireless networks with coordinated transmission and reception |
KR101332937B1 (en) * | 2008-06-17 | 2013-11-26 | 엔이씨 유럽 리미티드 | Method of subcarrier allocation in an ofdma-based communication network and network |
KR20110036049A (en) * | 2008-06-23 | 2011-04-06 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Communication method in network and associated wireless stations |
WO2009157729A2 (en) | 2008-06-27 | 2009-12-30 | Samsung Electronics Co., Ltd. | A method of timing the harq feedback when the corresponding transmission overlaps with the measurement gaps in a wireless communication system |
WO2010002734A2 (en) * | 2008-06-30 | 2010-01-07 | Interdigital Patent Holdings, Inc. | Method and apparatus to support single user (su) and multiuser (mu) beamforming with antenna array groups |
JP5089504B2 (en) | 2008-07-01 | 2012-12-05 | 株式会社エヌ・ティ・ティ・ドコモ | Wireless communication system, base station, user apparatus and method |
US9867203B2 (en) | 2008-07-11 | 2018-01-09 | Qualcomm Incorporated | Synchronous TDM-based communication in dominant interference scenarios |
JP5599396B2 (en) | 2008-07-25 | 2014-10-01 | アルカテル−ルーセント | Method and apparatus for restructuring a network topology in a wireless relay communication network |
KR100995716B1 (en) | 2008-08-04 | 2010-11-19 | 한국전자통신연구원 | Near Field RDF Reader Antenna |
US8489950B2 (en) | 2008-08-06 | 2013-07-16 | Nokia Siemens Networks Oy | Discontinuous reception retransmission timer and method |
KR100939722B1 (en) * | 2008-08-11 | 2010-02-01 | 엘지전자 주식회사 | Data transmission method and user equipment for the same |
WO2010112963A1 (en) * | 2008-08-11 | 2010-10-07 | Nokia Corporation | Method and apparatus for providing bundled transmissions |
US8321740B2 (en) * | 2008-08-15 | 2012-11-27 | Innovative Sonic Limited | Method and apparatus of handling TTI bundling |
CN101677282A (en) * | 2008-09-18 | 2010-03-24 | 中兴通讯股份有限公司 | Configuration method and base station for radio resource scheduling |
US8160014B2 (en) * | 2008-09-19 | 2012-04-17 | Nokia Corporation | Configuration of multi-periodicity semi-persistent scheduling for time division duplex operation in a packet-based wireless communication system |
US8780817B2 (en) | 2008-09-22 | 2014-07-15 | Qualcomm Incorporated | Apparatus and method for reducing overhead for communications |
JP5171765B2 (en) * | 2008-09-30 | 2013-03-27 | 創新音▲速▼股▲ふん▼有限公司 | Method and apparatus for improving interaction between scheduling request procedure and random access procedure |
KR101072111B1 (en) * | 2008-10-07 | 2011-10-10 | 에스케이 텔레콤주식회사 | Method for schduling traffic of home node, and applied to the same |
JP5622735B2 (en) * | 2008-10-20 | 2014-11-12 | インターデイジタル パテント ホールディングス インコーポレイテッド | Carrier aggregation |
JP5312285B2 (en) * | 2008-10-22 | 2013-10-09 | 創新音▲速▼股▲ふん▼有限公司 | Method and communication apparatus for processing UL-SCH transmission |
US8902805B2 (en) | 2008-10-24 | 2014-12-02 | Qualcomm Incorporated | Cell relay packet routing |
US8867430B2 (en) | 2008-10-31 | 2014-10-21 | Lg Electronics Inc. | Method and apparatus for performing HARQ process in wireless communication system |
US9584216B2 (en) * | 2008-10-31 | 2017-02-28 | Nokia Technologies Oy | Dynamic allocation of subframe scheduling for time divison duplex operation in a packet-based wireless communication system |
US20110200029A1 (en) | 2008-11-03 | 2011-08-18 | Nortel Networks Limited | Wireless communication clustering method and system for coordinated multi-point transmission and reception |
EP3780828B1 (en) * | 2008-11-04 | 2024-12-25 | Apple Inc. | Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier |
EP3934336B1 (en) * | 2008-11-10 | 2024-01-03 | Malikie Innovations Limited | Method, apparatus and computer readable storage medium of transition to a battery efficient state |
CN101741442B (en) * | 2008-11-20 | 2013-03-20 | 华为技术有限公司 | Method for confirming resource mapping in cooperative multicast transmission, network equipment and system |
WO2010060483A1 (en) | 2008-11-27 | 2010-06-03 | Nokia Siemens Networks Oy | Method for controlling self-optimization within a network |
CN101415026B (en) * | 2008-11-28 | 2012-06-27 | 闻泰通讯股份有限公司 | Method for analyzing XML formatted data of dynamic content distribution client terminal |
BRPI0923008B1 (en) | 2008-12-17 | 2021-01-12 | Google Technology Holdings LLC | method and apparatus for causing a user agent to release at least one of a semi-persistent communication resource |
EP2515337B1 (en) * | 2008-12-24 | 2016-02-24 | Semiconductor Energy Laboratory Co., Ltd. | Driver circuit and semiconductor device |
JP5199223B2 (en) * | 2008-12-30 | 2013-05-15 | 創新音▲速▼股▲ふん▼有限公司 | Method and communication apparatus for improving ACK / NACK bundling |
CN101777941B (en) | 2009-01-12 | 2014-10-08 | 华为技术有限公司 | Downlink mode of transmission, network devices and wireless device in the coordinated multiple-point transmission systems |
US8379583B2 (en) | 2009-01-30 | 2013-02-19 | Qualcomm Incorporated | Method and apparatus for multiplexing legacy long term evolution user equipment with advanced long term evolution user equipment |
CN102301816A (en) | 2009-02-02 | 2011-12-28 | 捷讯研究有限公司 | Indication of uplink semi-persistent scheduling explicit release using a downlink physical downlink control channel |
CN102356612B (en) * | 2009-02-06 | 2015-09-30 | Lg电子株式会社 | Support equipment and the method for multicarrier |
RU2510598C2 (en) * | 2009-02-09 | 2014-03-27 | Телефонактиеболагет Л М Эрикссон (Пабл) | Method and device in wireless communication system |
US8774014B2 (en) * | 2009-02-12 | 2014-07-08 | Lg Electronics Inc. | Method for avoiding interference |
US8341481B2 (en) * | 2009-02-19 | 2012-12-25 | Samsung Electronics Co., Ltd. | Method for performing hybrid automatic repeat request operation in a wireless mobile communication system |
KR20100094924A (en) | 2009-02-19 | 2010-08-27 | 삼성전자주식회사 | Method for performing hybrid automatic repeat request operation in wireless mobile communication system |
US8144657B2 (en) * | 2009-02-26 | 2012-03-27 | Mitsubishi Electric Research Laboratories, Inc. | Clustering based resource allocation in multi-cell OFDMA networks |
US8705501B2 (en) | 2009-03-09 | 2014-04-22 | Qualcomm Incorporated | Method and apparatus for facilitating a communication between an access point base station and a neighboring base station |
US8620334B2 (en) * | 2009-03-13 | 2013-12-31 | Interdigital Patent Holdings, Inc. | Method and apparatus for carrier assignment, configuration and switching for multicarrier wireless communications |
JP5266497B2 (en) * | 2009-03-25 | 2013-08-21 | アルカテル−ルーセント | Method and apparatus for controlling co-channel interference in a wireless communication system |
CN101541048A (en) * | 2009-04-03 | 2009-09-23 | 华为技术有限公司 | Service quality control method and network equipment |
