US11698891B2 - Database systems and related multichannel communication methods - Google Patents

Database systems and related multichannel communication methods Download PDF

Info

Publication number
US11698891B2
US11698891B2 US16/526,786 US201916526786A US11698891B2 US 11698891 B2 US11698891 B2 US 11698891B2 US 201916526786 A US201916526786 A US 201916526786A US 11698891 B2 US11698891 B2 US 11698891B2
Authority
US
United States
Prior art keywords
communication channel
message
messaging
message object
content fields
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/526,786
Other versions
US20210034595A1 (en
Inventor
Penny Tselikis
Thomas Besluau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salesforce Inc
Original Assignee
Salesforce com Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salesforce com Inc filed Critical Salesforce com Inc
Priority to US16/526,786 priority Critical patent/US11698891B2/en
Assigned to SALESFORCE.COM, INC. reassignment SALESFORCE.COM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSELIKIS, PENNY, BESLUAU, THOMAS
Publication of US20210034595A1 publication Critical patent/US20210034595A1/en
Priority to US18/323,281 priority patent/US20230306008A1/en
Application granted granted Critical
Publication of US11698891B2 publication Critical patent/US11698891B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • H04L51/046Interoperability with other network applications or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2228Indexing structures
    • G06F16/2264Multidimensional index structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/258Data format conversion from or to a database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/451Execution arrangements for user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/06Message adaptation to terminal or network requirements
    • H04L51/066Format adaptation, e.g. format conversion or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/55Push-based network services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols

Definitions

  • Embodiments of the subject matter described herein relate generally to cloud computing and database systems, and more particularly, to database systems and methods that support creating and managing messages formatted for different communications channels.
  • a “cloud” computing model allows applications to be provided over the network “as a service” or “on-demand” by an infrastructure provider.
  • the infrastructure provider typically abstracts the underlying hardware and other resources used to deliver a customer-developed application so that the customer no longer needs to operate and support dedicated server hardware.
  • the cloud computing model can often provide substantial cost savings to the customer over the life of the application because the customer no longer needs to provide dedicated network infrastructure, electrical and temperature controls, physical security and other logistics in support of dedicated server hardware.
  • Multi-tenant cloud-based architectures have been developed to improve collaboration, integration, and community-based cooperation between customer tenants without sacrificing data security.
  • multi-tenancy refers to a system where a single hardware and software platform simultaneously supports multiple user groups (also referred to as “organizations” or “tenants”) from a common data storage element (also referred to as a “multi-tenant database”).
  • the multi-tenant design provides a number of advantages over conventional server virtualization systems. First, the multi-tenant platform operator can often make improvements to the platform based upon collective information from the entire tenant community.
  • a multi-tenant system may support an on-demand customer relationship management (CRM) application that manages the data for a particular organization's sales staff that is maintained by the multi-tenant system and facilitates collaboration among members of that organization's sales staff (e.g., account executives, sales representatives, and the like).
  • CRM customer relationship management
  • One situation that arises in a CRM context occurs when it is desirable to communicate substantially the same information to multiple different individuals.
  • different individuals will often prefer to utilize different modes of communication or otherwise be less responsive to different modes of communication. For example, some individuals may prefer e-mail, while others prefer text messages, and so on.
  • individuals may also prefer to receive fewer communications or limited points of contact, such that there are also risks of frustrating, overwhelming, or otherwise interfering with individuals in a manner that could potentially be detrimental.
  • the task of communicating the desired information to multiple different individuals in accordance with their respective communications preferences can be difficult, cumbersome and time-consuming. Accordingly, it is desirable to provide systems and methods that facilitate communicating to multiple intended recipients in an improved manner.
  • FIG. 1 is a block diagram of an exemplary computing system
  • FIG. 2 is a flow diagram of an exemplary multichannel message generation process suitable for implementation in the computing system of FIG. 1 in accordance with one or more embodiments;
  • FIGS. 3 - 4 depict exemplary graphical user interface (GUI) displays suitable for presentation on a client device in the computing system of FIG. 1 in connection with an exemplary embodiment of the multichannel message generation process of FIG. 2 ;
  • GUI graphical user interface
  • FIG. 5 is a flow diagram of an exemplary multichannel message distribution process suitable for implementation in the computing system of FIG. 1 in conjunction with the multichannel message generation process of FIG. 2 in accordance with one or more embodiments;
  • FIG. 6 is a block diagram of an exemplary multi-tenant system suitable for use with the computing system of FIG. 1 in accordance with one or more embodiments.
  • Embodiments of the subject matter described herein generally relate to database systems and methods for communicating information to different individuals via different communications channels.
  • a communication channel should be understood as referring to a particular manner of communication, which is independent of the communications network or medium used to transport the information being communicated.
  • electronic mail or email
  • text messaging short message service (SMS) messaging
  • OTT over-the-top
  • line messaging line messaging
  • push notification messaging application-based messaging
  • social media messaging represent a non-exclusive, non-exhaustive, and non-limiting list of different potential communications channels.
  • exemplary embodiments described herein support a multichannel data structure that is maintained in a database and utilized to manage the data or content for an individual electronic message with respect to the different communications channels that may be available.
  • the multichannel data structure may associate different instances of an electronic message that are formatted or otherwise configured for transmission via different communications channels, which, in turn, may be utilized to communicate substantially the same message content to different individuals via their respectively preferred communications channels.
  • a database system may obtain (e.g., from a user creating or defining a message) metadata for content fields of an initial instance of an electronic message to be configured with a particular data format associated with a particular communication channel of interest.
  • An instance of a multichannel data structure may be instantiated in the database for that message, with the multichannel data structure including or otherwise being associated with the metadata for the content fields for the data format associated with the initial communication channel of interest.
  • one or more other different communication channels of interest (alternatively referred to herein as destination communication channels) for that message may be identified, for example, by the user that created or otherwise defined the electronic message configured for the initial communication channel of interest identifying other communication channels for which the user would like the message to be supported.
  • the database system copies or otherwise maps a subset of the metadata for the content fields for the data format associated with the initial communication channel of interest to a corresponding subset of content fields for the different data format(s) associated with the identified destination communication channel(s) that are common or otherwise correspond to content fields of the initial communication channel data format.
  • the database system then automatically creates instance(s) of the electronic message configured in the respective data format(s) associated with the destination communication channel(s) that include the copied metadata from the multichannel data structure for the content fields of the destination communication channel data format(s) that are common to or otherwise correspond to content fields of the initial communication channel data format.
  • the user does not need to manually create or define different instances of substantially the same content or message for each different communication channel that the user would like supported.
  • the multichannel data structure may be referenced in a manner that allows the database system to automatically identify the preferred supported communication channel for each individual on an individualized and case-by-case basis before transmitting the appropriate instance of the electronic message maintained by the multichannel data structure to each of the intended recipients via the respective communication channel that is preferred for the respective recipient.
  • the effectiveness, reach, or impression of the message may be improved in an automated manner while also having the message content homogenized across different communication channels and recipients.
  • FIG. 1 depicts an exemplary embodiment of a computing system 100 capable managing multichannel messages using a multichannel message data structure 110 in a database 104 .
  • the computing system 100 includes, without limitation, a server 102 that is communicatively coupled to the database 104 and one or more client devices 106 over a communications network 108 .
  • the communications network 108 may be realized as any sort or combination of wired and/or wireless computer network, a cellular network, a mobile broadband network, a radio network, the Internet, or the like.
  • FIG. 1 is a simplified representation of a computing system 100 for purposes of explanation and is not intended to be limiting. For example, in practice, multiple instances of client devices 106 communicating on the network 108 and/or with the server 102 may be present. Additionally, practical implementations may include multiple instances of the server 102 and/or the database 104 , which, in turn may reside behind or rely on one or more load balancers to manage resource utilization, as will be appreciated in the art.
  • the server 102 generally represents a computing device, computing system or another combination of processing logic, circuitry, hardware, and/or other components configured to support the processes, tasks, operations, and/or functions described herein.
  • the server 102 includes a processing system 120 , which may be implemented using any suitable processing system and/or device, such as, for example, one or more processors, central processing units (CPUs), controllers, microprocessors, microcontrollers, processing cores and/or other hardware computing resources configured to support the operation of the processing system 120 described herein.
  • the processing system 120 may include or otherwise access a data storage element 122 (or memory) capable of storing programming instructions for execution by the processing system 120 , that, when read and executed, cause processing system 120 to support the processes described herein.
  • the memory 122 may be realized as a random-access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, or any other suitable non-transitory short or long-term data storage or other computer-readable media, and/or any suitable combination thereof.
  • RAM random-access memory
  • ROM read only memory
  • flash memory magnetic or optical mass storage, or any other suitable non-transitory short or long-term data storage or other computer-readable media, and/or any suitable combination thereof.
  • the programming instructions cause the processing system 120 to create, generate, or otherwise facilitate an application platform 124 that is capable of supporting, generating, or otherwise providing instances of a virtual application 126 at run-time (or “on-demand”) based at least in part upon code and other data that is stored or otherwise maintained by the database 104 , such that the server 102 functions as an application server 102 .
  • the programming instructions also cause the processing system 120 to create, generate, or otherwise facilitate a message management application 128 that supports creating and managing multichannel messages, as described in greater detail below.
  • the message management application 128 can be integrated with or otherwise incorporated as part of a virtual application 126 , or be realized as a separate or standalone component that is capable of interacting with the client device 106 independent of any virtual application 126 .
  • the client device 106 generally represents an electronic device coupled to the network 108 that may be utilized by a user to access the application platform 124 on the application server 102 to thereby access instances of virtual applications 126 supported by the application server 102 and/or retrieve data from the database 104 via the network 108 .
  • the client device 106 can be realized as any sort of personal computer, mobile telephone, tablet or other network-enabled electronic device.
  • the client device 106 includes a display device, such as a monitor, screen, or another conventional electronic display, capable of graphically presenting data and/or information along with a user input device, such as a touchscreen, a touch panel, a mouse, a joystick, a directional pad, a motion sensor, or the like, capable of receiving input from the user of the client device 106 .
  • the illustrated client device 106 executes or otherwise supports a client application 107 that communicates with the application platform 124 on the server 102 using a networking protocol.
  • the client application 107 is realized as a web browser or similar local client application executed by the client device 106 that contacts the application server 102 and/or application platform 124 using a networking protocol, such as the hypertext transport protocol (HTTP) or the like.
  • HTTP hypertext transport protocol
  • a user utilizes a browser application 107 to access or otherwise retrieve a computer file, such as a HyperText Markup Language (HTML) file corresponding to a web page that is generated by the application server 102 and/or the application platform 124 as part of an instance of a virtual application 126 generated at run-time (or “on-demand”) based at least in part on data stored or otherwise maintained by the database 104 that is communicatively coupled to the server 102 via the communications network 108 .
  • a computer file such as a HyperText Markup Language (HTML) file corresponding to a web page that is generated by the application server 102 and/or the application platform 124 as part of an instance of a virtual application 126 generated at run-time (or “on-demand”) based at least in part on data stored or otherwise maintained by the database 104 that is communicatively coupled to the server 102 via the communications network 108 .
  • HTML HyperText Markup Language
  • the database 104 includes one or more data storage elements configurable to store or otherwise maintain data for integration with or invocation by a virtual application in objects organized in object tables.
  • the database 104 includes a plurality of different object tables configured to store or otherwise maintain alphanumeric values, metadata, or other descriptive information that define a particular instance of a respective type of object associated with a respective object table.
  • the virtual application may support a number of different types of objects that may be incorporated into or otherwise depicted or manipulated by the virtual application, with each different type of object having a corresponding object table that includes columns or fields corresponding to the different parameters or criteria that define a particular instance of that object.
  • the database 104 stores or otherwise maintains application objects (e.g., an application object type) where the application object table includes columns or fields corresponding to the different parameters or criteria that define a particular application 126 capable of being generated or otherwise provided by the application platform 124 on a client device 106 .
  • the database 104 may also store or maintain graphical user interface (GUI) objects that may be associated with or referenced by a particular application object and include columns or fields that define the layout, sequencing, and other characteristics of GUI displays to be presented by the application platform 124 on a client device 106 in conjunction with that application 126 .
  • GUI graphical user interface
  • the database 104 stores or otherwise maintains additional database objects for association and/or integration with the application 126 .
  • the database 104 also stores or otherwise maintains metadata, which may be utilized to perform data manipulation and/or formatting.
  • the metadata may include or define describe any number of workflows, process flows, formulas, business logic, structure and other database components or constructs that may be associated with a particular application database object.
  • the database 104 supports a multichannel message data structure 110 that maintains associations between any number of different instances of message objects 112 , 114 that are formatted or otherwise configured for communication via different communication channels.
  • a first message object 112 may have particular number and type of content fields corresponding to the standard message format or communications protocol for a first communication channel (e.g., email) which include the different metadata parameters or criteria that define the content and/or structure of the resulting message to be communicated via that communication channel, while another message object 114 corresponding to a different communication channel (e.g., SMS) having a different standard data format or communications protocol will have a different number and type of content fields that define the content and/or structure of the resulting message for that communication channel.
  • a first communication channel e.g., email
  • another message object 114 corresponding to a different communication channel e.g., SMS
  • SMS standard data format or communications protocol
  • the message management application 128 utilizes channel mapping rules 118 to automatically map a subset of the metadata for the content fields of one communication channel data format to a common subset of content fields of another communication channel data format and automatically instantiate or otherwise create a corresponding instance of the message in that communication channel data format, for example, by creating a new message object 114 and copying the metadata from the content fields of the existing message object 112 to the common content fields of the new message object 114 .
  • the message management application 128 is capable of converting or otherwise translating the content of a message defined for one communication channel into the appropriate format for any number of other communication channels in an automated manner using the channel mapping rules 118 .
  • FIG. 1 depicts the channel mapping rules 118 being maintained in the memory 122 at the server 102
  • the channel mapping rules 118 may be stored or otherwise maintained in the database 104 and obtained or otherwise retrieved by the message management application 128 from the database 104 .
  • FIG. 2 depicts an exemplary embodiment of a multichannel message generation process 200 for supporting different instances of substantially the same message content across multiple different communication channels using a database system.
  • the following description may refer to elements mentioned above in connection with FIG. 1 . While portions of the multichannel message generation process 200 may be performed by different elements of the computing system 100 , for purposes of explanation, the subject matter is described herein in the context of the multichannel message generation process 200 being primarily performed by the server 102 and/or the database 104 .
  • the multichannel message generation process 200 may include any number of additional or alternative tasks, the tasks need not be performed in the illustrated order and/or the tasks may be performed concurrently, and/or the multichannel message generation process 200 may be incorporated into a more comprehensive procedure or process having additional functionality not described in detail herein. Moreover, one or more of the tasks shown and described in the context of FIG. 2 could be omitted from a practical embodiment of the multichannel message generation process 200 as long as the intended overall functionality remains intact.
  • the multichannel message generation process 200 initializes or otherwise begins by receiving or otherwise obtaining an initial version of an electronic message having content fields that are formatted or otherwise configured for transmission or communication via a first messaging communication channel (task 202 ).
  • the initial version of the electronic message functions as a template message for communicating substantially the same message content to multiple different recipients.
  • the application platform 124 and/or message management application 128 may generate or otherwise provide, within the client application 107 at the client device 106 , a graphical user interface (GUI) display that allows a user to input or otherwise define the properties and content of an electronic message suitable for communication via a selected messaging communication channel.
  • GUI graphical user interface
  • the user may interact with the GUI elements presented within the GUI display to indicate or otherwise select email as the desired messaging communication channel and then input or otherwise define the metadata for the different content fields (e.g., the email subject, the message body, and the like) that provide the content for the email.
  • the application platform 124 and/or message management application 128 may retrieve or otherwise identify an existing message object in the database 104 for which multichannel support is desirable.
  • the multichannel message generation process 200 continues by determining or otherwise identifying a destination messaging communication channel for which to convert the original message (task 204 ).
  • the destination messaging communication channel may be input, indicated, or otherwise selected by a user of the client device 106 (e.g., from within the GUI display presented within the client application 107 ), while in other embodiments, the destination messaging communication channel may be automatically identified by the server 102 and/or the database 104 .
  • the multichannel message generation process 200 may be performed in real-time or at run-time to convert a message for purposes of communicating with one or more individuals via a respectively preferred messaging communication channel when a version of the message configured for that desired channel does not already exist.
  • the multichannel message generation process 200 continues by generating, creating, or otherwise instantiating a new instance of the message that is formatted or otherwise configured in accordance with the destination communication channel, copying, mapping, or otherwise translating common metadata from a subset of content fields of the original message to corresponding content fields of the new message (tasks 206 , 208 ).
  • the application platform 124 and/or the message management application 128 create a new instance of a message object 114 in the database 104 that is associated with the destination messaging communication channel and includes content fields that are arranged, configured, or otherwise formatted in accordance with the destination messaging communication channel.
  • the application platform 124 and/or the message management application 128 then automatically populates content fields of the new message object 114 that are analogous to, common to, or otherwise correspond to a subset of content fields of the original message object 112 with the metadata values from those content fields of the initial message object 112 , for example, by copying the metadata values over from the initial message object 112 to the appropriate fields of the new message object 114 .
  • the application platform 124 and/or the message management application 128 utilizes the channel mapping rules 118 to identify which content fields of an initial message object 112 configured for an initial messaging communication channel logically map to corresponding content fields of the new message object 114 configured for the destination messaging communication channel.
  • the channel mapping rules 118 may specify that the subject line field of an email message object maps to the title field of a push notification message object while the body field of the email message object maps to a text field of a push notification message object.
  • the channel mapping rules 118 may be static or otherwise predefined by a user. In other embodiments, the channel mapping rules 118 may be dynamically determined based on subsequent changes or edits to the newly instantiated message object using machine learning or other artificial intelligence techniques.
  • the channel mapping rules 118 may dynamically update to subsequently map metadata values from future instances of the initial message object to the user-preferred content field for that destination communication channel in lieu of the originally mapped content field.
  • the multichannel message generation process 200 maintains an association between the initial version of the message and the newly converted version of the message using a multichannel data structure (task 210 ).
  • the application platform 124 and/or the message management application 128 may instantiate or otherwise create a new instance of a multichannel message data structure 110 that maintains an association between a unique identifier assigned to the initial message object 112 and a unique identifier assigned to the new message object 114 .
  • the multichannel message data structure 110 may maintain data or other information that tracks or otherwise indicates the currently supported messaging communication channels associated with the respective message objects 112 , 114 associated with the multichannel message data structure 110 .
  • the multichannel message data structure 110 functions as a higher level container for different versions of substantially the same message content configured for different messaging communication channels.
  • the multichannel message data structure 110 may be assigned one or more unique identifiers that may be subsequently utilized by a user and/or the application platform 124 to identify the multichannel message data structure 110 based on its associated content independent of any particular messaging communication channel. For example, a user may identify the message that he or she would like to be communicated to another individual using an identifier that indicates the multichannel message data structure 110 , with the application platform 124 and/or the message management application 128 subsequently determining which messaging communication channel and corresponding message object 112 , 114 should be utilized based on the recipient or other factors, as described in greater detail below in the context of FIG. 5 .
  • the multichannel message generation process 200 generates or otherwise provides a graphical representation of the newly created message configured for the identified destination messaging communication channel (task 212 ). For example, after converting the original message from the initial communication channel format to the destination messaging communication channel format by mapping the common metadata from fields of the initial message object 112 to the analogous content fields of the new message object 114 , the application platform 124 and/or the message management application 128 may update the GUI display presented at the client device 106 to depict a graphical representation of the new message object 114 as it would be constructed or presented upon receipt via the destination messaging communication channel.
  • a user may then review the manner in which metadata was mapped from the original message to the new communication channel format and make modifications, additions, or other edits to the content fields of the new message object 114 as desired. It should be noted that the multichannel message generation process 200 as many times as desired with respect to a particular message to map the message to any number or type of different messaging communication channels.
  • FIG. 3 depicts an example editor GUI display 300 that may be presented by the application platform 124 and/or the message management application 128 within the client application 107 at the client device 106 to allow a user to create or otherwise define an initial version of a message.
  • FIG. 3 depicts an example of creation of an email message.