CA2759023A1 (en) * | 2009-04-17 | 2010-10-21 | Research In Motion Limited | Mechanisms for evolved packet system quality of service class identifier extension |
KR101547545B1 (en) | 2009-04-20 | 2015-09-04 | 삼성전자주식회사 | A method for inter-cell interference coordination in a wireless communication system and an apparatus thereof |
KR101637584B1 (en) | 2009-04-21 | 2016-07-07 | 엘지전자 주식회사 | METHOD OF MAINTAINING A QUALITY OF SERVICE(QoS) IN A WIRELESS COMMUNICATION SYSTEM |
WO2010123893A1 (en) * | 2009-04-22 | 2010-10-28 | Interdigital Patent Holdings, Inc. | Method and apparatus for transmitting uplink control information for carrier aggregated spectrums |
US8533554B2 (en) | 2009-04-23 | 2013-09-10 | Lg Electronics Inc. | Method and apparatus for implementing a HARQ in a multi-carrier system |
CN101873596B (en) | 2009-04-27 | 2014-08-13 | 中兴通讯股份有限公司 | Method and system for optimizing network coverage and capacity |
US8885479B2 (en) * | 2009-05-07 | 2014-11-11 | Qualcomm Incorporated | Multicarrier retransmission feedback |
EP2430851A1 (en) | 2009-05-15 | 2012-03-21 | Cisco Technology, Inc. | System and method for a self-organizing network |
US8621520B2 (en) | 2009-05-19 | 2013-12-31 | Qualcomm Incorporated | Delivery of selective content to client applications by mobile broadcast device with content filtering capability |
US8576714B2 (en) * | 2009-05-29 | 2013-11-05 | Futurewei Technologies, Inc. | System and method for relay node flow control in a wireless communications system |
KR101558305B1 (en) | 2009-06-09 | 2015-10-07 | 삼성전자주식회사 | Apparatus and method for controlling access mode of node b in wireless communication system |
WO2010143900A2 (en) * | 2009-06-12 | 2010-12-16 | Lg Electronics Inc. | Apparatus and method for flow control in wireless communication system |
US8665724B2 (en) * | 2009-06-12 | 2014-03-04 | Cygnus Broadband, Inc. | Systems and methods for prioritizing and scheduling packets in a communication network |
US9065779B2 (en) * | 2009-06-12 | 2015-06-23 | Wi-Lan Labs, Inc. | Systems and methods for prioritizing and scheduling packets in a communication network |
US8208937B2 (en) * | 2009-06-12 | 2012-06-26 | Futurewei Technologies, Inc. | System and method for uplink inter cell interference coordination in a wireless access system |
PT3419208T (en) | 2009-06-15 | 2021-04-13 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Method for discontinuous reception operation for long term evolution advanced carrier aggregation |
CN101932038B (en) * | 2009-06-19 | 2013-03-27 | 中兴通讯股份有限公司 | Transmission method of radio access bearer and system thereof |
US20100329188A1 (en) * | 2009-06-29 | 2010-12-30 | Yu-Chih Jen | Method for Handling Transmission Status and Related Communication Device |
US8351456B2 (en) * | 2009-06-29 | 2013-01-08 | Qualcomm Incorporated | Method and apparatus for radio filtering in a multi-radio device |
US8509193B2 (en) | 2009-07-21 | 2013-08-13 | Microsoft Corporation | Packet aggregation |
US8155608B2 (en) * | 2009-07-24 | 2012-04-10 | Futurewei Technologies, Inc. | System and method for enhanced parallel receiving interworking in a wireless communications system |
US20110205980A1 (en) * | 2009-08-10 | 2011-08-25 | Qualcomm Incorporated | Multi-node resource request pipelining |
CN101998296B (en) * | 2009-08-17 | 2014-10-29 | 电信科学技术研究院 | Control method and system of empty QoS (Quality of Service) |
KR101641388B1 (en) * | 2009-08-19 | 2016-07-21 | 엘지전자 주식회사 | Method for using reference signal of relay station and relay station using the method |
KR20110020005A (en) | 2009-08-21 | 2011-03-02 | 주식회사 팬택 | Data transmission and reception method in wireless communication system |
CN101997649B (en) * | 2009-08-21 | 2014-12-10 | 中兴通讯股份有限公司 | Method and device for processing MU-MIMO (Multiuser Multiple-Input Multiple-Output) based on orthogonal diversity |
KR20110020708A (en) | 2009-08-24 | 2011-03-03 | 삼성전자주식회사 | Control channel configuration and multiplexing method and device for inter-cell interference coordination in ODF system |
KR101761610B1 (en) * | 2009-08-26 | 2017-07-26 | 엘지전자 주식회사 | Method of time-slot based multiple ack/nack transmission |
WO2011023234A1 (en) * | 2009-08-27 | 2011-03-03 | Nokia Siemens Networks Oy | Method and apparatus for operation of a communication network |
EP2474193B1 (en) * | 2009-08-31 | 2014-01-01 | Telefonaktiebolaget L M Ericsson (PUBL) | Method and apparatus for scheduling assistance |
WO2011025434A1 (en) * | 2009-08-31 | 2011-03-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement in a wireless communication system |
US8811299B2 (en) | 2009-09-15 | 2014-08-19 | Intel Corporation | Techniques for requesting bandwidth allocation |
EP2481239B1 (en) * | 2009-09-25 | 2013-08-28 | Telefonaktiebolaget LM Ericsson (publ) | Method and Apparatus for handling an evolved Allocation and Retention Priority |
US9083482B2 (en) | 2009-09-27 | 2015-07-14 | Lg Electronics Inc. | Method and apparatus for transmitting reference signal in wireless communication system |
BR112012006948B1 (en) | 2009-09-28 | 2021-04-27 | Samsung Electronics., Ltd | METHOD FOR EXTENDING A REGION OF PDCCH AND EU DEVICE TO RECEIVE DCI INFORMATION |
US8670396B2 (en) * | 2009-09-29 | 2014-03-11 | Qualcomm Incorporated | Uplink control channel resource allocation for transmit diversity |
US8687602B2 (en) * | 2009-09-29 | 2014-04-01 | Apple Inc. | Methods and apparatus for error correction for coordinated wireless base stations |
CN102036348B (en) * | 2009-09-30 | 2014-01-01 | 中兴通讯股份有限公司 | A discontinuous reception configuration method and system |
US9100970B2 (en) * | 2009-10-12 | 2015-08-04 | Electronics And Telecommunications Research Institute | Method and apparatus for controlling neighbor cell interference |
KR20110040672A (en) * | 2009-10-12 | 2011-04-20 | 주식회사 팬택 | Method and device for transmitting and receiving control information in wireless communication system |
US9232462B2 (en) | 2009-10-15 | 2016-01-05 | Qualcomm Incorporated | Methods and apparatus for cross-cell coordination and signaling |
RU2500071C1 (en) * | 2009-10-19 | 2013-11-27 | Самсунг Электроникс Ко., Лтд. | Transmission diversity and multiplexing for harq-ack signals in communication systems |
CN102056186B (en) | 2009-10-27 | 2016-08-24 | 中兴通讯股份有限公司 | A kind of neighbor cell list of home base station and the update method of wireless parameter |
CN102055700B (en) * | 2009-10-28 | 2015-06-03 | 中兴通讯股份有限公司 | Method and device for CC configuration in CA |
CN102056336B (en) | 2009-11-02 | 2013-01-09 | 华为技术有限公司 | Method and device for cooperatively processing self-organizing operation, and communication system |
US9042840B2 (en) * | 2009-11-02 | 2015-05-26 | Qualcomm Incorporated | Cross-carrier/cross-subframe indication in a multi-carrier wireless network |
CN102056206B (en) | 2009-11-04 | 2015-06-10 | 中兴通讯股份有限公司 | Self-organization operation processing method and device |
WO2011060997A1 (en) | 2009-11-23 | 2011-05-26 | Research In Motion Limited | Method and apparatus for state/mode transitioning |
AU2010321205B2 (en) | 2009-11-23 | 2014-09-04 | Blackberry Limited | State or mode transition triggering based on SRI message transmission |
WO2011068784A1 (en) * | 2009-12-01 | 2011-06-09 | Azuki Systems, Inc. | Method and system for secure and reliable video streaming with rate adaptation |
US20110134831A1 (en) * | 2009-12-03 | 2011-06-09 | Nokia Corporation | Architecture Providing Multi-System Carrier Aggregation |
KR101821407B1 (en) | 2009-12-16 | 2018-01-24 | 엘지전자 주식회사 | Apparatus and method of transmitting reception acknowledgement in wireless communication system |
US8873454B2 (en) | 2009-12-18 | 2014-10-28 | Qualcomm Incorporated | Apparatus and method for transmit-response timing for relay operation in wireless communications |
KR20120106857A (en) * | 2009-12-22 | 2012-09-26 | 후지쯔 가부시끼가이샤 | Transmission in a communication system using relay nodes |
US20110317656A1 (en) | 2009-12-23 | 2011-12-29 | Qualcomm Incorporated | Cluster-specific reference signals for communication systems with multiple transmission points |
US20110176461A1 (en) * | 2009-12-23 | 2011-07-21 | Telefonakatiebolaget Lm Ericsson (Publ) | Determining configuration of subframes in a radio communications system |
US8453124B2 (en) * | 2009-12-23 | 2013-05-28 | International Business Machines Corporation | Collecting computer processor instrumentation data |
US9158769B2 (en) * | 2009-12-28 | 2015-10-13 | Adam Dunstan | Systems and methods for network content delivery |
KR101085473B1 (en) * | 2009-12-28 | 2011-11-21 | 한국과학기술원 | TD downlink and uplink signal generator and frame timer system using multi-level counter in wireless communication system |
US8983532B2 (en) * | 2009-12-30 | 2015-03-17 | Blackberry Limited | Method and system for a wireless communication device to adopt varied functionalities based on different communication systems by specific protocol messages |
AU2011204119B2 (en) * | 2010-01-07 | 2014-07-03 | Samsung Electronics Co., Ltd. | Resource indexing for acknowledgement signals in response to receptions of multiple Assignments |
US9137685B2 (en) * | 2010-01-08 | 2015-09-15 | Panasonic Intellectual Property Corporation Of America | Communication apparatus and communication method |
WO2011087275A2 (en) * | 2010-01-12 | 2011-07-21 | 엘지전자 주식회사 | Method and device for codebook generation and downlink signal transmission in a wireless communication system supporting multiple antennas |
US8855064B2 (en) | 2010-01-12 | 2014-10-07 | Qualcomm Incorporated | Bundled frequency division multiplexing structure in wireless communications |
US10389479B2 (en) | 2010-01-29 | 2019-08-20 | Qualcomm Incorporated | Method and apparatus for signaling expansion and backward compatibility preservation in wireless communication systems |
KR101742994B1 (en) * | 2010-02-09 | 2017-06-15 | 엘지전자 주식회사 | A method of performing a random access in a mobile communication ststem and an apparatus for the same |
CN102158884B (en) | 2010-02-11 | 2016-05-11 | 中兴通讯股份有限公司 | A kind of method and system of carrying out Physical Resource Block binding configuration |
KR101664279B1 (en) * | 2010-02-16 | 2016-10-12 | 삼성전자주식회사 | Controlling method and apparatus for discontinuous reception in a wireless communication system |
US9337962B2 (en) * | 2010-02-17 | 2016-05-10 | Qualcomm Incorporated | Continuous mode operation for wireless communications systems |
US8849272B2 (en) * | 2010-02-25 | 2014-09-30 | Mediatek Inc. | Methods for coordinating radio activities in different radio access technologies and apparatuses utilizing the same |
US8514798B2 (en) * | 2010-02-25 | 2013-08-20 | Mediatek Inc. | Methods for scheduling channel activities for multiple radio access technologies in a communications apparatus and communications apparatuses utilizing the same |
CN102170652A (en) | 2010-02-26 | 2011-08-31 | 中兴通讯股份有限公司 | Method and device for managing self-healing function in wireless network |
US9042311B2 (en) | 2010-03-05 | 2015-05-26 | Intel Corporation | Techniques for evaluation and improvement of user experience for applications in mobile wireless networks |
US8780845B2 (en) * | 2010-03-07 | 2014-07-15 | Lg Electronics Inc. | Method and apparatus for determining size of transport block transmitted by base station to relay node in radio communication system |
EP2378828B1 (en) * | 2010-03-22 | 2013-05-08 | Samsung Electronics Co., Ltd. | Multiplexing control and data information from a user equipment in a physical data channel |
US8451776B2 (en) * | 2010-03-31 | 2013-05-28 | Qualcomm Incorporated | Method and apparatus to facilitate support for multi-radio coexistence |
EP2373076A1 (en) | 2010-04-01 | 2011-10-05 | Alcatel Lucent | Adapting a plurality of parameters in a wireless communication network |
US9083501B2 (en) * | 2010-04-05 | 2015-07-14 | Qualcomm Incorporated | Feedback of control information for multiple carriers |
JP4772910B1 (en) * | 2010-04-05 | 2011-09-14 | 株式会社エヌ・ティ・ティ・ドコモ | Base station and method in mobile communication system |
KR101605687B1 (en) * | 2010-04-12 | 2016-03-23 | 삼성전자주식회사 | Method and apparatus for estimating delay about buffer data of terminal in mobile communication system |
US20110249619A1 (en) * | 2010-04-13 | 2011-10-13 | Yi Yu | Wireless communication system using multiple-serving nodes |
EP2561629A4 (en) | 2010-04-22 | 2014-11-05 | Lg Electronics Inc | Method and apparatus for channel estimation for radio link between a base station and a relay station |
KR101673906B1 (en) | 2010-04-29 | 2016-11-22 | 삼성전자주식회사 | Method and apparatus for mapping of ack/nack channel for supporting sdma downlink control channel in ofdm system |
CN102238595B (en) | 2010-04-30 | 2014-02-26 | 华为技术有限公司 | Method and equipment for processing cell outage |
US8867458B2 (en) | 2010-04-30 | 2014-10-21 | Nokia Corporation | Network controlled device to device / machine to machine cluster operation |
CN102237991B (en) * | 2010-04-30 | 2016-08-24 | 北京三星通信技术研究有限公司 | The method sending ACK/NACK information in a tdd system |
US20110267943A1 (en) * | 2010-04-30 | 2011-11-03 | Qualcomm Incorporated | Static uu-un bearer mapping based on quality of service |
US8543054B2 (en) * | 2010-05-03 | 2013-09-24 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for uplink scheduling using relays |
WO2011139305A1 (en) * | 2010-05-04 | 2011-11-10 | Azuki Systems, Inc. | Method and apparatus for carrier controlled dynamic rate adaptation and client playout rate reduction |
US8982743B2 (en) * | 2010-05-14 | 2015-03-17 | Qualcomm Incorporated | DAI designs for FDD carrier aggregation |
JP5499219B2 (en) * | 2010-05-25 | 2014-05-21 | インターデイジタル パテント ホールディングス インコーポレイテッド | Retuning gap and scheduling gap in intermittent reception |