  • the user may interact with the text boxes, buttons, and other GUI elements of the GUI display 300 to define metadata values for the subject line field, the body field, and other content fields of the email message object to be created.
  • the multichannel message generation process 200 may be performed to create a corresponding version of the email message object that is configured for a push notification communication channel by mapping metadata values from a subset of content fields of the email message object to a newly-created push notification message object. Thereafter, the GUI display presented within the client application 107 at the client device 106 may be updated to provide a graphical representation 400 of the push notification version of the email message created in FIG. 3 . As illustrated in FIG.
  • the value for the subject line field 302 of the email message object is copied or otherwise mapped to the title field 402 of the push notification message object
  • the text from the body field 304 of the email message object is copied or otherwise mapped to the text field 404 of the push notification message object
  • the image from the attachment field 306 of the email message object is copied or otherwise mapped to the image field 406 of the push notification message object.
  • FIG. 5 depicts an exemplary embodiment of a multichannel message distribution process 500 suitable for implementation by a database system to communicate different instances of substantially the same message content to different recipients across multiple different communication channels.
  • the following description may refer to elements mentioned above in connection with FIG. 1 . While portions of the multichannel message distribution process 500 may be performed by different elements of the computing system 100 , for purposes of explanation, the subject matter is described herein in the context of the multichannel message distribution process 500 being primarily performed by the server 102 and/or the database 104 .
  • the multichannel message distribution process 500 may include any number of additional or alternative tasks, the tasks need not be performed in the illustrated order and/or the tasks may be performed concurrently, and/or the multichannel message distribution process 500 may be incorporated into a more comprehensive procedure or process having additional functionality not described in detail herein. Moreover, one or more of the tasks shown and described in the context of FIG. 5 could be omitted from a practical embodiment of the multichannel message distribution process 500 as long as the intended overall functionality remains intact.
  • the multichannel message distribution process 500 initializes or otherwise begins by identifying or otherwise determining the multichannel message for distribution and the intended recipient for the identified multichannel message (tasks 502 , 504 ).
  • a user of a client device 106 may interact with the application platform 124 and/or the message management application 128 via the client application 107 to input or otherwise identify the multichannel message 110 that he or she would like to transmit or communicate to other individuals along with the contact information or other identification of those individuals to be communicated with.
  • the illustrated multichannel message distribution process 500 identifies or otherwise selects the messaging communication channel to be utilized for communicating with the intended recipient from among the supported messaging communication channels (task 506 ).
  • the application platform 124 and/or the message management application 128 may identify personal preferences or other information associated with the intended recipient and utilize that recipient-specific information to identify which of the different messaging communication channels for which an instance of a message object 112 , 114 exists in association with the identified multichannel message data structure 110 corresponds to the recipients preferred messaging communication channel or otherwise would be the most effective messaging communication channel for the particular recipient.
  • the database 104 may maintain a contact object associated with the intended recipient that includes or is otherwise associated with preference information, settings information, usage data, engagement data, response data, and the like for that respective recipient, which, in turn may be analyzed by the application platform 124 and/or the message management application 128 to identify which messaging communication channel is most likely to be effectively received by the recipient.
  • the application platform 124 and/or the message management application 128 may identify the push notification communication channel for use in communicating with that recipient.
  • the multichannel message distribution process 500 retrieves or otherwise obtains the existing message that is formatted or otherwise configured for that channel from the database and then transmits or otherwise provides that message to the intended recipient (tasks 508 , 510 ). For example, referring to FIGS. 3 - 4 with reference to FIG. 1 , if the application platform 124 and/or the message management application 128 identifies the push notification channel as the preferred or optimal channel for an intended recipient, the application platform 124 and/or the message management application 128 obtains the push notification message object 114 associated with the identified multichannel message data structure 110 .
  • the application platform 124 and/or the message management application 128 may then utilize the individual recipient's name, contact information, and/or other personal information to automatically populate any recipient-specific fields of the template push notification message corresponding to the push notification message object 114 and then transmits or otherwise provides the resulting push notification message via the push notification communication channel (e.g., by providing the push notification message to a push notification application program interface (API) at the server 102 or another server on the network 108 ), resulting in the graphical representation of the push notification message 400 being presented to that intended recipient.
  • API push notification application program interface
  • the email channel may be identified as the preferred or optimal channel, with the application platform 124 and/or the message management application 128 utilizing that individual's information to automatically populate any recipient-specific fields of the template email message corresponding to the email message object 112 and then transmits or otherwise provides the resulting email message via the email communication channel, resulting in the graphical representation of the email message depicted in FIG. 3 being presented to that intended recipient when he or she views or opens the email message.
  • a smart send API may be implemented at the server 102 (e.g., as a component of the application platform 124 and/or the message management application 128 ) that receives the identifier or other identification information associated with the multichannel message data structure 110 along with identifiers or other information indicating the intended recipients for the message.
  • the smart send API may analyze historical engagement data associated with the respective recipient and/or the message (e.g., application and/or push notification opens, web clicks, page views, email opens, and the like) to identify the optimal messaging communication channel most likely to maximize engagement or responsiveness for that particular recipient.
  • the smart send API may also obtain the contact information associated with a particular recipient from the database 104 (e.g., from the recipient's contact object) and analyze the available contact information with respect to the messaging communication channels supported for the message to identify the optimal messaging communication channel from among the subset of available messaging communication channels which are both supported by the multichannel message data structure and for which the recipient's contact information for that respective channel is available.
  • a multivariant testing of the potential messaging communication channels for a given multichannel message may be performed to dynamically and adaptively optimize the particular messaging communication channel selection.
  • the multichannel message may be initially sent to a testing subset of the intended recipients (e.g., 5% of the intended recipients) across all the supported messaging communication channels to obtain engagement data for the message with respect to the different messaging communication channels.
  • the per channel engagement data may be input or otherwise provided to the channel selection algorithm(s) as the engagement data associated with the message to adjust the messaging communication channel utilization.
  • a message initially created as an email may be mapped to create corresponding SMS, OTT, push notification, and line message versions.
  • the message may then be sent to a subset of intended recipients using each of the supported channels equally (e.g., by using all supported channels for each recipient or randomly balancing the channel usage across recipients). If the engagement data indicates that the email engagement is relatively low compared to the push notification messaging channel, subsequent iterations of the multichannel message distribution process 500 may prioritize the push notification messaging channel over the email messaging channel for the remaining subset of recipients for which push notification communications are available.
  • an individual message template created and designed by a user for one particular messaging communication channel may be supported across any number of different messaging communication channels, thereby allowing substantially the same underlying message content to be sent to any number of different recipients across any number of different messaging communication channels without requiring the user to manually create or redefine the message for each individual messaging communication channel.
  • the multichannel message distribution process 500 is capable of leveraging the multichannel message data structure to send personalized versions of a message to any number of different recipients using the respective messaging communication channel for which each respective recipient is most responsive or engaged, or for which each respective recipient prefers to receive such messages.
  • the amount of time and effort required by a user creating or defining the message is reduced relative to other approaches that require creating or defining content for each messaging channel independently of one another, which may also require a user to use different software applications, even though they are trying to communicate the same content. Additionally, supporting the same message content across different communication channels allows for the message to be targeted on a per-recipient basis by messaging communication channel, thereby improving the level of engagement or responsiveness to the message.
  • the multichannel message data structure functions as a top-level database object that associates sub-objects (e.g., message database objects) that correspond to the different messaging communication channels that are supported.
  • Metadata values for fields of an initial message object that define the content or attributes of the message such as title, text, image, button, style, and the like, are mapped from the initial message object to the analogous or corresponding content fields of message objects for other messaging communication channels to be supported.
  • a subset of content fields for the corresponding new message object are automatically populated with metadata values from existing fields of one or more other message objects included or otherwise associated with the multichannel message data structure.
  • the mapped, corresponding, or otherwise analogous fields of one or more other message objects corresponding to the other versions of the message configured for other messaging communication channels may be automatically updated (e.g., the user could be prompted to propagate the change or keep it unique to the given channel), thereby allowing the message to be uniformly and dynamically updated across multiple different messaging communication channels at the same time.
  • a user may avoid having to redundantly enter, type, select, or otherwise input the same information or data for each of the supported channels.
  • FIG. 6 depicts an exemplary embodiment of an on-demand multi-tenant database system 600 suitable for use with the computing system 100 of FIG. 1 and the multichannel messaging processes described herein.
  • the illustrated multi-tenant system 600 of FIG. 6 includes a server 602 , such as server 102 , that dynamically creates and supports virtual applications 628 based upon data 632 from a common database 630 (e.g., database 104 ) that is shared between multiple tenants, alternatively referred to herein as a multi-tenant database.
  • Data and services generated by the virtual applications 628 are provided via a network 645 (e.g., network 108 ) to any number of client devices 640 (e.g., client device 106 ), as desired.
  • a network 645 e.g., network 108
  • client devices 640 e.g., client device 106
  • Each virtual application 628 is suitably generated at run-time (or on-demand) using a common application platform 610 (e.g., application platform 124 ) that securely provides access to the data 632 in the database 630 for each of the various tenants subscribing to the multi-tenant system 600 .
  • the multi-tenant system 600 is implemented in the form of an on-demand multi-tenant customer relationship management (CRM) system that can support any number of authenticated users of multiple tenants.
  • CRM customer relationship management
  • a “tenant” or an “organization” should be understood as referring to a group of one or more users that shares access to common subset of the data within the multi-tenant database 630 .
  • each tenant includes one or more users associated with, assigned to, or otherwise belonging to that respective tenant.
  • each respective user within the multi-tenant system 600 is associated with, assigned to, or otherwise belongs to a particular tenant of the plurality of tenants supported by the multi-tenant system 600 .
  • Tenants may represent customers, customer departments, business or legal organizations, and/or any other entities that maintain data for particular sets of users within the multi-tenant system 600 (i.e., in the multi-tenant database 630 ).
  • the application server 602 may be associated with one or more tenants supported by the multi-tenant system 600 .
  • multiple tenants may share access to the server 602 and the database 630 , the particular data and services provided from the server 602 to each tenant can be securely isolated from those provided to other tenants (e.g., by restricting other tenants from accessing a particular tenant's data using that tenant's unique organization identifier as a filtering criterion).
  • the multi-tenant architecture therefore allows different sets of users to share functionality and hardware resources without necessarily sharing any of the data 632 belonging to or otherwise associated with other tenants.
  • the multi-tenant database 630 is any sort of repository or other data storage system capable of storing and managing the data 632 associated with any number of tenants.
  • the database 630 may be implemented using any type of conventional database server hardware.
  • the database 630 shares processing hardware 604 with the server 602 .
  • the database 630 is implemented using separate physical and/or virtual database server hardware that communicates with the server 602 to perform the various functions described herein.
  • the database 630 includes a database management system or other equivalent software capable of determining an optimal query plan for retrieving and providing a particular subset of the data 632 to an instance of virtual application 628 in response to a query initiated or otherwise provided by a virtual application 628 .
  • the multi-tenant database 630 may alternatively be referred to herein as an on-demand database, in that the multi-tenant database 630 provides (or is available to provide) data at run-time to on-demand virtual applications 628 generated by the application platform 610 .
  • the data 632 may be organized and formatted in any manner to support the application platform 610 .
  • the data 632 is suitably organized into a relatively small number of large data tables to maintain a semi-amorphous “heap”-type format.
  • the data 632 can then be organized as needed for a particular virtual application 628 .
  • conventional data relationships are established using any number of pivot tables 634 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired. Further data manipulation and report formatting is generally performed at run-time using a variety of metadata constructs.
  • Metadata within a universal data directory (UDD) 636 can be used to describe any number of forms, reports, workflows, user access privileges, business logic and other constructs that are common to multiple tenants. Tenant-specific formatting, functions and other constructs may be maintained as tenant-specific metadata 638 for each tenant, as desired. Rather than forcing the data 632 into an inflexible global structure that is common to all tenants and applications, the database 630 is organized to be relatively amorphous, with the pivot tables 634 and the metadata 638 providing additional structure on an as-needed basis.
  • the application platform 610 suitably uses the pivot tables 634 and/or the metadata 638 to generate “virtual” components of the virtual applications 628 to logically obtain, process, and present the relatively amorphous data 632 from the database 630 .
  • the server 602 is implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic application platform 610 for generating the virtual applications 628 .
  • the server 602 may be implemented using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate.
  • the server 602 operates with any sort of conventional processing hardware 604 , such as a processor 605 , memory 606 , input/output features 607 and the like.
  • the input/output features 607 generally represent the interface(s) to networks (e.g., to the network 645 , or any other local area, wide area or other network), mass storage, display devices, data entry devices and/or the like.
  • the processor 605 may be implemented using any suitable processing system, such as one or more processors, controllers, microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of “cloud-based” or other virtual systems.
  • the memory 606 represents any non-transitory short or long-term storage or other computer-readable media capable of storing programming instructions for execution on the processor 605 , including any sort of random-access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like.
  • RAM random-access memory
  • ROM read only memory
  • flash memory magnetic or optical mass storage, and/or the like.
  • the computer-executable programming instructions when read and executed by the server 602 and/or processor 605 , cause the server 602 and/or processor 605 to create, generate, or otherwise facilitate the application platform 610 and/or virtual applications 628 and perform one or more additional tasks, operations, functions, and/or processes described herein.
  • the memory 606 represents one suitable implementation of such computer-readable media, and alternatively or additionally, the server 602 could receive and cooperate with external computer-readable media that is realized as a portable or mobile component or application platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
  • a portable or mobile component or application platform e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
  • the application platform 610 is any sort of software application or other data processing engine that generates the virtual applications 628 that provide data and/or services to the client devices 640 .
  • the application platform 610 gains access to processing resources, communications interfaces and other features of the processing hardware 604 using any sort of conventional or proprietary operating system 608 .
  • the virtual applications 628 are typically generated at run-time in response to input received from the client devices 640 .
  • the application platform 610 includes a bulk data processing engine 612 , a query generator 614 , a search engine 616 that provides text indexing and other search functionality, and a runtime application generator 620 .
  • Each of these features may be implemented as a separate process or other module, and many equivalent embodiments could include different and/or additional features, components or other modules as desired.
  • the runtime application generator 620 dynamically builds and executes the virtual applications 628 in response to specific requests received from the client devices 640 .
  • the virtual applications 628 are typically constructed in accordance with the tenant-specific metadata 638 , which describes the particular tables, reports, interfaces and/or other features of the particular application 628 .
  • each virtual application 628 generates dynamic web content that can be served to a browser or other client program 642 associated with its client device 640 , as appropriate.
  • the runtime application generator 620 suitably interacts with the query generator 614 to efficiently obtain multi-tenant data 632 from the database 630 as needed in response to input queries initiated or otherwise provided by users of the client devices 640 .
  • the query generator 614 considers the identity of the user requesting a particular function (along with the user's associated tenant), and then builds and executes queries to the database 630 using system-wide metadata 636 , tenant specific metadata 638 , pivot tables 634 , and/or any other available resources.
  • the query generator 614 in this example therefore maintains security of the common database 630 by ensuring that queries are consistent with access privileges granted to the user and/or tenant that initiated the request.
  • the query generator 614 suitably obtains requested subsets of data 632 accessible to a user and/or tenant from the database 630 as needed to populate the tables, reports or other features of the particular virtual application 628 for that user and/or tenant.
  • the data processing engine 612 performs bulk processing operations on the data 632 such as uploads or downloads, updates, online transaction processing, and/or the like.
  • less urgent bulk processing of the data 632 can be scheduled to occur as processing resources become available, thereby giving priority to more urgent data processing by the query generator 614 , the search engine 616 , the virtual applications 628 , etc.
  • the application platform 610 is utilized to create and/or generate data-driven virtual applications 628 for the tenants that they support.
  • virtual applications 628 may make use of interface features such as custom (or tenant-specific) screens 624 , standard (or universal) screens 622 or the like. Any number of custom and/or standard objects 626 may also be available for integration into tenant-developed virtual applications 628 .
  • custom should be understood as meaning that a respective object or application is tenant-specific (e.g., only available to users associated with a particular tenant in the multi-tenant system) or user-specific (e.g., only available to a particular subset of users within the multi-tenant system), whereas “standard” or “universal” applications or objects are available across multiple tenants in the multi-tenant system.
  • a virtual CRM application may utilize standard objects 626 such as “account” objects, “opportunity” objects, “contact” objects, or the like.
  • the data 632 associated with each virtual application 628 is provided to the database 630 , as appropriate, and stored until it is requested or is otherwise needed, along with the metadata 638 that describes the particular features (e.g., reports, tables, functions, objects, fields, formulas, code, etc.) of that particular virtual application 628 .
  • a virtual application 628 may include a number of objects 626 accessible to a tenant, wherein for each object 626 accessible to the tenant, information pertaining to its object type along with values for various fields associated with that respective object type are maintained as metadata 638 in the database 630 .
  • the object type defines the structure (e.g., the formatting, functions and other constructs) of each respective object 626 and the various fields associated therewith.
  • the data and services provided by the server 602 can be retrieved using any sort of personal computer, mobile telephone, tablet or other network-enabled client device 640 on the network 645 .
  • the client device 640 includes a display device, such as a monitor, screen, or another conventional electronic display capable of graphically presenting data and/or information retrieved from the multi-tenant database 630 .
  • the user operates a conventional browser application or other client program 642 (e.g., client application 107 ) executed by the client device 640 to contact the server 602 via the network 645 using a networking protocol, such as the hypertext transport protocol (HTTP) or the like.
  • HTTP hypertext transport protocol
  • the user typically authenticates his or her identity to the server 602 to obtain a session identifier (“SessionID”) that identifies the user in subsequent communications with the server 602 .
  • SessionID session identifier
  • the runtime application generator 620 suitably creates the application at run time based upon the metadata 638 , as appropriate.
  • the virtual application 628 may contain Java, ActiveX, or other content that can be presented using conventional client software running on the client device 640 ; other embodiments may simply provide dynamic web or other content that can be presented and viewed by the user, as desired.
  • Embodiments of the subject matter may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being computer-executed, computerized, software-implemented, or computer-implemented.
  • one or more processing systems or devices can carry out the described operations, tasks, and functions by manipulating electrical signals representing data bits at accessible memory locations, as well as other processing of signals.
  • the memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to the data bits.
  • various block components shown in the figures may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions.
  • an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
  • various elements of the systems described herein are essentially the code segments or instructions that perform the various tasks.
  • the program or code segments can be stored in a processor-readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication path.
  • the “processor-readable medium” or “machine-readable medium” may include any non-transitory medium that can store or transfer information. Examples of the processor-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, or the like.
  • the computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic paths, or RF links.
  • the code segments may be downloaded via computer networks such as the Internet, an intranet, a LAN, or the like.
  • the subject matter described herein can be implemented in the context of any computer-implemented system and/or in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another.
  • the subject matter described herein is implemented in conjunction with a virtual customer relationship management (CRM) application in a multi-tenant environment.
  • CRM virtual customer relationship management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