JP2011249964A (en) * | 2010-05-25 | 2011-12-08 | Sharp Corp | Communication system, mobile station device, base station device, measuring method and integrated circuit |
US9288690B2 (en) | 2010-05-26 | 2016-03-15 | Qualcomm Incorporated | Apparatus for clustering cells using neighbor relations |
JP5411064B2 (en) | 2010-05-27 | 2014-02-12 | 京セラ株式会社 | Radio base station, radio communication system, and control method |
US8873483B2 (en) * | 2010-06-03 | 2014-10-28 | Htc Corporation | Method of handling semi-persistent scheduling cell radio network temporary identifier and related communication device |
US8379517B2 (en) * | 2010-06-14 | 2013-02-19 | Alcatel Lucent | Call admission and preemption for multiple bit-rate applications |
WO2011157236A1 (en) * | 2010-06-18 | 2011-12-22 | Mediatek Inc. | Method for coordinating transmissions between different communications apparatuses and communication sapparatuses utilizing the same |
US9036577B2 (en) | 2010-06-21 | 2015-05-19 | Panasonic Intellectual Property Corporation Of America | Wireless communication apparatus and wireless communication method |
US20110310789A1 (en) | 2010-06-21 | 2011-12-22 | Teck Hu | Method of uplink control channel allocation for a relay backhaul link |
US9148204B2 (en) | 2010-06-21 | 2015-09-29 | Qualcomm Incorporated | Physical resource block (PRB) bundling for open loop beamforming |
CN102316581B (en) | 2010-06-29 | 2014-12-31 | 华为技术有限公司 | Distribution method and equipment for pre-coding resource groups |
EP2408196B1 (en) * | 2010-07-14 | 2017-01-11 | Alcatel Lucent | A method, server and terminal for generating a composite view from multiple content items |
KR20120010089A (en) * | 2010-07-20 | 2012-02-02 | 삼성전자주식회사 | Method and apparatus for improving quality of HTP-based multimedia streaming service |
US9585024B2 (en) * | 2010-07-27 | 2017-02-28 | Huawei Technologies Co., Ltd. | System and method for self-organized inter-cell interference coordination |
JP5073021B2 (en) * | 2010-07-28 | 2012-11-14 | 株式会社エヌ・ティ・ティ・ドコモ | Intracluster cooperation and intercluster interference avoidance method, radio communication system, aggregation station, and radio base station |
EP2418901A3 (en) | 2010-08-09 | 2012-02-29 | Samsung Electronics Co., Ltd. | Transmission of harq control information from a user equipment for downlink carrier aggregation |
CN102083192A (en) * | 2010-08-12 | 2011-06-01 | 大唐移动通信设备有限公司 | Cell energy-saving deactivation method, system and equipment |
US8599763B2 (en) * | 2010-08-16 | 2013-12-03 | Qualcomm Incorporated | Timing control in a multi-point high speed downlink packet access network |
US9112692B2 (en) * | 2010-08-16 | 2015-08-18 | Qualcomm Incorporated | ACK/NACK transmission for multi-carrier operation |
GB2483057B (en) * | 2010-08-20 | 2012-11-28 | Wireless Tech Solutions Llc | Apparatus, method and system for managing data transmission |
KR101715866B1 (en) * | 2010-08-26 | 2017-03-13 | 삼성전자주식회사 | Method and apparatus for adaptive scheduling based on coordinated rank in multi-cell communication system |
US8416741B2 (en) * | 2010-09-07 | 2013-04-09 | Verizon Patent And Licensing Inc. | Machine-to-machine communications over fixed wireless networks |
US8824311B2 (en) * | 2010-09-13 | 2014-09-02 | Blinq Wireless Inc. | System and method for co-channel interference measurement and managed adaptive resource allocation for wireless backhaul |
WO2012044211A1 (en) | 2010-09-27 | 2012-04-05 | Telefonaktiebolaget Lm Ericsson (Publ) | A method and an arrangement for sharing of a first cell radio network temporary identifier |
CN101964985B (en) | 2010-09-29 | 2013-11-13 | 中国科学院声学研究所 | Coverage and capacity self-optimization device of self-organization network in LTE/LTE-A and method thereof |
US9294950B2 (en) | 2010-10-01 | 2016-03-22 | Nec Corporation | Radio communication system and method, radio terminal, radio station, and operation administration and maintenance server apparatus |
EP2437422A1 (en) * | 2010-10-01 | 2012-04-04 | Panasonic Corporation | Search space for uplink and downlink grant in an OFDM-based mobile communication system |
KR101862429B1 (en) * | 2010-10-04 | 2018-05-29 | 삼성전자주식회사 | Method and apparatus for handling in-device co-existence interference in a wireless communication enviroment |
US20120082079A1 (en) * | 2010-10-04 | 2012-04-05 | Qualcomm Incorporated | Discontinuous transmission (dtx) signaling in uplink data channel |
CN101984619A (en) * | 2010-10-12 | 2011-03-09 | 中兴通讯股份有限公司 | Implementation method and system of streaming media service |
CN107017972B (en) * | 2010-11-03 | 2020-09-08 | 三星电子株式会社 | Method and apparatus for transmitting acknowledgement information bits in a time division duplex communication system |
JP4897918B1 (en) * | 2010-11-08 | 2012-03-14 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile terminal apparatus, base station apparatus, and communication control method |
KR20120049449A (en) * | 2010-11-08 | 2012-05-17 | 삼성전자주식회사 | Wireless communication system and method for managing resource for inter-cell interference coordication thereof |
CN102467121B (en) * | 2010-11-11 | 2015-12-02 | 新奥科技发展有限公司 | The control method of the system energy efficiency controller of pan-energy network and control method and terminal device |
CN101989898A (en) * | 2010-11-15 | 2011-03-23 | 中兴通讯股份有限公司 | Method and device for transmitting response message |
US20120127930A1 (en) * | 2010-11-22 | 2012-05-24 | Qualcomm Incorporated | Uplink data arrival random access procedure |
WO2012074451A1 (en) * | 2010-11-30 | 2012-06-07 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and devices for supporting state reconfiguration of user equipments |
KR102258940B1 (en) * | 2010-12-03 | 2021-06-03 | 인터디지탈 패튼 홀딩스, 인크 | Methods, apparatus and systems for performing multi-radio access technology carrier aggregation |
KR101867311B1 (en) * | 2010-12-21 | 2018-07-19 | 주식회사 골드피크이노베이션즈 | Method And Apparatus For Allocating ACK/NACK Resource And ACK/NACK Signal Transmitting Method Using The Same |
US20120170497A1 (en) * | 2011-01-04 | 2012-07-05 | HT mMobile Inc. | Method for reporting srs in discontinuous reception and wireless communication system thereof |
CN102065490B (en) * | 2011-01-17 | 2014-04-02 | 大唐移动通信设备有限公司 | Method and equipment for coordinating downlink transmitting power between base stations |
US9578649B2 (en) * | 2011-01-20 | 2017-02-21 | Qualcomm Incorporated | Method and apparatus to facilitate support for multi-radio coexistence |
CN102098799B (en) | 2011-01-26 | 2013-04-03 | 北京邮电大学 | Intelligent cognitive wireless network system for realizing heterogeneous network convergence |
US20130315114A1 (en) * | 2011-02-10 | 2013-11-28 | Lg Electronics Inc. | Method and device for scheduling in carrier aggregate system |
BR112013020504B1 (en) | 2011-02-11 | 2022-06-07 | Interdigital Patent Holdings, Inc | Transmit/receive method and unit for an improved control channel |
KR101907528B1 (en) * | 2011-02-18 | 2018-10-12 | 삼성전자 주식회사 | Mobile communication system and method for receiving/transmitting channel thereof |
US8611217B2 (en) * | 2011-02-25 | 2013-12-17 | Verizon Patent And Licensing Inc. | Subscriber/service differentiation in advanced wireless networks |
JP5931171B2 (en) * | 2011-03-24 | 2016-06-08 | エルジー エレクトロニクス インコーポレイティド | Signal transmission / reception method and apparatus therefor |
US20120250601A1 (en) * | 2011-03-28 | 2012-10-04 | Hyung-Nam Choi | Communication terminal, method for exchanging data, communication device and method for establishing a communication connection |
WO2012139272A1 (en) * | 2011-04-11 | 2012-10-18 | Renesas Mobile Corporation | Method and apparatus for providing for discontinuous reception via cells having different time division duplex subframe configurations |
US8787351B2 (en) * | 2011-04-14 | 2014-07-22 | Alcatel Lucent | Method and apparatus for scheduling transmissions in a communication network |
WO2012143055A1 (en) | 2011-04-21 | 2012-10-26 | Nokia Siemens Networks Oy | Coordination in self-organizing networks |
WO2012149322A1 (en) * | 2011-04-29 | 2012-11-01 | Research In Motion Limited | Managing group messages for lte wakeup |
US8897237B2 (en) * | 2011-04-29 | 2014-11-25 | Motorola Solutions, Inc. | Granting scheduling requests in a wireless communication system |
CN102170338B (en) * | 2011-04-29 | 2013-09-25 | 电信科学技术研究院 | Method and device for transmitting ACKNACK feedback information |
WO2012150889A1 (en) * | 2011-05-03 | 2012-11-08 | Telefonaktiebolaget L M Ericsson (Publ) | Physical cell identifier (pci) adaptation to mitigate interference in heterogeneous cellular network |
US8797924B2 (en) * | 2011-05-06 | 2014-08-05 | Innovative Sonic Corporation | Method and apparatus to improve discontinuous reception (DRX) operation for TDD (time division duplex) and FDD (frequency division duplex) mode in carrier aggregation (CA) |
US8594747B2 (en) * | 2011-05-06 | 2013-11-26 | Apple Inc. | Adaptive fast dormancy in a mobile device |
US9271281B2 (en) * | 2011-05-06 | 2016-02-23 | Innovation Sonic Corporation | Method and apparatus to improve inter-band carrier aggregation (CA) in TDD (time division duplex) mode |
CN102170703A (en) | 2011-05-11 | 2011-08-31 | 电信科学技术研究院 | Method for receiving and transmitting information on physical downlink control channel and equipment thereof |
US20120294163A1 (en) * | 2011-05-19 | 2012-11-22 | Renesas Mobile Corporation | Apparatus and Method for Direct Device-to-Device Communication in a Mobile Communication System |
US8873398B2 (en) * | 2011-05-23 | 2014-10-28 | Telefonaktiebolaget L M Ericsson (Publ) | Implementing EPC in a cloud computer with openflow data plane |
CN102215094B (en) * | 2011-06-01 | 2013-11-20 | 电信科学技术研究院 | Method, system and equipment for sending and receiving uplink feedback information |
EP2721792B1 (en) * | 2011-06-15 | 2019-04-17 | Samsung Electronics Co., Ltd. | Extension of physical downlink control signaling in a communication system |
US9413509B2 (en) * | 2011-06-17 | 2016-08-09 | Texas Instruments Incorporated | Hybrid automatic repeat request acknowledge resource allocation for enhanced physical downlink control channel |
KR101498846B1 (en) * | 2011-06-22 | 2015-03-04 | 엘지전자 주식회사 | Method and device for performing a random access process |
US20130003604A1 (en) | 2011-06-30 | 2013-01-03 | Research In Motion Limited | Method and Apparatus for Enhancing Downlink Control Information Transmission |
US9007972B2 (en) | 2011-07-01 | 2015-04-14 | Intel Corporation | Communication state transitioning control |
CN102355692A (en) * | 2011-07-22 | 2012-02-15 | 电信科学技术研究院 | Method and equipment for allocating quality of service measurement and reporting quality of service measurement |
US9258086B2 (en) * | 2011-08-03 | 2016-02-09 | Qualcomm Incorporated | Allocating physical hybrid ARQ indicator channel (PHICH) resources |
US10321419B2 (en) * | 2011-08-10 | 2019-06-11 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting data using a multi-carrier in a mobile communication system |
CN103733697B (en) * | 2011-08-12 | 2018-01-12 | 交互数字专利控股公司 | For Power Control and the method and apparatus of timing advance |
US20130039291A1 (en) * | 2011-08-12 | 2013-02-14 | Research In Motion Limited | Design on Enhanced Control Channel for Wireless System |
US8923274B2 (en) * | 2011-08-15 | 2014-12-30 | Blackberry Limited | Notifying a UL/DL configuration in LTE TDD systems |
US8665811B2 (en) * | 2011-08-15 | 2014-03-04 | Motorola Mobility Llc | Reference signal for a control channel in wireless communication network |
US8917679B2 (en) | 2011-08-16 | 2014-12-23 | Nokia Corporation | Method for signaling the overlap of downlink control and data channels |
CN102307086B (en) * | 2011-08-19 | 2017-03-15 | 中兴通讯股份有限公司 | Based on method and communication terminal that carrier aggregation technology realizes mixed communication |
US9277398B2 (en) * | 2011-08-22 | 2016-03-01 | Sharp Kabushiki Kaisha | User equipment capability signaling |
CN103797772B (en) * | 2011-09-09 | 2018-07-17 | 瑞典爱立信有限公司 | The differentiation for the data service adjusted using the user class correlation of network address lookup is handled |
US9084238B2 (en) * | 2011-09-12 | 2015-07-14 | Blackberry Limited | Searching space and operation for enhanced PDCCH in LTE systems |
WO2013043023A2 (en) * | 2011-09-23 | 2013-03-28 | 엘지전자 주식회사 | Method for transmitting control information and apparatus for same |
EP2744133B1 (en) * | 2011-09-23 | 2016-04-13 | LG Electronics Inc. | Method for transmitting control information and apparatus for same |
US8934424B2 (en) * | 2011-09-29 | 2015-01-13 | Sharp Laboratories Of America, Inc. | Devices for reconfiguring a subframe allocation |
EP2761968B1 (en) * | 2011-09-29 | 2015-11-18 | Telefonaktiebolaget L M Ericsson (publ) | Methods and network nodes for controlling resources of a service session as well as corresponding system and computer program |
TWI491219B (en) * | 2011-09-29 | 2015-07-01 | Ind Tech Res Inst | Method and wireless communication system for providing downlink control information for communication equipment |
US8891402B2 (en) * | 2011-09-30 | 2014-11-18 | Sharp Kabushiki Kaisha | Devices for reporting uplink information |
CN102316595B (en) * | 2011-09-30 | 2017-04-12 | 中兴通讯股份有限公司 | Resource determination method and device for physical uplink control channel (PUCCH) of large-band-width system |
US9433005B2 (en) * | 2011-10-18 | 2016-08-30 | Lg Electronics Inc. | Method for mitigating inter-cell interference in wireless communication system and device therefor |
US20130107727A1 (en) * | 2011-10-27 | 2013-05-02 | Nokia Corporation | Apparatus and Method for the Management of Reception Parameters in a Communication System |
US9236991B2 (en) * | 2011-11-04 | 2016-01-12 | Telefonaktiebolaget L M Ericsson (Publ) | Network node, user equipment and methods therein |