Computing systems, database systems, and related methods are provided for managing data pertaining to electronic messages. A database system includes a database including a first object having a plurality of content fields corresponding to a first instance of an electronic message configured for a first communication channel and a server coupled to the database and a network to create a second database object corresponding to a second instance of the electronic message configured for a different communication channel, create a multichannel data structure in the database maintaining an association between the first and second objects, automatically populate a subset of content fields of the second object with values copied from the first object based on a mapping between the two communication channels, and thereafter use the second object to generate a version of the electronic message to be communicated to a recipient using the second communication channel.

Description

TECHNICAL FIELD
Embodiments of the subject matter described herein relate generally to cloud computing and database systems, and more particularly, to database systems and methods that support creating and managing messages formatted for different communications channels.
BACKGROUND
Modern software development is evolving away from the client-server model toward network-based processing systems that provide access to data and services via the Internet or other networks. In contrast to traditional systems that host networked applications on dedicated server hardware, a “cloud” computing model allows applications to be provided over the network “as a service” or “on-demand” by an infrastructure provider. The infrastructure provider typically abstracts the underlying hardware and other resources used to deliver a customer-developed application so that the customer no longer needs to operate and support dedicated server hardware. The cloud computing model can often provide substantial cost savings to the customer over the life of the application because the customer no longer needs to provide dedicated network infrastructure, electrical and temperature controls, physical security and other logistics in support of dedicated server hardware.
Multi-tenant cloud-based architectures have been developed to improve collaboration, integration, and community-based cooperation between customer tenants without sacrificing data security. Generally speaking, multi-tenancy refers to a system where a single hardware and software platform simultaneously supports multiple user groups (also referred to as “organizations” or “tenants”) from a common data storage element (also referred to as a “multi-tenant database”). The multi-tenant design provides a number of advantages over conventional server virtualization systems. First, the multi-tenant platform operator can often make improvements to the platform based upon collective information from the entire tenant community. Additionally, because all users in the multi-tenant environment execute applications within a common processing space, it is relatively easy to grant or deny access to specific sets of data for any user within the multi-tenant platform, thereby improving collaboration and integration between applications and the data managed by the various applications. The multi-tenant architecture therefore allows convenient and cost effective sharing of similar application features between multiple sets of users. For example, a multi-tenant system may support an on-demand customer relationship management (CRM) application that manages the data for a particular organization's sales staff that is maintained by the multi-tenant system and facilitates collaboration among members of that organization's sales staff (e.g., account executives, sales representatives, and the like).
One situation that arises in a CRM context occurs when it is desirable to communicate substantially the same information to multiple different individuals. However, different individuals will often prefer to utilize different modes of communication or otherwise be less responsive to different modes of communication. For example, some individuals may prefer e-mail, while others prefer text messages, and so on. At the same time, individuals may also prefer to receive fewer communications or limited points of contact, such that there are also risks of frustrating, overwhelming, or otherwise interfering with individuals in a manner that could potentially be detrimental. Thus, the task of communicating the desired information to multiple different individuals in accordance with their respective communications preferences can be difficult, cumbersome and time-consuming. Accordingly, it is desirable to provide systems and methods that facilitate communicating to multiple intended recipients in an improved manner.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
FIG. 1 is a block diagram of an exemplary computing system;
FIG. 2 is a flow diagram of an exemplary multichannel message generation process suitable for implementation in the computing system of FIG. 1 in accordance with one or more embodiments;
FIGS. 3-4 depict exemplary graphical user interface (GUI) displays suitable for presentation on a client device in the computing system of FIG. 1 in connection with an exemplary embodiment of the multichannel message generation process of FIG. 2 ;
FIG. 5 is a flow diagram of an exemplary multichannel message distribution process suitable for implementation in the computing system of FIG. 1 in conjunction with the multichannel message generation process of FIG. 2 in accordance with one or more embodiments;
FIG. 6 is a block diagram of an exemplary multi-tenant system suitable for use with the computing system of FIG. 1 in accordance with one or more embodiments.
DETAILED DESCRIPTION
Embodiments of the subject matter described herein generally relate to database systems and methods for communicating information to different individuals via different communications channels. In this regard, a communication channel should be understood as referring to a particular manner of communication, which is independent of the communications network or medium used to transport the information being communicated. By way of example, electronic mail (or email), text messaging, short message service (SMS) messaging, over-the-top (OTT) messaging, line messaging, push notification messaging, application-based messaging, and social media messaging represent a non-exclusive, non-exhaustive, and non-limiting list of different potential communications channels. As described in greater detail below, exemplary embodiments described herein support a multichannel data structure that is maintained in a database and utilized to manage the data or content for an individual electronic message with respect to the different communications channels that may be available. In this regard, the multichannel data structure may associate different instances of an electronic message that are formatted or otherwise configured for transmission via different communications channels, which, in turn, may be utilized to communicate substantially the same message content to different individuals via their respectively preferred communications channels.
For example, a database system may obtain (e.g., from a user creating or defining a message) metadata for content fields of an initial instance of an electronic message to be configured with a particular data format associated with a particular communication channel of interest. An instance of a multichannel data structure may be instantiated in the database for that message, with the multichannel data structure including or otherwise being associated with the metadata for the content fields for the data format associated with the initial communication channel of interest. Thereafter, one or more other different communication channels of interest (alternatively referred to herein as destination communication channels) for that message may be identified, for example, by the user that created or otherwise defined the electronic message configured for the initial communication channel of interest identifying other communication channels for which the user would like the message to be supported. In response, the database system copies or otherwise maps a subset of the metadata for the content fields for the data format associated with the initial communication channel of interest to a corresponding subset of content fields for the different data format(s) associated with the identified destination communication channel(s) that are common or otherwise correspond to content fields of the initial communication channel data format. The database system then automatically creates instance(s) of the electronic message configured in the respective data format(s) associated with the destination communication channel(s) that include the copied metadata from the multichannel data structure for the content fields of the destination communication channel data format(s) that are common to or otherwise correspond to content fields of the initial communication channel data format. In this regard, the user does not need to manually create or define different instances of substantially the same content or message for each different communication channel that the user would like supported.
Thereafter, to transmit a message to multiple different individuals, in some embodiments, the multichannel data structure may be referenced in a manner that allows the database system to automatically identify the preferred supported communication channel for each individual on an individualized and case-by-case basis before transmitting the appropriate instance of the electronic message maintained by the multichannel data structure to each of the intended recipients via the respective communication channel that is preferred for the respective recipient. Thus, by using the multichannel data structure, the effectiveness, reach, or impression of the message may be improved in an automated manner while also having the message content homogenized across different communication channels and recipients.
FIG. 1 depicts an exemplary embodiment of a computing system 100 capable managing multichannel messages using a multichannel message data structure 110 in a database 104. The computing system 100 includes, without limitation, a server 102 that is communicatively coupled to the database 104 and one or more client devices 106 over a communications network 108. The communications network 108 may be realized as any sort or combination of wired and/or wireless computer network, a cellular network, a mobile broadband network, a radio network, the Internet, or the like. It should be noted that FIG. 1 is a simplified representation of a computing system 100 for purposes of explanation and is not intended to be limiting. For example, in practice, multiple instances of client devices 106 communicating on the network 108 and/or with the server 102 may be present. Additionally, practical implementations may include multiple instances of the server 102 and/or the database 104, which, in turn may reside behind or rely on one or more load balancers to manage resource utilization, as will be appreciated in the art.
The server 102 generally represents a computing device, computing system or another combination of processing logic, circuitry, hardware, and/or other components configured to support the processes, tasks, operations, and/or functions described herein. In this regard, the server 102 includes a processing system 120, which may be implemented using any suitable processing system and/or device, such as, for example, one or more processors, central processing units (CPUs), controllers, microprocessors, microcontrollers, processing cores and/or other hardware computing resources configured to support the operation of the processing system 120 described herein. The processing system 120 may include or otherwise access a data storage element 122 (or memory) capable of storing programming instructions for execution by the processing system 120, that, when read and executed, cause processing system 120 to support the processes described herein. Depending on the embodiment, the memory 122 may be realized as a random-access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, or any other suitable non-transitory short or long-term data storage or other computer-readable media, and/or any suitable combination thereof.
In one or more embodiments, the programming instructions cause the processing system 120 to create, generate, or otherwise facilitate an application platform 124 that is capable of supporting, generating, or otherwise providing instances of a virtual application 126 at run-time (or “on-demand”) based at least in part upon code and other data that is stored or otherwise maintained by the database 104, such that the server 102 functions as an application server 102. In exemplary embodiments, the programming instructions also cause the processing system 120 to create, generate, or otherwise facilitate a message management application 128 that supports creating and managing multichannel messages, as described in greater detail below. Depending on the embodiment, the message management application 128 can be integrated with or otherwise incorporated as part of a virtual application 126, or be realized as a separate or standalone component that is capable of interacting with the client device 106 independent of any virtual application 126.
The client device 106 generally represents an electronic device coupled to the network 108 that may be utilized by a user to access the application platform 124 on the application server 102 to thereby access instances of virtual applications 126 supported by the application server 102 and/or retrieve data from the database 104 via the network 108. In practice, the client device 106 can be realized as any sort of personal computer, mobile telephone, tablet or other network-enabled electronic device. In exemplary embodiments, the client device 106 includes a display device, such as a monitor, screen, or another conventional electronic display, capable of graphically presenting data and/or information along with a user input device, such as a touchscreen, a touch panel, a mouse, a joystick, a directional pad, a motion sensor, or the like, capable of receiving input from the user of the client device 106. The illustrated client device 106 executes or otherwise supports a client application 107 that communicates with the application platform 124 on the server 102 using a networking protocol. In some embodiments, the client application 107 is realized as a web browser or similar local client application executed by the client device 106 that contacts the application server 102 and/or application platform 124 using a networking protocol, such as the hypertext transport protocol (HTTP) or the like.
In one or more embodiments, a user utilizes a browser application 107 to access or otherwise retrieve a computer file, such as a HyperText Markup Language (HTML) file corresponding to a web page that is generated by the application server 102 and/or the application platform 124 as part of an instance of a virtual application 126 generated at run-time (or “on-demand”) based at least in part on data stored or otherwise maintained by the database 104 that is communicatively coupled to the server 102 via the communications network 108. It should be noted that although one or more embodiments may be described herein in the context of a web page integrated in a virtual application in an on-demand database system, the subject matter is not necessarily so limited, and in practice, may be implemented in an equivalent manner in any number of different database systems, cloud computing systems, and the like, and in the context of any type of document, computer file or other resource provided by a server that includes, presents, or otherwise displays elements at a client device over a network.
In exemplary embodiments, the database 104 includes one or more data storage elements configurable to store or otherwise maintain data for integration with or invocation by a virtual application in objects organized in object tables. In this regard, the database 104 includes a plurality of different object tables configured to store or otherwise maintain alphanumeric values, metadata, or other descriptive information that define a particular instance of a respective type of object associated with a respective object table. For example, the virtual application may support a number of different types of objects that may be incorporated into or otherwise depicted or manipulated by the virtual application, with each different type of object having a corresponding object table that includes columns or fields corresponding to the different parameters or criteria that define a particular instance of that object. In one embodiment, the database 104 stores or otherwise maintains application objects (e.g., an application object type) where the application object table includes columns or fields corresponding to the different parameters or criteria that define a particular application 126 capable of being generated or otherwise provided by the application platform 124 on a client device 106. In this regard, the database 104 may also store or maintain graphical user interface (GUI) objects that may be associated with or referenced by a particular application object and include columns or fields that define the layout, sequencing, and other characteristics of GUI displays to be presented by the application platform 124 on a client device 106 in conjunction with that application 126. Additionally, the database 104 stores or otherwise maintains additional database objects for association and/or integration with the application 126. The database 104 also stores or otherwise maintains metadata, which may be utilized to perform data manipulation and/or formatting. For example, the metadata may include or define describe any number of workflows, process flows, formulas, business logic, structure and other database components or constructs that may be associated with a particular application database object.
Still referring to FIG. 1 , in exemplary embodiments, the database 104 supports a multichannel message data structure 110 that maintains associations between any number of different instances of message objects 112, 114 that are formatted or otherwise configured for communication via different communication channels. For example, a first message object 112 may have particular number and type of content fields corresponding to the standard message format or communications protocol for a first communication channel (e.g., email) which include the different metadata parameters or criteria that define the content and/or structure of the resulting message to be communicated via that communication channel, while another message object 114 corresponding to a different communication channel (e.g., SMS) having a different standard data format or communications protocol will have a different number and type of content fields that define the content and/or structure of the resulting message for that communication channel.
As described in greater detail below in the context of FIG. 2 , in the illustrated embodiment, the message management application 128 utilizes channel mapping rules 118 to automatically map a subset of the metadata for the content fields of one communication channel data format to a common subset of content fields of another communication channel data format and automatically instantiate or otherwise create a corresponding instance of the message in that communication channel data format, for example, by creating a new message object 114 and copying the metadata from the content fields of the existing message object 112 to the common content fields of the new message object 114. In this regard, the message management application 128 is capable of converting or otherwise translating the content of a message defined for one communication channel into the appropriate format for any number of other communication channels in an automated manner using the channel mapping rules 118. It should be noted that although FIG. 1 depicts the channel mapping rules 118 being maintained in the memory 122 at the server 102, in other embodiments, the channel mapping rules 118 may be stored or otherwise maintained in the database 104 and obtained or otherwise retrieved by the message management application 128 from the database 104.
FIG. 2 depicts an exemplary embodiment of a multichannel message generation process 200 for supporting different instances of substantially the same message content across multiple different communication channels using a database system. For illustrative purposes, the following description may refer to elements mentioned above in connection with FIG. 1 . While portions of the multichannel message generation process 200 may be performed by different elements of the computing system 100, for purposes of explanation, the subject matter is described herein in the context of the multichannel message generation process 200 being primarily performed by the server 102 and/or the database 104. It should be appreciated that the multichannel message generation process 200 may include any number of additional or alternative tasks, the tasks need not be performed in the illustrated order and/or the tasks may be performed concurrently, and/or the multichannel message generation process 200 may be incorporated into a more comprehensive procedure or process having additional functionality not described in detail herein. Moreover, one or more of the tasks shown and described in the context of FIG. 2 could be omitted from a practical embodiment of the multichannel message generation process 200 as long as the intended overall functionality remains intact.
Referring to FIG. 2 , with continued reference to FIG. 1 , the multichannel message generation process 200 initializes or otherwise begins by receiving or otherwise obtaining an initial version of an electronic message having content fields that are formatted or otherwise configured for transmission or communication via a first messaging communication channel (task 202). In exemplary embodiments, the initial version of the electronic message functions as a template message for communicating substantially the same message content to multiple different recipients. For example, in some embodiments, the application platform 124 and/or message management application 128 may generate or otherwise provide, within the client application 107 at the client device 106, a graphical user interface (GUI) display that allows a user to input or otherwise define the properties and content of an electronic message suitable for communication via a selected messaging communication channel. In this regard, the user may interact with the GUI elements presented within the GUI display to indicate or otherwise select email as the desired messaging communication channel and then input or otherwise define the metadata for the different content fields (e.g., the email subject, the message body, and the like) that provide the content for the email. In other embodiments, the application platform 124 and/or message management application 128 may retrieve or otherwise identify an existing message object in the database 104 for which multichannel support is desirable.
The multichannel message generation process 200 continues by determining or otherwise identifying a destination messaging communication channel for which to convert the original message (task 204). In some embodiments, the destination messaging communication channel may be input, indicated, or otherwise selected by a user of the client device 106 (e.g., from within the GUI display presented within the client application 107), while in other embodiments, the destination messaging communication channel may be automatically identified by the server 102 and/or the database 104. For example, in some embodiments, the multichannel message generation process 200 may be performed in real-time or at run-time to convert a message for purposes of communicating with one or more individuals via a respectively preferred messaging communication channel when a version of the message configured for that desired channel does not already exist.
After identifying the desired destination channel, the multichannel message generation process 200 continues by generating, creating, or otherwise instantiating a new instance of the message that is formatted or otherwise configured in accordance with the destination communication channel, copying, mapping, or otherwise translating common metadata from a subset of content fields of the original message to corresponding content fields of the new message (tasks 206, 208). In this regard, the application platform 124 and/or the message management application 128 create a new instance of a message object 114 in the database 104 that is associated with the destination messaging communication channel and includes content fields that are arranged, configured, or otherwise formatted in accordance with the destination messaging communication channel. The application platform 124 and/or the message management application 128 then automatically populates content fields of the new message object 114 that are analogous to, common to, or otherwise correspond to a subset of content fields of the original message object 112 with the metadata values from those content fields of the initial message object 112, for example, by copying the metadata values over from the initial message object 112 to the appropriate fields of the new message object 114.
In exemplary embodiments, the application platform 124 and/or the message management application 128 utilizes the channel mapping rules 118 to identify which content fields of an initial message object 112 configured for an initial messaging communication channel logically map to corresponding content fields of the new message object 114 configured for the destination messaging communication channel. For example, the channel mapping rules 118 may specify that the subject line field of an email message object maps to the title field of a push notification message object while the body field of the email message object maps to a text field of a push notification message object. In some embodiments, the channel mapping rules 118 may be static or otherwise predefined by a user. In other embodiments, the channel mapping rules 118 may be dynamically determined based on subsequent changes or edits to the newly instantiated message object using machine learning or other artificial intelligence techniques. For example, if users continually move a copied or mapped metadata value from the originally mapped content field of new message objects for a particular destination communication channel to a different content field of those message objects, over time, the channel mapping rules 118 may dynamically update to subsequently map metadata values from future instances of the initial message object to the user-preferred content field for that destination communication channel in lieu of the originally mapped content field.
Still referring to FIG. 2 , after mapping common metadata to the new version of the message configured for the identified destination messaging communication channel, the multichannel message generation process 200 maintains an association between the initial version of the message and the newly converted version of the message using a multichannel data structure (task 210). For example, the application platform 124 and/or the message management application 128 may instantiate or otherwise create a new instance of a multichannel message data structure 110 that maintains an association between a unique identifier assigned to the initial message object 112 and a unique identifier assigned to the new message object 114. Additionally, the multichannel message data structure 110 may maintain data or other information that tracks or otherwise indicates the currently supported messaging communication channels associated with the respective message objects 112, 114 associated with the multichannel message data structure 110. In this regard, the multichannel message data structure 110 functions as a higher level container for different versions of substantially the same message content configured for different messaging communication channels. The multichannel message data structure 110 may be assigned one or more unique identifiers that may be subsequently utilized by a user and/or the application platform 124 to identify the multichannel message data structure 110 based on its associated content independent of any particular messaging communication channel. For example, a user may identify the message that he or she would like to be communicated to another individual using an identifier that indicates the multichannel message data structure 110, with the application platform 124 and/or the message management application 128 subsequently determining which messaging communication channel and corresponding message object 112, 114 should be utilized based on the recipient or other factors, as described in greater detail below in the context of FIG. 5 .
Still referring to FIG. 2 , in one or more embodiments, the multichannel message generation process 200 generates or otherwise provides a graphical representation of the newly created message configured for the identified destination messaging communication channel (task 212). For example, after converting the original message from the initial communication channel format to the destination messaging communication channel format by mapping the common metadata from fields of the initial message object 112 to the analogous content fields of the new message object 114, the application platform 124 and/or the message management application 128 may update the GUI display presented at the client device 106 to depict a graphical representation of the new message object 114 as it would be constructed or presented upon receipt via the destination messaging communication channel. A user may then review the manner in which metadata was mapped from the original message to the new communication channel format and make modifications, additions, or other edits to the content fields of the new message object 114 as desired. It should be noted that the multichannel message generation process 200 as many times as desired with respect to a particular message to map the message to any number or type of different messaging communication channels.