US9014210B2 (en) * | 2011-11-04 | 2015-04-21 | Qualcomm Incorporated | Method and apparatus for managing retransmission resources |
SE539574C2 (en) * | 2011-11-04 | 2017-10-17 | Intel Corp | Choice of confirmation timing in wireless communication |
WO2013073077A1 (en) | 2011-11-17 | 2013-05-23 | 日本電気株式会社 | Communication system, base station device, data transmission method and computer-readable medium on which a program is stored in non-temporary fashion. |
WO2013077657A1 (en) * | 2011-11-23 | 2013-05-30 | 엘지전자 주식회사 | Method and apparatus for transceiving downlink control channel in wireless communication system |
KR101603115B1 (en) * | 2011-12-08 | 2016-03-14 | 엘지전자 주식회사 | Method for estimating data channel in wireless communication system, and apparatus for same |
US8854958B2 (en) * | 2011-12-22 | 2014-10-07 | Cygnus Broadband, Inc. | Congestion induced video scaling |
CA2768483C (en) * | 2011-12-30 | 2019-08-20 | Sandvine Incorporated Ulc | Systems and methods for managing quality of service |
US9635618B2 (en) * | 2012-01-03 | 2017-04-25 | Lg Electronics Inc. | Method for setting downlink transmission power in wireless access system, and apparatus therefor |
US9603125B2 (en) * | 2012-01-19 | 2017-03-21 | Samsung Electronics Co., Ltd. | Reference signal design and association for physical downlink control channels |
CN105517024B (en) | 2012-01-30 | 2019-08-13 | 华为技术有限公司 | Self-organizing network coordination approach, device and system |
WO2013115695A1 (en) * | 2012-01-30 | 2013-08-08 | Telefonaktiebolaget L M Ericsson (Publ) | Setting timers when using radio carrier aggregation |
US9071985B2 (en) * | 2012-02-01 | 2015-06-30 | Qualcomm Incorporated | Apparatus and method for user equipment assisted congestion control |
US9179456B2 (en) * | 2012-02-07 | 2015-11-03 | Samsung Electronics Co., Ltd. | Methods and apparatus for downlink control channels transmissions in wireless communications systems |
EP3386138B1 (en) * | 2012-02-14 | 2020-01-22 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting uplink and downlink data in tdd system |
WO2013123467A1 (en) * | 2012-02-17 | 2013-08-22 | Vid Scale, Inc. | Hierarchical traffic differentiation to handle congestion and/or manage user quality of experience |
US9503490B2 (en) | 2012-02-27 | 2016-11-22 | Qualcomm Incorporated | Dash client and receiver with buffer water-level decision-making |
CA2866363C (en) * | 2012-03-05 | 2019-08-27 | Samsung Electronics Co., Ltd. | Harq-ack signal transmission in response to detection of control channel type in case of multiple control channel types |
US9860822B2 (en) * | 2012-03-06 | 2018-01-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and network node for determining admittance based on reason for not achieving quality of service |
IN2014DN07981A (en) * | 2012-03-15 | 2015-05-01 | Ericsson Telefon Ab L M | |
US9544876B2 (en) | 2012-03-16 | 2017-01-10 | Intel Corporation | Downlink control information (DCI) validation for enhanced physical downlink control channel (ePDCCH) |
SE540287C2 (en) | 2012-03-16 | 2018-05-22 | Intel Corp | Method and apparatus for coordinating self-optimization functions in a wireless network |
US9526091B2 (en) | 2012-03-16 | 2016-12-20 | Intel Corporation | Method and apparatus for coordination of self-optimization functions in a wireless network |
KR101868865B1 (en) * | 2012-03-19 | 2018-06-19 | 주식회사 골드피크이노베이션즈 | Apparatus and method for controling in-device coexistence interference in wireless communication system |
US9497756B2 (en) * | 2012-03-25 | 2016-11-15 | Comcast Cable Communications, Llc | Base station radio resource management |
CN104365049B (en) | 2012-04-12 | 2017-09-22 | 诺基亚技术有限公司 | The communication means and device of transmission diversity in the control channel under without additional reference signal |
US9814094B2 (en) * | 2012-04-17 | 2017-11-07 | Nokia Solutions And Networks Oy | Device-to-device transmission in communications |
US9681382B2 (en) * | 2012-05-11 | 2017-06-13 | Intel Corporation | Radio coexistence in wireless networks |
US9094960B2 (en) * | 2012-05-30 | 2015-07-28 | Intel Corporation | Hybrid automatic repeat request (HARQ) mapping for carrier aggregation (CA) |
US8913518B2 (en) * | 2012-08-03 | 2014-12-16 | Intel Corporation | Enhanced node B, user equipment and methods for discontinuous reception in inter-ENB carrier aggregation |
GB2505906B (en) * | 2012-09-13 | 2014-11-26 | Vodafone Ip Licensing Ltd | Multicoordination scheduling |
GB2505907A (en) * | 2012-09-13 | 2014-03-19 | Vodafone Ip Licensing Ltd | Coordinating allocation of resource blocks to cell edge users based on a high priority indication |
KR101910008B1 (en) * | 2012-11-07 | 2018-12-19 | 삼성전자주식회사 | Method and apparatus for inter cell interference coordination in mobile communication system |
WO2014138440A1 (en) * | 2013-03-06 | 2014-09-12 | Interdigital Patent Holdings, Inc,. | Interference management and interference alignment in wireless networks including small base stations |
WO2014184347A1 (en) | 2013-05-17 | 2014-11-20 | Nokia Solutions And Networks Oy | Quality of service / load based user equipment selection of radio access technology |
-
2012
- 2012-08-09 US US13/570,941 patent/US9526091B2/en active Active
- 2012-08-22 US US13/591,673 patent/US9398572B2/en active Active
- 2012-08-22 US US13/591,865 patent/US9655086B2/en active Active
- 2012-08-23 US US13/593,044 patent/US8885526B2/en active Active
- 2012-08-23 US US13/592,598 patent/US9288797B2/en active Active
- 2012-08-29 US US13/598,320 patent/US9226278B2/en active Active
- 2012-08-31 US US13/600,675 patent/US20130242887A1/en not_active Abandoned
- 2012-09-14 US US13/620,093 patent/US8817734B2/en active Active
- 2012-09-14 US US13/620,108 patent/US8958379B2/en not_active Expired - Fee Related
- 2012-09-25 US US13/625,977 patent/US8902741B2/en not_active Expired - Fee Related
- 2012-09-25 US US13/626,661 patent/US8793743B2/en active Active
- 2012-09-27 US US13/629,546 patent/US8989118B2/en active Active
- 2012-09-27 US US13/628,923 patent/US9155082B2/en not_active Expired - Fee Related
- 2012-09-28 US US13/629,928 patent/US9215701B2/en active Active
- 2012-09-28 US US13/629,682 patent/US8923323B2/en active Active
- 2012-09-28 US US13/631,341 patent/US9271278B2/en active Active
- 2012-12-17 US US13/716,978 patent/US9686089B2/en active Active
-
2013
- 2013-02-07 TW TW103143030A patent/TWI539771B/en active
- 2013-02-07 TW TW102104851A patent/TWI516054B/en active
- 2013-02-18 CA CA2866352A patent/CA2866352C/en active Active
- 2013-02-18 JP JP2014557861A patent/JP5922261B2/en active Active
- 2013-02-18 WO PCT/US2013/026599 patent/WO2013138019A1/en active Application Filing
- 2013-02-18 CA CA2861503A patent/CA2861503C/en active Active
- 2013-02-18 CN CN201380018277.0A patent/CN104205884B/en active Active
- 2013-02-18 JP JP2015500437A patent/JP6064248B2/en active Active
- 2013-02-18 RU RU2014139406/08A patent/RU2604432C2/en active
- 2013-02-18 CN CN201710523221.0A patent/CN107257268B/en active Active
- 2013-02-18 AU AU2013232616A patent/AU2013232616B2/en active Active
- 2013-02-18 RU RU2014137294/07A patent/RU2596151C2/en active
- 2013-02-18 KR KR1020177001384A patent/KR101823842B1/en active Active
- 2013-02-18 EP EP13760993.9A patent/EP2826189B1/en active Active
- 2013-02-18 EP EP20190741.7A patent/EP3754877B1/en active Active
- 2013-02-18 WO PCT/US2013/026604 patent/WO2013138021A1/en active Application Filing
- 2013-02-18 CN CN201810310534.2A patent/CN108270524B/en active Active
- 2013-02-18 KR KR1020167022849A patent/KR101874729B1/en active Active
- 2013-02-18 BR BR112014020867-0A patent/BR112014020867B1/en active IP Right Grant
- 2013-02-18 FI FIEP20190741.7T patent/FI3754877T3/en active
- 2013-02-18 CN CN201380014552.1A patent/CN104170304B/en active Active
- 2013-02-18 KR KR1020147025704A patent/KR101761988B1/en active Active
- 2013-02-18 EP EP13761383.2A patent/EP2826267B1/en active Active
- 2013-02-18 RU RU2016128977A patent/RU2643783C1/en active
- 2013-02-18 HU HUE13761383A patent/HUE036111T2/en unknown
- 2013-02-18 EP EP13761752.8A patent/EP2826190B1/en active Active
- 2013-02-18 JP JP2014560927A patent/JP6022610B2/en active Active
- 2013-02-18 EP EP15151505.3A patent/EP2863686B1/en active Active
- 2013-02-18 MX MX2014008942A patent/MX347863B/en active IP Right Grant
- 2013-02-18 CN CN201810174461.9A patent/CN108282271B/en active Active
- 2013-02-18 BR BR112014021615-0A patent/BR112014021615B1/en active IP Right Grant
- 2013-02-18 KR KR1020147025683A patent/KR101652188B1/en active Active
- 2013-02-18 AU AU2013232618A patent/AU2013232618B2/en active Active
- 2013-02-18 MY MYPI2014702438A patent/MY178014A/en unknown
- 2013-02-18 EP EP17194375.6A patent/EP3282726B8/en active Active
- 2013-02-18 ES ES13761383.2T patent/ES2656895T3/en active Active
- 2013-02-18 KR KR1020147025705A patent/KR101700018B1/en active Active
- 2013-02-18 WO PCT/US2013/026603 patent/WO2013138020A1/en active Application Filing
- 2013-02-20 MX MX2014011092A patent/MX355521B/en active IP Right Grant
- 2013-02-20 EP EP16197269.0A patent/EP3145239A1/en not_active Withdrawn
- 2013-02-20 ES ES13761353.5T patent/ES2612553T3/en active Active
- 2013-02-20 EP EP13761353.5A patent/EP2826291B1/en active Active
- 2013-02-20 CA CA2867017A patent/CA2867017A1/en not_active Abandoned
- 2013-02-20 KR KR1020147025693A patent/KR101606486B1/en not_active Expired - Fee Related
- 2013-02-20 HU HUE13761353A patent/HUE030599T2/en unknown
- 2013-02-20 WO PCT/US2013/026910 patent/WO2013138031A1/en active Application Filing
- 2013-02-20 AU AU2013232628A patent/AU2013232628B2/en active Active
- 2013-02-20 RU RU2014139284/07A patent/RU2600451C2/en active
- 2013-02-20 MY MYPI2014702607A patent/MY170744A/en unknown
- 2013-02-20 CN CN201380018734.6A patent/CN104396303B/en not_active Expired - Fee Related
- 2013-02-20 JP JP2015500441A patent/JP5905637B2/en not_active Expired - Fee Related
- 2013-02-20 KR KR1020167007375A patent/KR101710847B1/en active Active
- 2013-02-21 CN CN201380014545.1A patent/CN104170279B/en not_active Expired - Fee Related
- 2013-02-21 HU HUE13760885A patent/HUE034720T2/en unknown
- 2013-02-21 WO PCT/US2013/027144 patent/WO2013138043A1/en active Application Filing
- 2013-02-21 ES ES13760885.7T patent/ES2643229T3/en active Active
- 2013-02-21 EP EP13760885.7A patent/EP2826165B1/en not_active Not-in-force
- 2013-02-21 JP JP2015500444A patent/JP5861219B2/en active Active
- 2013-02-22 ES ES13760373.4T patent/ES2611935T3/en active Active
- 2013-02-22 JP JP2015500446A patent/JP5879642B2/en not_active Expired - Fee Related
- 2013-02-22 EP EP13761363.4A patent/EP2826167B1/en not_active Not-in-force
- 2013-02-22 HU HUE13761363A patent/HUE037723T2/en unknown
- 2013-02-22 CN CN201380014755.0A patent/CN104350798B/en active Active
- 2013-02-22 WO PCT/US2013/027350 patent/WO2013138048A1/en active Application Filing
- 2013-02-22 CN CN201380014558.9A patent/CN104170280B/en not_active Expired - Fee Related
- 2013-02-22 HU HUE13760373A patent/HUE032865T2/en unknown
- 2013-02-22 ES ES13761363.4T patent/ES2668901T3/en active Active
- 2013-02-22 WO PCT/US2013/027332 patent/WO2013138047A1/en active Application Filing
- 2013-02-22 EP EP13760373.4A patent/EP2826326B1/en not_active Not-in-force
- 2013-02-27 JP JP2015500450A patent/JP5985036B2/en active Active
- 2013-02-27 HU HUE13760234A patent/HUE038863T2/en unknown
- 2013-02-27 WO PCT/US2013/027921 patent/WO2013138065A1/en active Application Filing
- 2013-02-27 CN CN201380014546.6A patent/CN104205934B/en active Active
- 2013-02-27 EP EP13760234.8A patent/EP2826298B1/en not_active Not-in-force
- 2013-02-27 ES ES13760234.8T patent/ES2684223T3/en active Active
- 2013-03-11 TW TW104103211A patent/TWI556661B/en active
- 2013-03-11 TW TW102108459A patent/TWI481267B/en active
- 2013-03-12 ES ES13760813.9T patent/ES2689431T3/en active Active
- 2013-03-12 HU HUE16191829A patent/HUE043282T2/en unknown
- 2013-03-12 JP JP2015500516A patent/JP2015510379A/en active Pending
- 2013-03-12 WO PCT/US2013/030511 patent/WO2013138332A1/en active Application Filing
- 2013-03-12 KR KR1020167031886A patent/KR101792638B1/en active Active
- 2013-03-12 MX MX2014011091A patent/MX348729B/en active IP Right Grant
- 2013-03-12 AU AU2013232287A patent/AU2013232287B2/en active Active
- 2013-03-12 RU RU2014139414/07A patent/RU2596799C2/en active
- 2013-03-12 FI FI20135235A patent/FI127213B/en active IP Right Grant
- 2013-03-12 EP EP16191829.7A patent/EP3133857B1/en active Active
- 2013-03-12 MY MYPI2014702600A patent/MY167452A/en unknown
- 2013-03-12 ES ES16191829T patent/ES2729923T3/en active Active
- 2013-03-12 KR KR1020177030937A patent/KR101892890B1/en active Active
- 2013-03-12 CA CA2866953A patent/CA2866953A1/en not_active Abandoned
- 2013-03-12 KR KR1020147027043A patent/KR101678754B1/en active Active
- 2013-03-12 HU HUE13760813A patent/HUE039491T2/en unknown
- 2013-03-12 EP EP13760813.9A patent/EP2826275B1/en active Active
- 2013-03-13 FI FI20135242A patent/FI127165B/en active IP Right Grant
- 2013-03-14 ES ES13761149.7T patent/ES2693325T3/en active Active
- 2013-03-14 NL NL2010448A patent/NL2010448C2/en active
- 2013-03-14 WO PCT/US2013/031762 patent/WO2013138669A1/en active Application Filing
- 2013-03-14 EP EP13761556.3A patent/EP2826176A4/en not_active Withdrawn
- 2013-03-14 WO PCT/US2013/031690 patent/WO2013138659A1/en active Application Filing
- 2013-03-14 CN CN201380014652.4A patent/CN104170295B/en not_active Expired - Fee Related
- 2013-03-14 WO PCT/US2013/031633 patent/WO2013138648A1/en active Application Filing
- 2013-03-14 JP JP2015500637A patent/JP5987231B2/en active Active
- 2013-03-14 ES ES201330362A patent/ES2439623R1/en active Pending