FIG. 3 depicts an example editor GUI display 300 that may be presented by the application platform 124 and/or the message management application 128 within the client application 107 at the client device 106 to allow a user to create or otherwise define an initial version of a message. For example, FIG. 3 depicts an example of creation of an email message. As illustrated, the user may interact with the text boxes, buttons, and other GUI elements of the GUI display 300 to define metadata values for the subject line field, the body field, and other content fields of the email message object to be created. Referring now to FIG. 4 , after creation of the email message object, the multichannel message generation process 200 may be performed to create a corresponding version of the email message object that is configured for a push notification communication channel by mapping metadata values from a subset of content fields of the email message object to a newly-created push notification message object. Thereafter, the GUI display presented within the client application 107 at the client device 106 may be updated to provide a graphical representation 400 of the push notification version of the email message created in FIG. 3 . As illustrated in FIG. 4 , the value for the subject line field 302 of the email message object is copied or otherwise mapped to the title field 402 of the push notification message object, the text from the body field 304 of the email message object is copied or otherwise mapped to the text field 404 of the push notification message object, and the image from the attachment field 306 of the email message object is copied or otherwise mapped to the image field 406 of the push notification message object. After reviewing the autopopulated and autogenerated push notification message 400, the user of the client device 106 may interact with the GUI display presented within the client application 107 to edit or otherwise modify the push notification version of the original message as desired.
FIG. 5 depicts an exemplary embodiment of a multichannel message distribution process 500 suitable for implementation by a database system to communicate different instances of substantially the same message content to different recipients across multiple different communication channels. For illustrative purposes, the following description may refer to elements mentioned above in connection with FIG. 1 . While portions of the multichannel message distribution process 500 may be performed by different elements of the computing system 100, for purposes of explanation, the subject matter is described herein in the context of the multichannel message distribution process 500 being primarily performed by the server 102 and/or the database 104. It should be appreciated that the multichannel message distribution process 500 may include any number of additional or alternative tasks, the tasks need not be performed in the illustrated order and/or the tasks may be performed concurrently, and/or the multichannel message distribution process 500 may be incorporated into a more comprehensive procedure or process having additional functionality not described in detail herein. Moreover, one or more of the tasks shown and described in the context of FIG. 5 could be omitted from a practical embodiment of the multichannel message distribution process 500 as long as the intended overall functionality remains intact.
Referring to FIG. 5 , with continued reference to FIG. 1 , the multichannel message distribution process 500 initializes or otherwise begins by identifying or otherwise determining the multichannel message for distribution and the intended recipient for the identified multichannel message (tasks 502, 504). For example, a user of a client device 106 may interact with the application platform 124 and/or the message management application 128 via the client application 107 to input or otherwise identify the multichannel message 110 that he or she would like to transmit or communicate to other individuals along with the contact information or other identification of those individuals to be communicated with.
Based on the intended recipient and the messaging communication channels supported for the identified multichannel message, the illustrated multichannel message distribution process 500 identifies or otherwise selects the messaging communication channel to be utilized for communicating with the intended recipient from among the supported messaging communication channels (task 506). In this regard, the application platform 124 and/or the message management application 128 may identify personal preferences or other information associated with the intended recipient and utilize that recipient-specific information to identify which of the different messaging communication channels for which an instance of a message object 112, 114 exists in association with the identified multichannel message data structure 110 corresponds to the recipients preferred messaging communication channel or otherwise would be the most effective messaging communication channel for the particular recipient. For example, the database 104 may maintain a contact object associated with the intended recipient that includes or is otherwise associated with preference information, settings information, usage data, engagement data, response data, and the like for that respective recipient, which, in turn may be analyzed by the application platform 124 and/or the message management application 128 to identify which messaging communication channel is most likely to be effectively received by the recipient. In this regard, if an intended recipient does not check his or her email messages frequently but is responsive to push notifications, the application platform 124 and/or the message management application 128 may identify the push notification communication channel for use in communicating with that recipient.
After identifying a preferred or optimal messaging communication channel for a particular recipient, the multichannel message distribution process 500 retrieves or otherwise obtains the existing message that is formatted or otherwise configured for that channel from the database and then transmits or otherwise provides that message to the intended recipient (tasks 508, 510). For example, referring to FIGS. 3-4 with reference to FIG. 1 , if the application platform 124 and/or the message management application 128 identifies the push notification channel as the preferred or optimal channel for an intended recipient, the application platform 124 and/or the message management application 128 obtains the push notification message object 114 associated with the identified multichannel message data structure 110. The application platform 124 and/or the message management application 128 may then utilize the individual recipient's name, contact information, and/or other personal information to automatically populate any recipient-specific fields of the template push notification message corresponding to the push notification message object 114 and then transmits or otherwise provides the resulting push notification message via the push notification communication channel (e.g., by providing the push notification message to a push notification application program interface (API) at the server 102 or another server on the network 108), resulting in the graphical representation of the push notification message 400 being presented to that intended recipient. Conversely, for another recipient, the email channel may be identified as the preferred or optimal channel, with the application platform 124 and/or the message management application 128 utilizing that individual's information to automatically populate any recipient-specific fields of the template email message corresponding to the email message object 112 and then transmits or otherwise provides the resulting email message via the email communication channel, resulting in the graphical representation of the email message depicted in FIG. 3 being presented to that intended recipient when he or she views or opens the email message.
For example, in one or more embodiments, a smart send API may be implemented at the server 102 (e.g., as a component of the application platform 124 and/or the message management application 128) that receives the identifier or other identification information associated with the multichannel message data structure 110 along with identifiers or other information indicating the intended recipients for the message. For each identified recipient, the smart send API may analyze historical engagement data associated with the respective recipient and/or the message (e.g., application and/or push notification opens, web clicks, page views, email opens, and the like) to identify the optimal messaging communication channel most likely to maximize engagement or responsiveness for that particular recipient. In this regard, the smart send API may also obtain the contact information associated with a particular recipient from the database 104 (e.g., from the recipient's contact object) and analyze the available contact information with respect to the messaging communication channels supported for the message to identify the optimal messaging communication channel from among the subset of available messaging communication channels which are both supported by the multichannel message data structure and for which the recipient's contact information for that respective channel is available.
In one or more embodiments, a multivariant testing of the potential messaging communication channels for a given multichannel message may be performed to dynamically and adaptively optimize the particular messaging communication channel selection. For example, the multichannel message may be initially sent to a testing subset of the intended recipients (e.g., 5% of the intended recipients) across all the supported messaging communication channels to obtain engagement data for the message with respect to the different messaging communication channels. Thereafter, the per channel engagement data may be input or otherwise provided to the channel selection algorithm(s) as the engagement data associated with the message to adjust the messaging communication channel utilization. For example, a message initially created as an email may be mapped to create corresponding SMS, OTT, push notification, and line message versions. The message may then be sent to a subset of intended recipients using each of the supported channels equally (e.g., by using all supported channels for each recipient or randomly balancing the channel usage across recipients). If the engagement data indicates that the email engagement is relatively low compared to the push notification messaging channel, subsequent iterations of the multichannel message distribution process 500 may prioritize the push notification messaging channel over the email messaging channel for the remaining subset of recipients for which push notification communications are available.
By virtue of the multichannel message generation process 200, an individual message template created and designed by a user for one particular messaging communication channel may be supported across any number of different messaging communication channels, thereby allowing substantially the same underlying message content to be sent to any number of different recipients across any number of different messaging communication channels without requiring the user to manually create or redefine the message for each individual messaging communication channel. Additionally, the multichannel message distribution process 500 is capable of leveraging the multichannel message data structure to send personalized versions of a message to any number of different recipients using the respective messaging communication channel for which each respective recipient is most responsive or engaged, or for which each respective recipient prefers to receive such messages. By logically mapping and reusing metadata values for content fields across different channels, the amount of time and effort required by a user creating or defining the message is reduced relative to other approaches that require creating or defining content for each messaging channel independently of one another, which may also require a user to use different software applications, even though they are trying to communicate the same content. Additionally, supporting the same message content across different communication channels allows for the message to be targeted on a per-recipient basis by messaging communication channel, thereby improving the level of engagement or responsiveness to the message.
In one embodiment, the multichannel message data structure functions as a top-level database object that associates sub-objects (e.g., message database objects) that correspond to the different messaging communication channels that are supported. Metadata values for fields of an initial message object that define the content or attributes of the message, such as title, text, image, button, style, and the like, are mapped from the initial message object to the analogous or corresponding content fields of message objects for other messaging communication channels to be supported. In this regard, when a new messaging communication channel to be supported is selected, indicated, or otherwise added to an existing message, a subset of content fields for the corresponding new message object are automatically populated with metadata values from existing fields of one or more other message objects included or otherwise associated with the multichannel message data structure. Additionally, in some embodiments, when the value for a field of one message object is changed, the mapped, corresponding, or otherwise analogous fields of one or more other message objects corresponding to the other versions of the message configured for other messaging communication channels may be automatically updated (e.g., the user could be prompted to propagate the change or keep it unique to the given channel), thereby allowing the message to be uniformly and dynamically updated across multiple different messaging communication channels at the same time. Thus, a user may avoid having to redundantly enter, type, select, or otherwise input the same information or data for each of the supported channels.
FIG. 6 depicts an exemplary embodiment of an on-demand multi-tenant database system 600 suitable for use with the computing system 100 of FIG. 1 and the multichannel messaging processes described herein. The illustrated multi-tenant system 600 of FIG. 6 includes a server 602, such as server 102, that dynamically creates and supports virtual applications 628 based upon data 632 from a common database 630 (e.g., database 104) that is shared between multiple tenants, alternatively referred to herein as a multi-tenant database. Data and services generated by the virtual applications 628 are provided via a network 645 (e.g., network 108) to any number of client devices 640 (e.g., client device 106), as desired. Each virtual application 628 is suitably generated at run-time (or on-demand) using a common application platform 610 (e.g., application platform 124) that securely provides access to the data 632 in the database 630 for each of the various tenants subscribing to the multi-tenant system 600. In accordance with one non-limiting example, the multi-tenant system 600 is implemented in the form of an on-demand multi-tenant customer relationship management (CRM) system that can support any number of authenticated users of multiple tenants.
As used herein, a “tenant” or an “organization” should be understood as referring to a group of one or more users that shares access to common subset of the data within the multi-tenant database 630. In this regard, each tenant includes one or more users associated with, assigned to, or otherwise belonging to that respective tenant. To put it another way, each respective user within the multi-tenant system 600 is associated with, assigned to, or otherwise belongs to a particular tenant of the plurality of tenants supported by the multi-tenant system 600. Tenants may represent customers, customer departments, business or legal organizations, and/or any other entities that maintain data for particular sets of users within the multi-tenant system 600 (i.e., in the multi-tenant database 630). For example, the application server 602 may be associated with one or more tenants supported by the multi-tenant system 600. Although multiple tenants may share access to the server 602 and the database 630, the particular data and services provided from the server 602 to each tenant can be securely isolated from those provided to other tenants (e.g., by restricting other tenants from accessing a particular tenant's data using that tenant's unique organization identifier as a filtering criterion). The multi-tenant architecture therefore allows different sets of users to share functionality and hardware resources without necessarily sharing any of the data 632 belonging to or otherwise associated with other tenants.
The multi-tenant database 630 is any sort of repository or other data storage system capable of storing and managing the data 632 associated with any number of tenants. The database 630 may be implemented using any type of conventional database server hardware. In various embodiments, the database 630 shares processing hardware 604 with the server 602. In other embodiments, the database 630 is implemented using separate physical and/or virtual database server hardware that communicates with the server 602 to perform the various functions described herein. In an exemplary embodiment, the database 630 includes a database management system or other equivalent software capable of determining an optimal query plan for retrieving and providing a particular subset of the data 632 to an instance of virtual application 628 in response to a query initiated or otherwise provided by a virtual application 628. The multi-tenant database 630 may alternatively be referred to herein as an on-demand database, in that the multi-tenant database 630 provides (or is available to provide) data at run-time to on-demand virtual applications 628 generated by the application platform 610.
In practice, the data 632 may be organized and formatted in any manner to support the application platform 610. In various embodiments, the data 632 is suitably organized into a relatively small number of large data tables to maintain a semi-amorphous “heap”-type format. The data 632 can then be organized as needed for a particular virtual application 628. In various embodiments, conventional data relationships are established using any number of pivot tables 634 that establish indexing, uniqueness, relationships between entities, and/or other aspects of conventional database organization as desired. Further data manipulation and report formatting is generally performed at run-time using a variety of metadata constructs. Metadata within a universal data directory (UDD) 636, for example, can be used to describe any number of forms, reports, workflows, user access privileges, business logic and other constructs that are common to multiple tenants. Tenant-specific formatting, functions and other constructs may be maintained as tenant-specific metadata 638 for each tenant, as desired. Rather than forcing the data 632 into an inflexible global structure that is common to all tenants and applications, the database 630 is organized to be relatively amorphous, with the pivot tables 634 and the metadata 638 providing additional structure on an as-needed basis. To that end, the application platform 610 suitably uses the pivot tables 634 and/or the metadata 638 to generate “virtual” components of the virtual applications 628 to logically obtain, process, and present the relatively amorphous data 632 from the database 630.
Still referring to FIG. 6 , the server 602 is implemented using one or more actual and/or virtual computing systems that collectively provide the dynamic application platform 610 for generating the virtual applications 628. For example, the server 602 may be implemented using a cluster of actual and/or virtual servers operating in conjunction with each other, typically in association with conventional network communications, cluster management, load balancing and other features as appropriate. The server 602 operates with any sort of conventional processing hardware 604, such as a processor 605, memory 606, input/output features 607 and the like. The input/output features 607 generally represent the interface(s) to networks (e.g., to the network 645, or any other local area, wide area or other network), mass storage, display devices, data entry devices and/or the like. The processor 605 may be implemented using any suitable processing system, such as one or more processors, controllers, microprocessors, microcontrollers, processing cores and/or other computing resources spread across any number of distributed or integrated systems, including any number of “cloud-based” or other virtual systems. The memory 606 represents any non-transitory short or long-term storage or other computer-readable media capable of storing programming instructions for execution on the processor 605, including any sort of random-access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, and/or the like. The computer-executable programming instructions, when read and executed by the server 602 and/or processor 605, cause the server 602 and/or processor 605 to create, generate, or otherwise facilitate the application platform 610 and/or virtual applications 628 and perform one or more additional tasks, operations, functions, and/or processes described herein. It should be noted that the memory 606 represents one suitable implementation of such computer-readable media, and alternatively or additionally, the server 602 could receive and cooperate with external computer-readable media that is realized as a portable or mobile component or application platform, e.g., a portable hard drive, a USB flash drive, an optical disc, or the like.
The application platform 610 is any sort of software application or other data processing engine that generates the virtual applications 628 that provide data and/or services to the client devices 640. In a typical embodiment, the application platform 610 gains access to processing resources, communications interfaces and other features of the processing hardware 604 using any sort of conventional or proprietary operating system 608. The virtual applications 628 are typically generated at run-time in response to input received from the client devices 640. For the illustrated embodiment, the application platform 610 includes a bulk data processing engine 612, a query generator 614, a search engine 616 that provides text indexing and other search functionality, and a runtime application generator 620. Each of these features may be implemented as a separate process or other module, and many equivalent embodiments could include different and/or additional features, components or other modules as desired.
The runtime application generator 620 dynamically builds and executes the virtual applications 628 in response to specific requests received from the client devices 640. The virtual applications 628 are typically constructed in accordance with the tenant-specific metadata 638, which describes the particular tables, reports, interfaces and/or other features of the particular application 628. In various embodiments, each virtual application 628 generates dynamic web content that can be served to a browser or other client program 642 associated with its client device 640, as appropriate.
The runtime application generator 620 suitably interacts with the query generator 614 to efficiently obtain multi-tenant data 632 from the database 630 as needed in response to input queries initiated or otherwise provided by users of the client devices 640. In a typical embodiment, the query generator 614 considers the identity of the user requesting a particular function (along with the user's associated tenant), and then builds and executes queries to the database 630 using system-wide metadata 636, tenant specific metadata 638, pivot tables 634, and/or any other available resources. The query generator 614 in this example therefore maintains security of the common database 630 by ensuring that queries are consistent with access privileges granted to the user and/or tenant that initiated the request. In this manner, the query generator 614 suitably obtains requested subsets of data 632 accessible to a user and/or tenant from the database 630 as needed to populate the tables, reports or other features of the particular virtual application 628 for that user and/or tenant.
Still referring to FIG. 6 , the data processing engine 612 performs bulk processing operations on the data 632 such as uploads or downloads, updates, online transaction processing, and/or the like. In many embodiments, less urgent bulk processing of the data 632 can be scheduled to occur as processing resources become available, thereby giving priority to more urgent data processing by the query generator 614, the search engine 616, the virtual applications 628, etc.
In exemplary embodiments, the application platform 610 is utilized to create and/or generate data-driven virtual applications 628 for the tenants that they support. Such virtual applications 628 may make use of interface features such as custom (or tenant-specific) screens 624, standard (or universal) screens 622 or the like. Any number of custom and/or standard objects 626 may also be available for integration into tenant-developed virtual applications 628. As used herein, “custom” should be understood as meaning that a respective object or application is tenant-specific (e.g., only available to users associated with a particular tenant in the multi-tenant system) or user-specific (e.g., only available to a particular subset of users within the multi-tenant system), whereas “standard” or “universal” applications or objects are available across multiple tenants in the multi-tenant system. For example, a virtual CRM application may utilize standard objects 626 such as “account” objects, “opportunity” objects, “contact” objects, or the like. The data 632 associated with each virtual application 628 is provided to the database 630, as appropriate, and stored until it is requested or is otherwise needed, along with the metadata 638 that describes the particular features (e.g., reports, tables, functions, objects, fields, formulas, code, etc.) of that particular virtual application 628. For example, a virtual application 628 may include a number of objects 626 accessible to a tenant, wherein for each object 626 accessible to the tenant, information pertaining to its object type along with values for various fields associated with that respective object type are maintained as metadata 638 in the database 630. In this regard, the object type defines the structure (e.g., the formatting, functions and other constructs) of each respective object 626 and the various fields associated therewith.
Still referring to FIG. 6 , the data and services provided by the server 602 can be retrieved using any sort of personal computer, mobile telephone, tablet or other network-enabled client device 640 on the network 645. In an exemplary embodiment, the client device 640 includes a display device, such as a monitor, screen, or another conventional electronic display capable of graphically presenting data and/or information retrieved from the multi-tenant database 630. Typically, the user operates a conventional browser application or other client program 642 (e.g., client application 107) executed by the client device 640 to contact the server 602 via the network 645 using a networking protocol, such as the hypertext transport protocol (HTTP) or the like. The user typically authenticates his or her identity to the server 602 to obtain a session identifier (“SessionID”) that identifies the user in subsequent communications with the server 602. When the identified user requests access to a virtual application 628, the runtime application generator 620 suitably creates the application at run time based upon the metadata 638, as appropriate. As noted above, the virtual application 628 may contain Java, ActiveX, or other content that can be presented using conventional client software running on the client device 640; other embodiments may simply provide dynamic web or other content that can be presented and viewed by the user, as desired.
The foregoing description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the technical field, background, or the detailed description. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations, and the exemplary embodiments described herein are not intended to limit the scope or applicability of the subject matter in any way.
For the sake of brevity, conventional techniques related to web pages and/or browsers, email, text messaging, SMS messaging, OTT messaging, line messaging, push notifications, artificial intelligence, machine learning, targeting, APIs, multi-tenancy, cloud computing, on-demand applications, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail herein. In addition, those skilled in the art will appreciate that embodiments may be practiced in conjunction with any number of system and/or network architectures, data transmission protocols, and device configurations, and that the system described herein is merely one suitable example. Furthermore, certain terminology may be used herein for the purpose of reference only, and thus is not intended to be limiting. For example, the terms “first,” “second” and other such numerical terms do not imply a sequence or order unless clearly indicated by the context.
Embodiments of the subject matter may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being computer-executed, computerized, software-implemented, or computer-implemented. In practice, one or more processing systems or devices can carry out the described operations, tasks, and functions by manipulating electrical signals representing data bits at accessible memory locations, as well as other processing of signals. The memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to the data bits. It should be appreciated that the various block components shown in the figures may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. When implemented in software or firmware, various elements of the systems described herein are essentially the code segments or instructions that perform the various tasks. The program or code segments can be stored in a processor-readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication path. The “processor-readable medium” or “machine-readable medium” may include any non-transitory medium that can store or transfer information. Examples of the processor-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, or the like. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic paths, or RF links. The code segments may be downloaded via computer networks such as the Internet, an intranet, a LAN, or the like. In this regard, the subject matter described herein can be implemented in the context of any computer-implemented system and/or in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. In one or more exemplary embodiments, the subject matter described herein is implemented in conjunction with a virtual customer relationship management (CRM) application in a multi-tenant environment.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application. Accordingly, details of the exemplary embodiments or other limitations described above should not be read into the claims absent a clear intention to the contrary.

Claims (20)

What is claimed is:
1. A method of managing data in a database system, the method comprising:
obtaining metadata for a first plurality of content fields for a first message object in a database of the database system corresponding to a first instance of an electronic message having a first data format associated with a first communication channel;
creating, in the database of the database system, a multichannel data structure including the metadata for the first plurality of content fields in the first data format associated with the first communication channel;
identifying, at the database system, a second communication channel for the electronic message, the second communication channel being different from the first communication channel and having associated therewith a second data format different from the first data format, the second data format including a second plurality of content fields defining messages for the second communication channel that are different from the first plurality of content fields;
automatically mapping, at the database system, a subset of the metadata of the first plurality of content fields of the first message object having the first data format to a corresponding subset of the second plurality of content fields of a second message object having the second data format using channel mapping rules, resulting in the multichannel data structure maintaining copied metadata formatted in accordance with the second data format in association with the second communication channel;
thereafter creating, at the database system, the second message object corresponding to a second instance of the electronic message in the second data format associated with the second communication channel by automatically populating the corresponding subset of the second plurality of content fields of the second message object using the copied metadata; and
presenting, by the database system, a graphical representation corresponding to receipt of the second instance of the electronic message via the second communication channel using the subset of the second plurality of content fields of the second message object, wherein the graphical representation comprises the same content as the first instance of the electronic message having the first data format associated with the first communication channel.
2. The method of claim 1, further comprising automatically selecting, at the database system, one of the first communication channel and the second communication channel for communication based at least in part on an intended recipient for the electronic message.
3. The method of claim 2, further comprising:
automatically generating, at the database system, a version of the electronic message for the intended recipient using the respective one of the first instance and the second instance of the electronic message associated with the selected one of the first communication channel and the second communication channel; and
communicating the version of the electronic message to the intended recipient using the selected one of the first communication channel and the second communication channel.
4. The method of claim 3, wherein automatically selecting comprises automatically selecting the one of the first communication channel and the second communication channel for communication based on engagement data associated with the intended recipient.
5. The method of claim 1, wherein:
automatically mapping the subset of the metadata of the first plurality of content fields of the first data format to the corresponding subset comprises identifying the corresponding subset of the second plurality of content fields of the second message object that are analogous to the subset of the first plurality of content fields of the first message object.
6. The method of claim 5, wherein the first communication channel comprises at least one of electronic mail (email), text messaging, short message service (SMS) messaging, over-the-top (OTT) messaging, line messaging, push notification messaging, application-based messaging, and social media messaging, and the second communication channel comprises a different one of electronic mail (email), text messaging, short message service (SMS) messaging, over-the-top (OTT) messaging, line messaging, push notification messaging, application-based messaging, and social media messaging.
7. A database system comprising:
a database including a first message object having a first plurality of content fields corresponding to a first instance of an electronic message configured for a first communication channel; and
a server coupled to the database and a network to:
create a second message object in the database, the second message object corresponding to a second instance of the electronic message configured for a second communication channel different from the first communication channel, wherein the second communication channel is different from the first communication channel, the second communication channel is associated with a second data format different from a first data format associated with the first communication channel, and the second data format comprises a second plurality of content fields defining messages for the second communication channel that are different from the first plurality of content fields defining messages for the first communication channel;
create a multichannel data structure in the database maintaining an association between the first message object and the second message object;
automatically populate a subset of the second plurality of content fields of the second message object with one or more metadata values copied from a corresponding subset of the first plurality of content fields of the first message object by automatically mapping the corresponding subset of the first plurality of content fields of the first message object to the subset of the second plurality of content fields of the second message object based on a mapping between the first communication channel and the second communication channel using channel mapping rules, resulting in the second message object maintaining the one or more metadata values copied from the first message object formatted in accordance with the second data format in association with the second communication channel;
generate a version of the electronic message for a recipient using the second message object; and
communicate the version of the electronic message to the recipient using the second communication channel to present a graphical representation corresponding to receipt of the electronic message, wherein the graphical representation comprises the same content as the first instance of the electronic message having the first data format associated with the first communication channel.
8. The database system of claim 7, wherein the version of the electronic message generated for the recipient using the second message object includes the one or more metadata values copied from the first message object.
9. The database system of claim 7, wherein the database maintains engagement data for the recipient and the server selects the second communication channel from among a group of available communication channels including the first communication channel and the second communication channel based on the engagement data for the recipient prior to generating the version of the electronic message.
10. The database system of claim 9, wherein the first communication channel comprises at least one of electronic mail (email), text messaging, short message service (SMS) messaging, over-the-top (OTT) messaging, line messaging, push notification messaging, application-based messaging, and social media messaging, and the second communication channel comprises a different one of electronic mail (email), text messaging, short message service (SMS) messaging, over-the-top (OTT) messaging, line messaging, push notification messaging, application-based messaging, and social media messaging.
11. The database system of claim 7, wherein one of the database and the server stores the channel mapping rules indicating the mapping between the subset of the second plurality of content fields associated with electronic messages configured for the second communication channel and the corresponding subset of the first plurality of content fields associated with electronic messages configured for the first communication channel.
12. A method of managing data in a database, the method comprising:
creating, by a server, a new message object in the database, the new message object having a first format comprising a first plurality of content fields corresponding to a destination messaging communication channel;
creating, by the server, a multichannel message data structure in the database, the multichannel message data structure maintaining an association between the new message object and an existing message object in the database, the existing message object having a second format comprising a second plurality of content fields corresponding to an original messaging communication channel;
automatically identifying, by the server, a first subset of the second plurality of content fields of the existing message object that logically map to a second subset of the first plurality of content fields of the new message object that are different from the first subset of the second plurality of content fields using channel mapping rules;
automatically populating, by the server, the second subset of the first plurality of content fields of the new message object with copied values from the first subset of the second plurality of content fields of the existing message object; and
presenting, by the server on a client device coupled to the server over a network, a graphical representation of the new message object corresponding to receipt of the new message object via the destination messaging communication channel using the copied values for the second subset of the first plurality of content fields of the new message object, wherein the graphical representation comprises the same content as the existing message object having the second format associated with the original messaging communication channel.
13. The method of claim 12, further comprising:
automatically generating, by the server, a new electronic message for a recipient including the copied values for the second subset of the first plurality of content fields that is formatted in accordance with the destination messaging communication channel based on the new message object after automatically populating the second subset of the first plurality of content fields; and
transmitting, by the server, the new electronic message to the recipient over the network using the destination messaging communication channel.
14. The method of claim 13, further comprising identifying, by the server, the destination messaging communication channel as an optimal messaging communication channel for the recipient prior to automatically generating the new electronic message.
15. The method of claim 14, wherein identifying the destination messaging communication channel as the optimal messaging communication channel comprises:
obtaining historical data associated with the recipient from the database; and
prioritizing the destination messaging communication channel over the original messaging communication channel based at least in part on the historical data associated with the recipient.
16. The method of claim 12, further comprising receiving, by the server from the client device, user selection of the destination messaging communication channel via a graphical user interface display depicted at the client device prior to creating the new message object and the multichannel message data structure.
17. The method of claim 1, wherein automatically mapping the subset of the metadata of the first plurality of content fields of the first data format to the corresponding subset of the second plurality of content fields comprises:
automatically mapping a first metadata value for a first field of the first plurality of content fields to an analogous field of the second plurality of content fields.
18. The method of claim 1, further comprising automatically updating a first field of the second plurality of content fields of the second message object in the second data format associated with the second communication channel from a copied metadata value to a changed value when an analogous field of the first plurality of content fields of the first message object in the first data format associated with the first communication channel is changed, wherein the multichannel data structure comprises the first message object and the second message object.
19. The method of claim 1, wherein:
providing the graphical representation comprises updating an editor graphical user interface (GUI) display to provide the graphical representation comprising copied values for the corresponding subset of the second plurality of content fields of the second message object; and
the second plurality of content fields of the second message object are different from the first plurality of content fields of the first message object.
20. The method of claim 1, wherein the copied metadata comprises copied values for fields of the subset of the metadata of the first plurality of content fields defining at least one of an image, a button and a style of the electronic message.
US16/526,786 2019-07-30 2019-07-30 Database systems and related multichannel communication methods Active 2040-09-28 US11698891B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/526,786 US11698891B2 (en) 2019-07-30 2019-07-30 Database systems and related multichannel communication methods
US18/323,281 US20230306008A1 (en) 2019-07-30 2023-05-24 Database systems and related multichannel communication methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/526,786 US11698891B2 (en) 2019-07-30 2019-07-30 Database systems and related multichannel communication methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/323,281 Continuation US20230306008A1 (en) 2019-07-30 2023-05-24 Database systems and related multichannel communication methods

Publications (2)

Publication Number Publication Date
US20210034595A1 US20210034595A1 (en) 2021-02-04
US11698891B2 true US11698891B2 (en) 2023-07-11

Family

ID=74259455

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/526,786 Active 2040-09-28 US11698891B2 (en) 2019-07-30 2019-07-30 Database systems and related multichannel communication methods
US18/323,281 Pending US20230306008A1 (en) 2019-07-30 2023-05-24 Database systems and related multichannel communication methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/323,281 Pending US20230306008A1 (en) 2019-07-30 2023-05-24 Database systems and related multichannel communication methods

Country Status (1)

Country Link
US (2) US11698891B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240106773A1 (en) * 2022-09-27 2024-03-28 At&T Intellectual Property I, L.P. Methods, systems, and devices to determine most recently used messaging application for delivery of message(s)
US20240168956A1 (en) * 2022-11-23 2024-05-23 Salesforce, Inc. Stateful rule execution with event listener

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948863B1 (en) * 2018-06-28 2019-02-15 이니그마(주) Method, apparatus and program for automated selection of message trasfer channel and sending a message
US11195418B1 (en) * 2018-10-04 2021-12-07 Zoox, Inc. Trajectory prediction on top-down scenes and associated model
US11698891B2 (en) * 2019-07-30 2023-07-11 Salesforce.Com, Inc. Database systems and related multichannel communication methods
CN115277460A (en) * 2021-04-30 2022-11-01 华为技术有限公司 Data transmission method, device and system
US11743218B2 (en) * 2021-12-21 2023-08-29 LeapXpert Limited Message capture in a multi channel communication environment
US11863615B2 (en) 2022-03-18 2024-01-02 T-Mobile Usa, Inc. Content management systems providing zero recovery time objective
US20240029883A1 (en) * 2022-07-19 2024-01-25 Xeba Technologies, LLC Ai-based system and method for prediction of medical diagnosis

Citations (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577188A (en) 1994-05-31 1996-11-19 Future Labs, Inc. Method to provide for virtual screen overlay
US5608872A (en) 1993-03-19 1997-03-04 Ncr Corporation System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters
US5649104A (en) 1993-03-19 1997-07-15 Ncr Corporation System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers
US5715450A (en) 1995-09-27 1998-02-03 Siebel Systems, Inc. Method of selecting and presenting data from a database using a query language to a user of a computer system
US5821937A (en) 1996-02-23 1998-10-13 Netsuite Development, L.P. Computer method for updating a network design
US5831610A (en) 1996-02-23 1998-11-03 Netsuite Development L.P. Designing networks
US5873096A (en) 1997-10-08 1999-02-16 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5911776A (en) * 1996-12-18 1999-06-15 Unisys Corporation Automatic format conversion system and publishing methodology for multi-user network
US5918159A (en) 1997-08-04 1999-06-29 Fomukong; Mundi Location reporting satellite paging system with optional blocking of location reporting
US5963953A (en) 1998-03-30 1999-10-05 Siebel Systems, Inc. Method, and system for product configuration
US6092083A (en) 1997-02-26 2000-07-18 Siebel Systems, Inc. Database management system which synchronizes an enterprise server and a workgroup user client using a docking agent
US6161149A (en) 1998-03-13 2000-12-12 Groupserve, Inc. Centrifugal communication and collaboration method
US6169534B1 (en) 1997-06-26 2001-01-02 Upshot.Com Graphical user interface for customer information management
US6178425B1 (en) 1997-02-26 2001-01-23 Siebel Systems, Inc. Method of determining the visibility to a remote database client of a plurality of database transactions using simplified visibility rules
US6216135B1 (en) 1997-02-26 2001-04-10 Siebel Systems, Inc. Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths
US6233617B1 (en) 1997-02-26 2001-05-15 Siebel Systems, Inc. Determining the visibility to a remote database client
US6266669B1 (en) 1997-02-28 2001-07-24 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US6295530B1 (en) 1995-05-15 2001-09-25 Andrew M. Ritchie Internet service of differently formatted viewable data signals including commands for browser execution
US20010044791A1 (en) 2000-04-14 2001-11-22 Richter James Neal Automated adaptive classification system for bayesian knowledge networks
US6324568B1 (en) 1999-11-30 2001-11-27 Siebel Systems, Inc. Method and system for distributing objects over a network
US6324693B1 (en) 1997-03-12 2001-11-27 Siebel Systems, Inc. Method of synchronizing independently distributed software and database schema
US6336137B1 (en) 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
USD454139S1 (en) 2001-02-20 2002-03-05 Rightnow Technologies Display screen for a computer
US6367077B1 (en) 1997-02-27 2002-04-02 Siebel Systems, Inc. Method of upgrading a software application in the presence of user modifications
US6393605B1 (en) 1998-11-18 2002-05-21 Siebel Systems, Inc. Apparatus and system for efficient delivery and deployment of an application
US20020072951A1 (en) 1999-03-03 2002-06-13 Michael Lee Marketing support database management method, system and program product
US20020082892A1 (en) 1998-08-27 2002-06-27 Keith Raffel Method and apparatus for network-based sales force management
US6434550B1 (en) 2000-04-14 2002-08-13 Rightnow Technologies, Inc. Temporal updates of relevancy rating of retrieved information in an information search system
US6446089B1 (en) 1997-02-26 2002-09-03 Siebel Systems, Inc. Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions
US20020140731A1 (en) 2001-03-28 2002-10-03 Pavitra Subramaniam Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site
US20020143997A1 (en) 2001-03-28 2002-10-03 Xiaofei Huang Method and system for direct server synchronization with a computing device
US20020162090A1 (en) 2001-04-30 2002-10-31 Parnell Karen P. Polylingual simultaneous shipping of software
US20020165742A1 (en) 2000-03-31 2002-11-07 Mark Robins Feature centric release manager method and system
US20030004971A1 (en) 2001-06-29 2003-01-02 Gong Wen G. Automatic generation of data models and accompanying user interfaces
US20030018705A1 (en) 2001-03-31 2003-01-23 Mingte Chen Media-independent communication server
US20030018830A1 (en) 2001-02-06 2003-01-23 Mingte Chen Adaptive communication application programming interface
US6535909B1 (en) 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US20030066032A1 (en) 2001-09-28 2003-04-03 Siebel Systems,Inc. System and method for facilitating user interaction in a browser environment
US20030066031A1 (en) 2001-09-28 2003-04-03 Siebel Systems, Inc. Method and system for supporting user navigation in a browser environment
US20030070005A1 (en) 2001-09-29 2003-04-10 Anil Mukundan Method, apparatus, and system for implementing view caching in a framework to support web-based applications
US20030070004A1 (en) 2001-09-29 2003-04-10 Anil Mukundan Method, apparatus, and system for implementing a framework to support a web-based application
US20030069936A1 (en) 2001-10-09 2003-04-10 Warner Douglas K. Method for routing electronic correspondence based on the level and type of emotion contained therein
US20030070000A1 (en) 2001-09-29 2003-04-10 John Coker Computing system and method to implicitly commit unsaved data for a World Wide Web application
US20030074418A1 (en) 2001-09-29 2003-04-17 John Coker Method, apparatus and system for a mobile web client
US6553563B2 (en) 1998-11-30 2003-04-22 Siebel Systems, Inc. Development tool, method, and system for client server applications
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US6574635B2 (en) 1999-03-03 2003-06-03 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components
US6577726B1 (en) 2000-03-31 2003-06-10 Siebel Systems, Inc. Computer telephony integration hotelling method and system
US6601087B1 (en) 1998-11-18 2003-07-29 Webex Communications, Inc. Instant document sharing
US6604117B2 (en) 1996-03-19 2003-08-05 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US20030151633A1 (en) 2002-02-13 2003-08-14 David George Method and system for enabling connectivity to a data system
US20030159136A1 (en) 2001-09-28 2003-08-21 Huang Xiao Fei Method and system for server synchronization with a computing device
US6621834B1 (en) 1999-11-05 2003-09-16 Raindance Communications, Inc. System and method for voice transmission over network protocols
US20030189600A1 (en) 2002-03-29 2003-10-09 Prasad Gune Defining an approval process for requests for approval
US20030204427A1 (en) 2002-03-29 2003-10-30 Prasad Gune User interface for processing requests for approval
US20030206192A1 (en) 2001-03-31 2003-11-06 Mingte Chen Asynchronous message push to web browser
US6654032B1 (en) 1999-12-23 2003-11-25 Webex Communications, Inc. Instant sharing of documents on a remote server
US20030225730A1 (en) 2002-06-03 2003-12-04 Rightnow Technologies, Inc. System and method for generating a dynamic interface via a communications network
US6665648B2 (en) 1998-11-30 2003-12-16 Siebel Systems, Inc. State models for monitoring process
US6665655B1 (en) 2000-04-14 2003-12-16 Rightnow Technologies, Inc. Implicit rating of retrieved information in an information search system
US20040001092A1 (en) 2002-06-27 2004-01-01 Rothwein Thomas M. Prototyping graphical user interfaces
US20040010489A1 (en) 2002-07-12 2004-01-15 Rightnow Technologies, Inc. Method for providing search-specific web pages in a network computing environment
US20040015981A1 (en) 2002-06-27 2004-01-22 Coker John L. Efficient high-interactivity user interface for client-server applications
US20040027388A1 (en) 2002-06-27 2004-02-12 Eric Berg Method and apparatus to facilitate development of a customer-specific business process model
US6711565B1 (en) 2001-06-18 2004-03-23 Siebel Systems, Inc. Method, apparatus, and system for previewing search results
US6724399B1 (en) 2001-09-28 2004-04-20 Siebel Systems, Inc. Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser
US6728960B1 (en) 1998-11-18 2004-04-27 Siebel Systems, Inc. Techniques for managing multiple threads in a browser environment
US6728702B1 (en) 2001-06-18 2004-04-27 Siebel Systems, Inc. System and method to implement an integrated search center supporting a full-text search and query on a database
US6732111B2 (en) 1998-03-03 2004-05-04 Siebel Systems, Inc. Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database
US6732095B1 (en) 2001-04-13 2004-05-04 Siebel Systems, Inc. Method and apparatus for mapping between XML and relational representations
US6732100B1 (en) 2000-03-31 2004-05-04 Siebel Systems, Inc. Database access method and system for user role defined access
US20040128001A1 (en) 2002-08-28 2004-07-01 Levin Issac Stephen Method and apparatus for an integrated process modeller
US6763501B1 (en) 2000-06-09 2004-07-13 Webex Communications, Inc. Remote document serving
US6763351B1 (en) 2001-06-18 2004-07-13 Siebel Systems, Inc. Method, apparatus, and system for attaching search results
US6768904B2 (en) 2000-10-11 2004-07-27 Lg Electronics Inc. Data communication method using mobile terminal
US6772229B1 (en) 2000-11-13 2004-08-03 Groupserve, Inc. Centrifugal communication and collaboration method
US6782383B2 (en) 2001-06-18 2004-08-24 Siebel Systems, Inc. System and method to implement a persistent and dismissible search center frame
US20040186860A1 (en) 2003-03-21 2004-09-23 Wen-Hsin Lee Method and architecture for providing data-change alerts to external applications via a push service
US20040193510A1 (en) 2003-03-25 2004-09-30 Catahan Nardo B. Modeling of order data
US20040193722A1 (en) * 1999-08-30 2004-09-30 Donovan Kevin Remington Joseph Bartholomew Universal instant messaging system for the internet
US20040199536A1 (en) 2003-03-24 2004-10-07 Barnes Leon Maria Theresa Product common object
US20040199489A1 (en) 2003-03-24 2004-10-07 Barnes-Leon Maria Theresa Custom common object
US20040199543A1 (en) 2003-04-04 2004-10-07 Braud Luke A. Facilitating data manipulation in a browser-based user interface of an enterprise business application
US6804330B1 (en) 2002-01-04 2004-10-12 Siebel Systems, Inc. Method and system for accessing CRM data via voice
US20040225753A1 (en) * 2003-04-22 2004-11-11 Marriott Mark J. Omnimodal messaging system
US6826745B2 (en) 1998-11-30 2004-11-30 Siebel Systems, Inc. System and method for smart scripting call centers and configuration thereof
US6826582B1 (en) 2001-09-28 2004-11-30 Emc Corporation Method and system for using file systems for content management
US6829655B1 (en) 2001-03-28 2004-12-07 Siebel Systems, Inc. Method and system for server synchronization with a computing device via a companion device
US20040249854A1 (en) 2003-03-24 2004-12-09 Barnes-Leon Maria Theresa Common common object
US20040260659A1 (en) 2003-06-23 2004-12-23 Len Chan Function space reservation system
US20040260534A1 (en) 2003-06-19 2004-12-23 Pak Wai H. Intelligent data search
US20040268299A1 (en) 2003-06-30 2004-12-30 Shu Lei Application user interface template with free-form layout
US6842748B1 (en) 2000-04-14 2005-01-11 Rightnow Technologies, Inc. Usage based strength between related information in an information retrieval system
US6850895B2 (en) 1998-11-30 2005-02-01 Siebel Systems, Inc. Assignment manager
US20050050555A1 (en) 2003-08-28 2005-03-03 Exley Richard Mark Universal application network architecture
US20050138208A1 (en) * 2003-12-17 2005-06-23 International Business Machines Corporation Service oriented integration server architecture
US20060021019A1 (en) 2004-07-21 2006-01-26 International Business Machines Corporation Method and system for federated provisioning
US7062502B1 (en) 2001-12-28 2006-06-13 Kesler John N Automated generation of dynamic data entry user interface for relational database management systems
US7069231B1 (en) 2000-07-20 2006-06-27 Oracle International Corporation Methods and systems for defining, applying and executing customer care relationship plans
US20070016869A1 (en) * 2001-10-02 2007-01-18 Anil Mukundan Method, apparatus, and system for managing commands in a client server environment
US7181758B1 (en) 1994-07-25 2007-02-20 Data Innovation, L.L.C. Information distribution and processing system
US7289976B2 (en) 2004-12-23 2007-10-30 Microsoft Corporation Easy-to-use data report specification
US20080021973A1 (en) * 2006-06-02 2008-01-24 Topia Technology Communications network architecture
US7340411B2 (en) 1998-02-26 2008-03-04 Cook Rachael L System and method for generating, capturing, and managing customer lead information over a computer network
US7356482B2 (en) 1998-12-18 2008-04-08 Alternative Systems, Inc. Integrated change management unit
US7412455B2 (en) 2003-04-30 2008-08-12 Dillon David M Software framework that facilitates design and implementation of database applications
US20080243744A1 (en) * 2007-04-02 2008-10-02 Charlie Isaacs Adaptive multi-channel answering service for knowledge management systems
US20090063414A1 (en) 2007-08-31 2009-03-05 Yahoo! Inc. System and method for generating a playlist from a mood gradient
US7508789B2 (en) 1994-04-07 2009-03-24 Data Innovation Llc Information distribution and processing system
US20090100342A1 (en) 2007-10-12 2009-04-16 Gabriel Jakobson Method and system for presenting address and mapping information
US20090150507A1 (en) * 2007-12-07 2009-06-11 Yahoo! Inc. System and method for prioritizing delivery of communications via different communication channels
US20090177744A1 (en) 2008-01-04 2009-07-09 Yahoo! Inc. Identifying and employing social network relationships
US7620655B2 (en) 2003-05-07 2009-11-17 Enecto Ab Method, device and computer program product for identifying visitors of websites
US7698160B2 (en) 1999-05-07 2010-04-13 Virtualagility, Inc System for performing collaborative tasks
US7730478B2 (en) 2006-10-04 2010-06-01 Salesforce.Com, Inc. Method and system for allowing access to developed applications via a multi-tenant on-demand database service
US7779475B2 (en) 2006-07-31 2010-08-17 Petnote Llc Software-based method for gaining privacy by affecting the screen of a computing device
US20110029923A1 (en) * 2009-07-30 2011-02-03 Microsoft Corporation Integrating transport modes into a communication stream
US20110066717A1 (en) * 2009-09-16 2011-03-17 Nokia Corporation Method and apparatus for time adaptation of online services to user behavior
US20110153647A1 (en) * 2009-12-23 2011-06-23 Apple Inc. Auto-population of a table
US20110179126A1 (en) * 2010-01-20 2011-07-21 Aol Inc. Systems And Methods For Electronic Distribution Of Messages Over Communication Channels
US8014943B2 (en) 2008-05-08 2011-09-06 Gabriel Jakobson Method and system for displaying social networking navigation information
US8032297B2 (en) 2008-05-08 2011-10-04 Gabriel Jakobson Method and system for displaying navigation information on an electronic map
US20110247051A1 (en) 2010-04-01 2011-10-06 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users
US20110276441A1 (en) * 2007-08-21 2011-11-10 Warren Bond Process for assigning accounting codes
US8082301B2 (en) 2006-11-10 2011-12-20 Virtual Agility, Inc. System for supporting collaborative activity
US8095413B1 (en) 1999-05-07 2012-01-10 VirtualAgility, Inc. Processing management information
US20120042218A1 (en) 2010-08-13 2012-02-16 Salesforce.Com, Inc. Debugging site errors by an admin as a guest user in a multi-tenant database environment
US20120079126A1 (en) * 2010-09-24 2012-03-29 Amazon Technologies, Inc. Cloud-based device interaction
US20120110156A1 (en) * 2010-11-03 2012-05-03 International Business Machines Corporation Configured Management-as-a-Service Connect Process Based on Tenant Requirements
US20120124146A1 (en) * 2010-11-12 2012-05-17 Daniel Hsiao Messaging System with Multiple Messaging Channels
US8209308B2 (en) 2006-05-01 2012-06-26 Rueben Steven L Method for presentation of revisions of an electronic document
US20120166561A1 (en) * 2010-12-28 2012-06-28 Julius Kelly Multi-Channel Dynamic Response Communication Engine
US20120218958A1 (en) 2008-05-09 2012-08-30 Research In Motion Limited Method for Cell Selection in a Radio Access Network
US20120233137A1 (en) 2006-05-01 2012-09-13 Gabriel Jakobson Presentation of document history in a web browsing application
US20120278705A1 (en) * 2010-01-18 2012-11-01 Yang sheng-wen System and Method for Automatically Extracting Metadata from Unstructured Electronic Documents
US20120303644A1 (en) * 2011-05-27 2012-11-29 Martin Jr Russell W Methods and systems for enhanced data unification, access and analysis
US8490025B2 (en) 2008-02-01 2013-07-16 Gabriel Jakobson Displaying content associated with electronic mapping systems
US8504945B2 (en) 2008-02-01 2013-08-06 Gabriel Jakobson Method and system for associating content with map zoom function
US8510045B2 (en) 2009-12-22 2013-08-13 Steven L. Rueben Digital maps displaying search-resulting points-of-interest in user delimited regions
US8510664B2 (en) 2008-09-06 2013-08-13 Steven L. Rueben Method and system for displaying email thread information
US20130212497A1 (en) 2012-02-10 2013-08-15 Liveperson, Inc. Analytics driven engagement
US20130218948A1 (en) 2012-02-17 2013-08-22 Gabriel Jakobson Variable speed collaborative web browsing system
US20130218966A1 (en) 2012-02-17 2013-08-22 Gabriel Jakobson Collaborative web browsing system having document object model element interaction detection
US20130218949A1 (en) 2012-02-17 2013-08-22 Gabriel Jakobson Collaborative web browsing system integrated with social networks
US20130238729A1 (en) * 2012-03-07 2013-09-12 Accenture Global Services Limited Communication collaboration
US20130247216A1 (en) 2008-11-03 2013-09-19 Salesforce.Com, Inc System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service
US8566301B2 (en) 2006-05-01 2013-10-22 Steven L. Rueben Document revisions in a collaborative computing environment
US20130322608A1 (en) * 2012-05-21 2013-12-05 Ivy Corp. Multi-channel interactive message response system
US20130346453A1 (en) * 2012-06-26 2013-12-26 Google Inc. System and method for end-to-end exposure of exported representations of native data types to third-party applications
US8646103B2 (en) 2008-06-30 2014-02-04 Gabriel Jakobson Method and system for securing online identities
US20140181256A1 (en) * 2012-12-23 2014-06-26 EVRYTHNG Limited System, Method and a Tag for Mapping Tagged Objects to Context-Aware Applications
US20140180788A1 (en) * 2009-08-19 2014-06-26 Oracle International Corporation Method and system for implementing a cloud-based social media marketing method and system
US20150319116A1 (en) * 2014-05-02 2015-11-05 Halosys Technologies Inc. System and method for multi-channel delivery of transformed and augmented messages in real-time
US20160019243A1 (en) * 2013-03-07 2016-01-21 Elateral, Inc. Template metadata
US20160283947A1 (en) * 2015-03-26 2016-09-29 Salesforce.Com, Inc. Sharing knowledge article content via a designated communication channel in an enterprise social networking and customer relationship management (crm) environment
US20160294748A1 (en) * 2013-12-25 2016-10-06 Tencent Technology (Shenzhen) Company Limited Method and system for controlling message dissemination from public accounts to user accounts
US20160323279A1 (en) * 2009-01-28 2016-11-03 Headwater Partners I Llc Automated Device Provisioning and Activation
US20160352588A1 (en) * 2015-05-27 2016-12-01 Elastic Beam, Inc. Scalable proxy clusters
US20170048097A1 (en) * 2015-08-12 2017-02-16 Airwatch Llc Managing devices through secondary communication channels
US9672140B1 (en) * 2015-12-28 2017-06-06 Sap Se Processing special requests at dedicated application containers
US20170295280A1 (en) * 2016-04-12 2017-10-12 Nexmo, Inc. Systems and methods for providing a multi-channel communication service
US20170353424A1 (en) * 2016-06-07 2017-12-07 Machine Zone, Inc. Message compression in scalable messaging system
US20170359778A1 (en) * 2016-06-09 2017-12-14 Google Inc. Multi-Channel Communications For Sending Push Notifications To Mobile Devices
US20180027029A1 (en) * 2016-07-25 2018-01-25 Salesforce.Com, Inc. Multi-channel customer engagement platform
US10049098B2 (en) * 2016-07-20 2018-08-14 Microsoft Technology Licensing, Llc. Extracting actionable information from emails
US20190051301A1 (en) * 2017-08-11 2019-02-14 Slack Technologies, Inc. Method, apparatus, and computer program product for searchable real-time transcribed audio and visual content within a group-based communication system
US20190268423A1 (en) * 2018-02-26 2019-08-29 Servicenow, Inc. Proxy Application Supporting Multiple Collaboration Channels
US20190273863A1 (en) * 2016-09-16 2019-09-05 Max-Planck-Gesellschaft Zur Forderung D. Wissenschaften E.V. Interactive Data Visualization Environment
US10447853B1 (en) * 2016-12-29 2019-10-15 Noble Systems Corporation Graphical user interface for managing multiple agent communication sessions in a contact center
US20200004824A1 (en) * 2018-06-29 2020-01-02 FinancialForce.com, Inc. Method and system for bridging disparate platforms to automate a natural language interface
US20200026532A1 (en) * 2018-07-17 2020-01-23 Salesforce.Com, Inc. Method and user interface for data mapping
US10585562B2 (en) * 2018-05-24 2020-03-10 Slack Technologies, Inc. System, method, and apparatus for maintaining and updating a common message user interface in a group based communication system
US20200098192A1 (en) * 2017-06-05 2020-03-26 2689090 Canada Inc. System and method for displaying an asset of an interactive electronic technical publication synchronously in a plurality of extended reality display devices
US10623272B2 (en) * 2015-01-29 2020-04-14 Blackrock Financial Management, Inc. Authenticating connections and program identity in a messaging system
US10671410B1 (en) * 2019-05-28 2020-06-02 Oracle International Corporation Generating plug-in application recipe extensions
US20200177710A1 (en) * 2018-11-30 2020-06-04 Cerner Innovation, Inc. Interface engine architecture
US10715661B2 (en) * 2010-10-21 2020-07-14 Micro Macro Assets, Llc System and method for scalable and efficient multi-channel communication
US10776380B2 (en) * 2016-10-21 2020-09-15 Microsoft Technology Licensing, Llc Efficient transformation program generation
US20210034595A1 (en) * 2019-07-30 2021-02-04 Salesforce.Com, Inc. Database systems and related multichannel communication methods
US20210058469A1 (en) * 2019-08-21 2021-02-25 Salesforce.Com, Inc. Distributing data management setup between multiple users
US11082407B1 (en) * 2013-05-06 2021-08-03 Veeva Systems Inc. System and method for controlling electronic communications
US11206231B2 (en) * 2017-08-18 2021-12-21 Slack Technologies, Inc. Group-based communication interface with subsidiary channel-based thread communications
US11463500B1 (en) * 2017-08-04 2022-10-04 Grammarly, Inc. Artificial intelligence communication assistance for augmenting a transmitted communication

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8239504B2 (en) * 2007-01-07 2012-08-07 Apple Inc. Synchronization methods and systems
US9503402B2 (en) * 2014-08-18 2016-11-22 Dropbox, Inc. Managing drafts of electronic documents across client devices
US10339153B2 (en) * 2016-04-12 2019-07-02 International Business Machines Corporation Uniformly accessing federated user registry topologies
US10567311B2 (en) * 2016-04-29 2020-02-18 Salesforce.Com, Inc. Publisher and share action integration in a user interface for automated messaging
US10509546B2 (en) * 2017-08-31 2019-12-17 Salesforce.Com, Inc. History component for single page application
US20190155938A1 (en) * 2017-11-20 2019-05-23 Salesforce.Com, Inc. Multi-vendor synchronization platform supporting multiple formats
US11385921B2 (en) * 2019-07-31 2022-07-12 Salesforce, Inc. Collaboration across isolated virtual environments

Patent Citations (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608872A (en) 1993-03-19 1997-03-04 Ncr Corporation System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters
US5649104A (en) 1993-03-19 1997-07-15 Ncr Corporation System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers
US5761419A (en) 1993-03-19 1998-06-02 Ncr Corporation Remote collaboration system including first program means translating user inputs into annotations and running on all computers while second program means runs on one computer
US5819038A (en) 1993-03-19 1998-10-06 Ncr Corporation Collaboration system for producing copies of image generated by first program on first computer on other computers and annotating the image by second program
US7508789B2 (en) 1994-04-07 2009-03-24 Data Innovation Llc Information distribution and processing system
US8457545B2 (en) 1994-04-07 2013-06-04 Online News Link Llc Information distribution and processing system
US5577188A (en) 1994-05-31 1996-11-19 Future Labs, Inc. Method to provide for virtual screen overlay
US7181758B1 (en) 1994-07-25 2007-02-20 Data Innovation, L.L.C. Information distribution and processing system
US6826565B2 (en) 1995-05-15 2004-11-30 Ablaise Limited Method and apparatus for serving files to browsing clients
US6295530B1 (en) 1995-05-15 2001-09-25 Andrew M. Ritchie Internet service of differently formatted viewable data signals including commands for browser execution
US5715450A (en) 1995-09-27 1998-02-03 Siebel Systems, Inc. Method of selecting and presenting data from a database using a query language to a user of a computer system
US5831610A (en) 1996-02-23 1998-11-03 Netsuite Development L.P. Designing networks
US5821937A (en) 1996-02-23 1998-10-13 Netsuite Development, L.P. Computer method for updating a network design
US6189011B1 (en) 1996-03-19 2001-02-13 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US6604117B2 (en) 1996-03-19 2003-08-05 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5911776A (en) * 1996-12-18 1999-06-15 Unisys Corporation Automatic format conversion system and publishing methodology for multi-user network
US6233617B1 (en) 1997-02-26 2001-05-15 Siebel Systems, Inc. Determining the visibility to a remote database client
US6446089B1 (en) 1997-02-26 2002-09-03 Siebel Systems, Inc. Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions
US6178425B1 (en) 1997-02-26 2001-01-23 Siebel Systems, Inc. Method of determining the visibility to a remote database client of a plurality of database transactions using simplified visibility rules
US6216135B1 (en) 1997-02-26 2001-04-10 Siebel Systems, Inc. Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths
US6684438B2 (en) 1997-02-26 2004-02-03 Siebel Systems, Inc. Method of using cache to determine the visibility to a remote database client of a plurality of database transactions
US6092083A (en) 1997-02-26 2000-07-18 Siebel Systems, Inc. Database management system which synchronizes an enterprise server and a workgroup user client using a docking agent
US20020129352A1 (en) 1997-02-27 2002-09-12 Brodersen Robert A. Method and apparatus for upgrading a software application in the presence of user modifications
US6367077B1 (en) 1997-02-27 2002-04-02 Siebel Systems, Inc. Method of upgrading a software application in the presence of user modifications
US6405220B1 (en) 1997-02-28 2002-06-11 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US6754681B2 (en) 1997-02-28 2004-06-22 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US6266669B1 (en) 1997-02-28 2001-07-24 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US6324693B1 (en) 1997-03-12 2001-11-27 Siebel Systems, Inc. Method of synchronizing independently distributed software and database schema
US6169534B1 (en) 1997-06-26 2001-01-02 Upshot.Com Graphical user interface for customer information management
US5918159A (en) 1997-08-04 1999-06-29 Fomukong; Mundi Location reporting satellite paging system with optional blocking of location reporting
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US5873096A (en) 1997-10-08 1999-02-16 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US7340411B2 (en) 1998-02-26 2008-03-04 Cook Rachael L System and method for generating, capturing, and managing customer lead information over a computer network
US6732111B2 (en) 1998-03-03 2004-05-04 Siebel Systems, Inc. Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database
US8015495B2 (en) 1998-03-13 2011-09-06 Groupserve It Trust Llc Centrifugal communication and collaboration method
US6161149A (en) 1998-03-13 2000-12-12 Groupserve, Inc. Centrifugal communication and collaboration method
US5963953A (en) 1998-03-30 1999-10-05 Siebel Systems, Inc. Method, and system for product configuration
US20020082892A1 (en) 1998-08-27 2002-06-27 Keith Raffel Method and apparatus for network-based sales force management
US6393605B1 (en) 1998-11-18 2002-05-21 Siebel Systems, Inc. Apparatus and system for efficient delivery and deployment of an application
US6549908B1 (en) 1998-11-18 2003-04-15 Siebel Systems, Inc. Methods and apparatus for interpreting user selections in the context of a relation distributed as a set of orthogonalized sub-relations
US6601087B1 (en) 1998-11-18 2003-07-29 Webex Communications, Inc. Instant document sharing
US6728960B1 (en) 1998-11-18 2004-04-27 Siebel Systems, Inc. Techniques for managing multiple threads in a browser environment
US6826745B2 (en) 1998-11-30 2004-11-30 Siebel Systems, Inc. System and method for smart scripting call centers and configuration thereof
US6850895B2 (en) 1998-11-30 2005-02-01 Siebel Systems, Inc. Assignment manager
US6665648B2 (en) 1998-11-30 2003-12-16 Siebel Systems, Inc. State models for monitoring process
US20050091098A1 (en) 1998-11-30 2005-04-28 Siebel Systems, Inc. Assignment manager
US6553563B2 (en) 1998-11-30 2003-04-22 Siebel Systems, Inc. Development tool, method, and system for client server applications
US7356482B2 (en) 1998-12-18 2008-04-08 Alternative Systems, Inc. Integrated change management unit
US8484111B2 (en) 1998-12-18 2013-07-09 Applications In Internet Time, Llc Integrated change management unit
US6574635B2 (en) 1999-03-03 2003-06-03 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components
US20030120675A1 (en) 1999-03-03 2003-06-26 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers, objects, and components
US20020072951A1 (en) 1999-03-03 2002-06-13 Michael Lee Marketing support database management method, system and program product
US8095594B2 (en) 1999-05-07 2012-01-10 VirtualAgility, Inc. System for performing collaborative tasks
US8275836B2 (en) 1999-05-07 2012-09-25 Virtualagility Inc. System and method for supporting collaborative activity
US8095413B1 (en) 1999-05-07 2012-01-10 VirtualAgility, Inc. Processing management information
US7698160B2 (en) 1999-05-07 2010-04-13 Virtualagility, Inc System for performing collaborative tasks
US20040193722A1 (en) * 1999-08-30 2004-09-30 Donovan Kevin Remington Joseph Bartholomew Universal instant messaging system for the internet
US6621834B1 (en) 1999-11-05 2003-09-16 Raindance Communications, Inc. System and method for voice transmission over network protocols
US6535909B1 (en) 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US20030187921A1 (en) 1999-11-30 2003-10-02 Siebel Systems, Inc. Method and system for distributing objects over a network
US6324568B1 (en) 1999-11-30 2001-11-27 Siebel Systems, Inc. Method and system for distributing objects over a network
US6604128B2 (en) 1999-11-30 2003-08-05 Siebel Systems, Inc. Method and system for distributing objects over a network
US6654032B1 (en) 1999-12-23 2003-11-25 Webex Communications, Inc. Instant sharing of documents on a remote server
US6336137B1 (en) 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US6609150B2 (en) 2000-03-31 2003-08-19 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US6732100B1 (en) 2000-03-31 2004-05-04 Siebel Systems, Inc. Database access method and system for user role defined access
US6577726B1 (en) 2000-03-31 2003-06-10 Siebel Systems, Inc. Computer telephony integration hotelling method and system
US20020165742A1 (en) 2000-03-31 2002-11-07 Mark Robins Feature centric release manager method and system
US6434550B1 (en) 2000-04-14 2002-08-13 Rightnow Technologies, Inc. Temporal updates of relevancy rating of retrieved information in an information search system
US6665655B1 (en) 2000-04-14 2003-12-16 Rightnow Technologies, Inc. Implicit rating of retrieved information in an information search system
US20010044791A1 (en) 2000-04-14 2001-11-22 Richter James Neal Automated adaptive classification system for bayesian knowledge networks
US6842748B1 (en) 2000-04-14 2005-01-11 Rightnow Technologies, Inc. Usage based strength between related information in an information retrieval system
US6763501B1 (en) 2000-06-09 2004-07-13 Webex Communications, Inc. Remote document serving
US7069231B1 (en) 2000-07-20 2006-06-27 Oracle International Corporation Methods and systems for defining, applying and executing customer care relationship plans
US6768904B2 (en) 2000-10-11 2004-07-27 Lg Electronics Inc. Data communication method using mobile terminal
US6772229B1 (en) 2000-11-13 2004-08-03 Groupserve, Inc. Centrifugal communication and collaboration method
US20030018830A1 (en) 2001-02-06 2003-01-23 Mingte Chen Adaptive communication application programming interface
USD454139S1 (en) 2001-02-20 2002-03-05 Rightnow Technologies Display screen for a computer
US20020143997A1 (en) 2001-03-28 2002-10-03 Xiaofei Huang Method and system for direct server synchronization with a computing device
US20020140731A1 (en) 2001-03-28 2002-10-03 Pavitra Subramaniam Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site
US6829655B1 (en) 2001-03-28 2004-12-07 Siebel Systems, Inc. Method and system for server synchronization with a computing device via a companion device
US20030018705A1 (en) 2001-03-31 2003-01-23 Mingte Chen Media-independent communication server
US20030206192A1 (en) 2001-03-31 2003-11-06 Mingte Chen Asynchronous message push to web browser
US6732095B1 (en) 2001-04-13 2004-05-04 Siebel Systems, Inc. Method and apparatus for mapping between XML and relational representations
US20020162090A1 (en) 2001-04-30 2002-10-31 Parnell Karen P. Polylingual simultaneous shipping of software
US6728702B1 (en) 2001-06-18 2004-04-27 Siebel Systems, Inc. System and method to implement an integrated search center supporting a full-text search and query on a database
US6711565B1 (en) 2001-06-18 2004-03-23 Siebel Systems, Inc. Method, apparatus, and system for previewing search results
US6763351B1 (en) 2001-06-18 2004-07-13 Siebel Systems, Inc. Method, apparatus, and system for attaching search results
US6782383B2 (en) 2001-06-18 2004-08-24 Siebel Systems, Inc. System and method to implement a persistent and dismissible search center frame
US20030004971A1 (en) 2001-06-29 2003-01-02 Gong Wen G. Automatic generation of data models and accompanying user interfaces
US6724399B1 (en) 2001-09-28 2004-04-20 Siebel Systems, Inc. Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser
US20030159136A1 (en) 2001-09-28 2003-08-21 Huang Xiao Fei Method and system for server synchronization with a computing device
US20030066032A1 (en) 2001-09-28 2003-04-03 Siebel Systems,Inc. System and method for facilitating user interaction in a browser environment
US6826582B1 (en) 2001-09-28 2004-11-30 Emc Corporation Method and system for using file systems for content management
US20030066031A1 (en) 2001-09-28 2003-04-03 Siebel Systems, Inc. Method and system for supporting user navigation in a browser environment
US20030070005A1 (en) 2001-09-29 2003-04-10 Anil Mukundan Method, apparatus, and system for implementing view caching in a framework to support web-based applications
US20030070004A1 (en) 2001-09-29 2003-04-10 Anil Mukundan Method, apparatus, and system for implementing a framework to support a web-based application
US20030074418A1 (en) 2001-09-29 2003-04-17 John Coker Method, apparatus and system for a mobile web client
US20030070000A1 (en) 2001-09-29 2003-04-10 John Coker Computing system and method to implicitly commit unsaved data for a World Wide Web application
US20070016869A1 (en) * 2001-10-02 2007-01-18 Anil Mukundan Method, apparatus, and system for managing commands in a client server environment
US20030069936A1 (en) 2001-10-09 2003-04-10 Warner Douglas K. Method for routing electronic correspondence based on the level and type of emotion contained therein
US7062502B1 (en) 2001-12-28 2006-06-13 Kesler John N Automated generation of dynamic data entry user interface for relational database management systems
US7401094B1 (en) 2001-12-28 2008-07-15 Kesler John N Automated generation of dynamic data entry user interface for relational database management systems
US6804330B1 (en) 2002-01-04 2004-10-12 Siebel Systems, Inc. Method and system for accessing CRM data via voice
US20030151633A1 (en) 2002-02-13 2003-08-14 David George Method and system for enabling connectivity to a data system
US20030204427A1 (en) 2002-03-29 2003-10-30 Prasad Gune User interface for processing requests for approval
US20030189600A1 (en) 2002-03-29 2003-10-09 Prasad Gune Defining an approval process for requests for approval
US6850949B2 (en) 2002-06-03 2005-02-01 Right Now Technologies, Inc. System and method for generating a dynamic interface via a communications network
US20030225730A1 (en) 2002-06-03 2003-12-04 Rightnow Technologies, Inc. System and method for generating a dynamic interface via a communications network
US20040001092A1 (en) 2002-06-27 2004-01-01 Rothwein Thomas M. Prototyping graphical user interfaces
US20040027388A1 (en) 2002-06-27 2004-02-12 Eric Berg Method and apparatus to facilitate development of a customer-specific business process model
US20040015981A1 (en) 2002-06-27 2004-01-22 Coker John L. Efficient high-interactivity user interface for client-server applications
US20040010489A1 (en) 2002-07-12 2004-01-15 Rightnow Technologies, Inc. Method for providing search-specific web pages in a network computing environment
US20040128001A1 (en) 2002-08-28 2004-07-01 Levin Issac Stephen Method and apparatus for an integrated process modeller
US20040186860A1 (en) 2003-03-21 2004-09-23 Wen-Hsin Lee Method and architecture for providing data-change alerts to external applications via a push service
US20040249854A1 (en) 2003-03-24 2004-12-09 Barnes-Leon Maria Theresa Common common object
US20040199489A1 (en) 2003-03-24 2004-10-07 Barnes-Leon Maria Theresa Custom common object
US20040199536A1 (en) 2003-03-24 2004-10-07 Barnes Leon Maria Theresa Product common object
US20040193510A1 (en) 2003-03-25 2004-09-30 Catahan Nardo B. Modeling of order data
US20040199543A1 (en) 2003-04-04 2004-10-07 Braud Luke A. Facilitating data manipulation in a browser-based user interface of an enterprise business application
US20040225753A1 (en) * 2003-04-22 2004-11-11 Marriott Mark J. Omnimodal messaging system
US7412455B2 (en) 2003-04-30 2008-08-12 Dillon David M Software framework that facilitates design and implementation of database applications
US20080249972A1 (en) 2003-04-30 2008-10-09 Dillon David M Software framework that facilitates design and implementation of database applications
US7620655B2 (en) 2003-05-07 2009-11-17 Enecto Ab Method, device and computer program product for identifying visitors of websites
US20040260534A1 (en) 2003-06-19 2004-12-23 Pak Wai H. Intelligent data search
US20040260659A1 (en) 2003-06-23 2004-12-23 Len Chan Function space reservation system
US20040268299A1 (en) 2003-06-30 2004-12-30 Shu Lei Application user interface template with free-form layout
US20050050555A1 (en) 2003-08-28 2005-03-03 Exley Richard Mark Universal application network architecture
US20050138208A1 (en) * 2003-12-17 2005-06-23 International Business Machines Corporation Service oriented integration server architecture
US20060021019A1 (en) 2004-07-21 2006-01-26 International Business Machines Corporation Method and system for federated provisioning
US7289976B2 (en) 2004-12-23 2007-10-30 Microsoft Corporation Easy-to-use data report specification
US20120233137A1 (en) 2006-05-01 2012-09-13 Gabriel Jakobson Presentation of document history in a web browsing application
US8209308B2 (en) 2006-05-01 2012-06-26 Rueben Steven L Method for presentation of revisions of an electronic document
US8566301B2 (en) 2006-05-01 2013-10-22 Steven L. Rueben Document revisions in a collaborative computing environment
US20080021973A1 (en) * 2006-06-02 2008-01-24 Topia Technology Communications network architecture
US7779475B2 (en) 2006-07-31 2010-08-17 Petnote Llc Software-based method for gaining privacy by affecting the screen of a computing device
US7730478B2 (en) 2006-10-04 2010-06-01 Salesforce.Com, Inc. Method and system for allowing access to developed applications via a multi-tenant on-demand database service
US8082301B2 (en) 2006-11-10 2011-12-20 Virtual Agility, Inc. System for supporting collaborative activity
US20080243744A1 (en) * 2007-04-02 2008-10-02 Charlie Isaacs Adaptive multi-channel answering service for knowledge management systems
US20110276441A1 (en) * 2007-08-21 2011-11-10 Warren Bond Process for assigning accounting codes
US20090063414A1 (en) 2007-08-31 2009-03-05 Yahoo! Inc. System and method for generating a playlist from a mood gradient
US20090100342A1 (en) 2007-10-12 2009-04-16 Gabriel Jakobson Method and system for presenting address and mapping information
US20090150507A1 (en) * 2007-12-07 2009-06-11 Yahoo! Inc. System and method for prioritizing delivery of communications via different communication channels
US20090177744A1 (en) 2008-01-04 2009-07-09 Yahoo! Inc. Identifying and employing social network relationships
US8490025B2 (en) 2008-02-01 2013-07-16 Gabriel Jakobson Displaying content associated with electronic mapping systems
US8504945B2 (en) 2008-02-01 2013-08-06 Gabriel Jakobson Method and system for associating content with map zoom function
US8032297B2 (en) 2008-05-08 2011-10-04 Gabriel Jakobson Method and system for displaying navigation information on an electronic map
US8014943B2 (en) 2008-05-08 2011-09-06 Gabriel Jakobson Method and system for displaying social networking navigation information
US20120218958A1 (en) 2008-05-09 2012-08-30 Research In Motion Limited Method for Cell Selection in a Radio Access Network
US8646103B2 (en) 2008-06-30 2014-02-04 Gabriel Jakobson Method and system for securing online identities
US8510664B2 (en) 2008-09-06 2013-08-13 Steven L. Rueben Method and system for displaying email thread information
US20130247216A1 (en) 2008-11-03 2013-09-19 Salesforce.Com, Inc System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service
US20160323279A1 (en) * 2009-01-28 2016-11-03 Headwater Partners I Llc Automated Device Provisioning and Activation
US20110029923A1 (en) * 2009-07-30 2011-02-03 Microsoft Corporation Integrating transport modes into a communication stream
US20140180788A1 (en) * 2009-08-19 2014-06-26 Oracle International Corporation Method and system for implementing a cloud-based social media marketing method and system
US20110066717A1 (en) * 2009-09-16 2011-03-17 Nokia Corporation Method and apparatus for time adaptation of online services to user behavior
US8510045B2 (en) 2009-12-22 2013-08-13 Steven L. Rueben Digital maps displaying search-resulting points-of-interest in user delimited regions
US20110153647A1 (en) * 2009-12-23 2011-06-23 Apple Inc. Auto-population of a table
US20120278705A1 (en) * 2010-01-18 2012-11-01 Yang sheng-wen System and Method for Automatically Extracting Metadata from Unstructured Electronic Documents
US8843815B2 (en) * 2010-01-18 2014-09-23 Hewlett-Packard Development Company, L. P. System and method for automatically extracting metadata from unstructured electronic documents
US20110179126A1 (en) * 2010-01-20 2011-07-21 Aol Inc. Systems And Methods For Electronic Distribution Of Messages Over Communication Channels
US20110247051A1 (en) 2010-04-01 2011-10-06 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users
US20120042218A1 (en) 2010-08-13 2012-02-16 Salesforce.Com, Inc. Debugging site errors by an admin as a guest user in a multi-tenant database environment
US20120079126A1 (en) * 2010-09-24 2012-03-29 Amazon Technologies, Inc. Cloud-based device interaction
US10715661B2 (en) * 2010-10-21 2020-07-14 Micro Macro Assets, Llc System and method for scalable and efficient multi-channel communication
US20120110156A1 (en) * 2010-11-03 2012-05-03 International Business Machines Corporation Configured Management-as-a-Service Connect Process Based on Tenant Requirements
US20160044142A1 (en) * 2010-11-12 2016-02-11 Facebook, Inc. Messaging System with Multiple Messaging Channels
US20120124146A1 (en) * 2010-11-12 2012-05-17 Daniel Hsiao Messaging System with Multiple Messaging Channels
US20120166561A1 (en) * 2010-12-28 2012-06-28 Julius Kelly Multi-Channel Dynamic Response Communication Engine
US20120303644A1 (en) * 2011-05-27 2012-11-29 Martin Jr Russell W Methods and systems for enhanced data unification, access and analysis
US20130212497A1 (en) 2012-02-10 2013-08-15 Liveperson, Inc. Analytics driven engagement
US20130218949A1 (en) 2012-02-17 2013-08-22 Gabriel Jakobson Collaborative web browsing system integrated with social networks
US20130218966A1 (en) 2012-02-17 2013-08-22 Gabriel Jakobson Collaborative web browsing system having document object model element interaction detection
US20130218948A1 (en) 2012-02-17 2013-08-22 Gabriel Jakobson Variable speed collaborative web browsing system
US20130238729A1 (en) * 2012-03-07 2013-09-12 Accenture Global Services Limited Communication collaboration
US20130322608A1 (en) * 2012-05-21 2013-12-05 Ivy Corp. Multi-channel interactive message response system
US20130346453A1 (en) * 2012-06-26 2013-12-26 Google Inc. System and method for end-to-end exposure of exported representations of native data types to third-party applications
US20140181256A1 (en) * 2012-12-23 2014-06-26 EVRYTHNG Limited System, Method and a Tag for Mapping Tagged Objects to Context-Aware Applications
US20160019243A1 (en) * 2013-03-07 2016-01-21 Elateral, Inc. Template metadata
US11082407B1 (en) * 2013-05-06 2021-08-03 Veeva Systems Inc. System and method for controlling electronic communications
US20160294748A1 (en) * 2013-12-25 2016-10-06 Tencent Technology (Shenzhen) Company Limited Method and system for controlling message dissemination from public accounts to user accounts
US20150319116A1 (en) * 2014-05-02 2015-11-05 Halosys Technologies Inc. System and method for multi-channel delivery of transformed and augmented messages in real-time
US10623272B2 (en) * 2015-01-29 2020-04-14 Blackrock Financial Management, Inc. Authenticating connections and program identity in a messaging system
US20160283947A1 (en) * 2015-03-26 2016-09-29 Salesforce.Com, Inc. Sharing knowledge article content via a designated communication channel in an enterprise social networking and customer relationship management (crm) environment
US20160352588A1 (en) * 2015-05-27 2016-12-01 Elastic Beam, Inc. Scalable proxy clusters
US20170048097A1 (en) * 2015-08-12 2017-02-16 Airwatch Llc Managing devices through secondary communication channels
US9672140B1 (en) * 2015-12-28 2017-06-06 Sap Se Processing special requests at dedicated application containers
US20170295280A1 (en) * 2016-04-12 2017-10-12 Nexmo, Inc. Systems and methods for providing a multi-channel communication service
US20170353424A1 (en) * 2016-06-07 2017-12-07 Machine Zone, Inc. Message compression in scalable messaging system
US20170359778A1 (en) * 2016-06-09 2017-12-14 Google Inc. Multi-Channel Communications For Sending Push Notifications To Mobile Devices
US10049098B2 (en) * 2016-07-20 2018-08-14 Microsoft Technology Licensing, Llc. Extracting actionable information from emails
US20180027029A1 (en) * 2016-07-25 2018-01-25 Salesforce.Com, Inc. Multi-channel customer engagement platform
US20190273863A1 (en) * 2016-09-16 2019-09-05 Max-Planck-Gesellschaft Zur Forderung D. Wissenschaften E.V. Interactive Data Visualization Environment
US10776380B2 (en) * 2016-10-21 2020-09-15 Microsoft Technology Licensing, Llc Efficient transformation program generation
US10447853B1 (en) * 2016-12-29 2019-10-15 Noble Systems Corporation Graphical user interface for managing multiple agent communication sessions in a contact center
US20200098192A1 (en) * 2017-06-05 2020-03-26 2689090 Canada Inc. System and method for displaying an asset of an interactive electronic technical publication synchronously in a plurality of extended reality display devices
US11463500B1 (en) * 2017-08-04 2022-10-04 Grammarly, Inc. Artificial intelligence communication assistance for augmenting a transmitted communication
US20190051301A1 (en) * 2017-08-11 2019-02-14 Slack Technologies, Inc. Method, apparatus, and computer program product for searchable real-time transcribed audio and visual content within a group-based communication system
US11206231B2 (en) * 2017-08-18 2021-12-21 Slack Technologies, Inc. Group-based communication interface with subsidiary channel-based thread communications
US20190268423A1 (en) * 2018-02-26 2019-08-29 Servicenow, Inc. Proxy Application Supporting Multiple Collaboration Channels
US10585562B2 (en) * 2018-05-24 2020-03-10 Slack Technologies, Inc. System, method, and apparatus for maintaining and updating a common message user interface in a group based communication system
US20200004824A1 (en) * 2018-06-29 2020-01-02 FinancialForce.com, Inc. Method and system for bridging disparate platforms to automate a natural language interface
US20200026532A1 (en) * 2018-07-17 2020-01-23 Salesforce.Com, Inc. Method and user interface for data mapping
US20200177710A1 (en) * 2018-11-30 2020-06-04 Cerner Innovation, Inc. Interface engine architecture
US10671410B1 (en) * 2019-05-28 2020-06-02 Oracle International Corporation Generating plug-in application recipe extensions
US20210034595A1 (en) * 2019-07-30 2021-02-04 Salesforce.Com, Inc. Database systems and related multichannel communication methods
US20210058469A1 (en) * 2019-08-21 2021-02-25 Salesforce.Com, Inc. Distributing data management setup between multiple users

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. Herceg and D. Madison, "Multichannel customer contact management," in IT Professional, vol. 6, No. 3, pp. 33-40, May-Jun. 2004, doi: 10.1109/MITP.2004.18. (Year: 2004). *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240106773A1 (en) * 2022-09-27 2024-03-28 At&T Intellectual Property I, L.P. Methods, systems, and devices to determine most recently used messaging application for delivery of message(s)
US12107807B2 (en) * 2022-09-27 2024-10-01 At&T Intellectual Property I, L.P. Methods, systems, and devices to determine most recently used messaging application for delivery of message(s)
US20240168956A1 (en) * 2022-11-23 2024-05-23 Salesforce, Inc. Stateful rule execution with event listener
US12235849B2 (en) 2022-11-23 2025-02-25 Salesforce, Inc. Multi-context stateful rule execution

Also Published As

Publication number Publication date
US20210034595A1 (en) 2021-02-04
US20230306008A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US20230306008A1 (en) Database systems and related multichannel communication methods
US10609140B2 (en) Dynamic resource management systems and methods
US11922094B2 (en) Database systems and methods for conversation-driven dynamic updates
US9602597B2 (en) System and method for synchronizing data objects in a cloud based social networking environment
US9195724B2 (en) Associating objects in multi-tenant systems
US20140208215A1 (en) Methods and systems for providing filtered report visualizations
US20160048377A1 (en) System and method for controlling the on and off state of features ofe business logic at runtime
US9977788B2 (en) Methods and systems for managing files in an on-demand system
US20140101117A1 (en) Methods and systems for managing records in an on-demand system
US9292181B2 (en) Filtering objects in a multi-tenant environment
US9830385B2 (en) Methods and apparatus for partitioning data
US10719555B2 (en) System and method in a database system for sharing a data item with an entity in another tenant domain
US11416677B2 (en) Dynamic resource management systems and form integration methods
US11269938B2 (en) Database systems and methods for conversational database interaction
US11475064B2 (en) System and method in a database system for creating a field service work order
US11698888B2 (en) Form field creation systems and methods
US11658930B2 (en) Personalized dashboard chart for email subscriptions
US10459941B2 (en) Providing context-specific content relating to a displayed personal information management (PIM) message for display in a user interface of a PIM application
US20220012657A1 (en) Scheduler for jobs during off peak hours

Legal Events

Date Code Title Description
AS Assignment

Owner name: SALESFORCE.COM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSELIKIS, PENNY;BESLUAU, THOMAS;SIGNING DATES FROM 20190724 TO 20190729;REEL/FRAME:049908/0522

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCF Information on status: patent grant

Free format text: PATENTED CASE