- 2013-03-14 ES ES201330358A patent/ES2453448B2/en active Active
- 2013-03-14 CN CN201380014549.XA patent/CN104205682B/en not_active Expired - Fee Related
- 2013-03-14 SE SE1350307A patent/SE537717C2/en unknown
- 2013-03-14 SE SE1850150A patent/SE542848C2/en unknown
- 2013-03-14 CN CN201380017826.2A patent/CN104205689B/en not_active Expired - Fee Related
- 2013-03-14 EP EP13761107.5A patent/EP2826173A4/en not_active Withdrawn
- 2013-03-14 JP JP2015500631A patent/JP5951876B2/en active Active
- 2013-03-14 EP EP13761149.7A patent/EP2826174B1/en not_active Not-in-force
- 2013-03-14 KR KR1020147027275A patent/KR101642214B1/en active Active
- 2013-03-14 NL NL2010449A patent/NL2010449C2/en active
- 2013-03-14 SE SE1350308A patent/SE1350308A1/en not_active Application Discontinuation
- 2013-03-15 IT IT000394A patent/ITMI20130394A1/en unknown
- 2013-03-15 WO PCT/US2013/032323 patent/WO2013138758A1/en active Application Filing
- 2013-03-15 EP EP13761905.2A patent/EP2826177B1/en active Active
- 2013-03-15 CN CN201410633688.7A patent/CN104320226B/en active Active
- 2013-03-15 WO PCT/US2013/032453 patent/WO2013138773A1/en active Application Filing
- 2013-03-15 BE BE2013/0171A patent/BE1022184B1/en active
- 2013-03-15 CN CN201380014548.5A patent/CN104170294B/en active Active
- 2013-03-15 JP JP2015500670A patent/JP5967286B2/en active Active
- 2013-03-15 ES ES13760698.4T patent/ES2639773T3/en active Active
- 2013-03-15 KR KR1020147024788A patent/KR101588156B1/en not_active Expired - Fee Related
- 2013-03-15 CN CN201380013686.1A patent/CN104170270B/en not_active Expired - Fee Related
- 2013-03-15 CN CN201380014654.3A patent/CN104170296B/en not_active Expired - Fee Related
- 2013-03-15 CN CN201380013917.9A patent/CN104170277B/en not_active Expired - Fee Related
- 2013-03-15 JP JP2014561188A patent/JP5886449B2/en not_active Expired - Fee Related
- 2013-03-15 EP EP13760698.4A patent/EP2826160B1/en not_active Not-in-force
- 2013-03-15 EP EP13760690.1A patent/EP2826171B1/en not_active Not-in-force
- 2013-03-15 HU HUE13760698A patent/HUE036770T2/en unknown
- 2013-03-15 CN CN201380014661.3A patent/CN104170436B/en not_active Expired - Fee Related
- 2013-03-15 CN CN201710432203.1A patent/CN107181574B/en active Active
- 2013-03-15 WO PCT/US2013/032671 patent/WO2013138792A1/en active Application Filing
- 2013-03-15 HU HUE13760690A patent/HUE037650T2/en unknown
- 2013-03-15 EP EP13761873.2A patent/EP2826278A4/en not_active Withdrawn
- 2013-03-15 JP JP2015500674A patent/JP2015511091A/en active Pending
- 2013-03-15 BE BE2013/0172A patent/BE1021235B1/en active
- 2013-03-15 WO PCT/US2013/032560 patent/WO2013138779A1/en active Application Filing
- 2013-03-15 IT IT000393A patent/ITMI20130393A1/en unknown
- 2013-03-15 EP EP13761061.4A patent/EP2826166A4/en not_active Withdrawn
- 2013-03-15 WO PCT/US2013/032612 patent/WO2013138782A1/en active Application Filing
- 2013-03-15 ES ES13760690.1T patent/ES2647151T3/en active Active
- 2013-03-18 US US13/845,328 patent/US9948475B2/en active Active
- 2013-03-18 US US13/845,278 patent/US9386571B2/en active Active
- 2013-03-18 US US13/845,309 patent/US20130242831A1/en not_active Abandoned
- 2013-11-01 US US14/070,243 patent/US10469240B2/en active Active
-
2014
- 2014-01-27 US US14/165,311 patent/US9516628B2/en active Active
- 2014-06-25 US US14/314,296 patent/US9258805B2/en active Active
- 2014-06-27 US US14/318,435 patent/US9432978B2/en active Active
- 2014-11-07 US US14/536,111 patent/US9326278B2/en active Active
-
2015
- 2015-04-01 NL NL2014569A patent/NL2014569B1/en not_active IP Right Cessation
- 2015-05-20 HK HK15104788.1A patent/HK1204399A1/en unknown
- 2015-11-04 JP JP2015217000A patent/JP6022019B2/en active Active
-
2016
- 2016-01-27 AU AU2016200440A patent/AU2016200440B2/en active Active
- 2016-02-03 US US15/014,770 patent/US9615378B2/en active Active
- 2016-03-16 JP JP2016052223A patent/JP6141477B2/en active Active
- 2016-04-13 JP JP2016080044A patent/JP6156957B2/en active Active
- 2016-05-23 AU AU2016203351A patent/AU2016203351B2/en active Active
- 2016-05-25 US US15/164,085 patent/US10530558B2/en active Active
- 2016-06-17 AU AU2016204107A patent/AU2016204107A1/en not_active Abandoned
- 2016-06-20 JP JP2016121500A patent/JP6350601B2/en active Active
- 2016-07-22 US US15/216,993 patent/US10320552B2/en active Active
- 2016-08-01 RU RU2016131671A patent/RU2656149C2/en active
- 2016-09-08 RU RU2016136202A patent/RU2645303C1/en not_active IP Right Cessation
- 2016-10-05 JP JP2016197217A patent/JP6285521B2/en active Active
-
2017
- 2017-04-20 JP JP2017083392A patent/JP6354098B2/en active Active
- 2017-05-12 US US15/594,267 patent/US10374783B2/en active Active
- 2017-08-09 FR FR1757592A patent/FR3055080A1/en active Pending
-
2018
- 2018-03-15 HK HK18103608.8A patent/HK1244128A1/en unknown
- 2018-04-26 RU RU2018115687A patent/RU2690505C1/en active
- 2018-07-17 HK HK18109186.5A patent/HK1249810A1/en unknown
- 2018-08-21 HK HK18110719.9A patent/HK1251812A1/en unknown
- 2018-08-23 HK HK18110836.7A patent/HK1251733A1/en unknown
-
2019
- 2019-05-10 US US16/408,724 patent/US10637635B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070071025A1 (en) * | 2003-10-06 | 2007-03-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Mbms acknowledgements on rach |
US20060072538A1 (en) * | 2004-09-29 | 2006-04-06 | Raith Alex K | Forward error correction for broadcast/multicast service |
US20130007814A1 (en) * | 2011-06-30 | 2013-01-03 | Qualcomm Incorporated | Dynamic adaptive streaming proxy for unicast or broadcast/multicast services |
US20130036234A1 (en) * | 2011-08-01 | 2013-02-07 | Qualcomm Incorporated | Method and apparatus for transport of dynamic adaptive streaming over http (dash) initialization segment description fragments as user service description fragments |
US20130173737A1 (en) * | 2011-12-29 | 2013-07-04 | Nokia Corporation | Method and apparatus for flexible caching of delivered media |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10320552B2 (en) | Multicast broadcast multimedia service-assisted content distribution | |
US10200668B2 (en) | Quality of experience reporting for combined unicast-multicast/broadcast streaming of media content | |
US10433327B2 (en) | Presence service using IMS based DASH service | |
US10079868B2 (en) | Method and apparatus for flexible broadcast service over MBMS | |
JP6418665B2 (en) | Method of supplying presence information by presence server in IMS-based DASH service, and user equipment (UE) receiving presence information via presence server | |
FI129816B (en) | Quality of experience reporting for combined unicast-multicast/broadcast streaming of media content |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: APPLE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEL CORPORATION;REEL/FRAME:052916/0308 Effective date: 20191130 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |