US11683397B2 - Hierarchical data exchange management system - Google Patents
Hierarchical data exchange management system Download PDFInfo
- Publication number
- US11683397B2 US11683397B2 US17/727,342 US202217727342A US11683397B2 US 11683397 B2 US11683397 B2 US 11683397B2 US 202217727342 A US202217727342 A US 202217727342A US 11683397 B2 US11683397 B2 US 11683397B2
- Authority
- US
- United States
- Prior art keywords
- data
- tier
- information
- sources
- request
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
- H04L67/63—Routing a service request depending on the request content or context
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6245—Protecting personal data, e.g. for financial or medical purposes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/104—Peer-to-peer [P2P] networks
- H04L67/1087—Peer-to-peer [P2P] networks using cross-functional networking aspects
- H04L67/1089—Hierarchical topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/53—Network services using third party service providers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/535—Tracking the activity of the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/565—Conversion or adaptation of application format or content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
- H04L9/3239—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving non-keyed hash functions, e.g. modification detection codes [MDCs], MD5, SHA or RIPEMD
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/50—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees
Definitions
- Some embodiments disclosed herein relate to a data management system and, more particularly, to systems and methods implementing or using a hierarchical data exchange management system.
- One or more data consumers may be interested in obtaining information from data sources. For example, people wearing fitness activity monitors may generate medical information, such as an hourly heart rate, that might be of interest to researchers. Moreover, different people may have different preferences and/or willingness to share this type of information. Further note that some types of information may be more valuable to data consumers as compared to other types of information. For example, knowing that a person has a particular heart condition might be of interest to a researcher. In general, people may be willing to share more specific and/or more personal information in exchange for higher levels of compensation.
- a system to facilitate hierarchical data exchange may include an aggregation platform data store containing electronic records.
- a data aggregation platform may collect, from a plurality of data source devices, information associated with a plurality of data sources and store the collected information into the aggregation platform data store.
- the data aggregation platform may also receive a data request from a data consumer device, and, responsive to the received data request, determine a precision tier associated with the data request.
- the data aggregation platform may then automatically calculate a resource value for the data request based on the precision tier. It may then be arranged for information from the aggregation platform data store to be modified and transmitted to the data consumer device.
- Some embodiments comprise: means for collecting, from a plurality of data source devices, information associated with a plurality of data sources; means for storing, at an aggregation platform data store, electronic records representing the collected information; means for receiving, at a data aggregation computer processor, a data request from a data consumer device; responsive to the received data request, means for determining a precision tier associated with the data request; responsive to the received data request, means for determining a privacy tier associated with the data request; means for automatically calculating a resource value for the data request based on the precision tier and the privacy tier; means for arranging for information from the aggregation platform data store to be modified and transmitted to the data consumer device; means for arranging for at least a portion of the resource value to be provided to at least one data source; and means for recording information associated with the data request via a secure, distributed transaction ledger.
- FIG. 1 is a high-level diagram of a system according to some embodiments.
- FIG. 2 is a method in accordance with some embodiments.
- FIGS. 3 A and 3 B are examples of hierarchical data monetization in accordance with some embodiments.
- FIG. 4 is a more detailed view of a system according to some embodiments.
- FIG. 5 illustrates a platform according to some embodiments.
- FIG. 6 is a portion of a precision tier database in accordance with some embodiments.
- FIG. 7 is a portion of a privacy tier database according to some embodiments.
- FIG. 8 is a portion of a resource values database in accordance with some embodiments.
- FIG. 9 illustrates an interactive user interface display according to some embodiments.
- FIG. 10 is a system implementing hierarchical data monetization transactions with blockchain validation according to some embodiments.
- FIG. 11 is a system implementing hierarchical data monetization transactions with multiple data aggregation platforms in accordance with some embodiments.
- FIG. 12 is a data supply chain for data markets according to some embodiments.
- FIG. 13 is a distributed ledger reference architecture according to some embodiments.
- FIG. 14 illustrates a tablet computer providing a display according to some embodiments.
- FIG. 1 is a high-level diagram of a system 100 according to some embodiments.
- the system 100 includes an automated data aggregation platform 150 that communicates with one or more data sources 110 and one or more data consumers 160 .
- the data sources 110 might comprise consumers who wear health monitoring devices and the data consumers 160 might comprise devices associated with medical researchers or insurance companies who are interested in the data generated by the health monitoring devices.
- the automated data aggregation platform 150 can access an aggregation platform data store 120 that includes electronic records reflecting information provided by the data sources 110 .
- the automated data aggregation platform 150 could be completely de-centralized and/or might be associated with a third party, such as a vendor that performs a service for an enterprise. Also note that although the data aggregation platform data store 120 is illustrated in FIG. 1 , any of the embodiments described herein might be configured such that data sources 110 instead transmit information directly to data consumers 160 .
- the automated data aggregation platform 150 and/or other elements of the system 100 might be, for example, associated with a Personal Computer (“PC”), laptop computer, a tablet computer, a smartphone, an enterprise server, a server farm, and/or a database or similar storage devices.
- an “automated” data aggregation platform 150 may automatically manage a hierarchical data exchange.
- the term “automated” may refer to, for example, actions that can be performed with little (or no) intervention by a human.
- devices may exchange information via any communication network which may be one or more of a Local Area Network (“LAN”), a Metropolitan Area Network (“MAN”), a Wide Area Network (“WAN”), a proprietary network, a Public Switched Telephone Network (“PSTN”), a Wireless Application Protocol (“WAP”) network, a Bluetooth network, a wireless LAN network, and/or an Internet Protocol (“IP”) network such as the Internet, an intranet, or an extranet.
- LAN Local Area Network
- MAN Metropolitan Area Network
- WAN Wide Area Network
- PSTN Public Switched Telephone Network
- WAP Wireless Application Protocol
- Bluetooth a Bluetooth network
- wireless LAN network a wireless LAN network
- IP Internet Protocol
- any devices described herein may communicate via one or more such communication networks.
- the automated data aggregation platform 150 may store information into and/or retrieve information from data stores, including the aggregation platform data store 120 .
- the data stores might, for example, store electronic records representing consumer health data, demographic information, etc.
- the data stores may be locally stored or reside remote from the automated data aggregation platform 150 .
- FIG. 1 a single automated data aggregation platform 150 is shown in FIG. 1 , any number of such devices may be included.
- various devices described herein might be combined according to embodiments of the present invention.
- the automated data aggregation platform 150 , aggregation platform data store 120 , and/or other devices might be co-located and/or may comprise a single apparatus.
- the data aggregation platform 150 may arrange for information from data sources 110 to be stored in the aggregation platform data store 120 .
- the data aggregation platform 150 may then receive a data request from a data consumer 160 .
- the data aggregation platform 150 may access precision tiers 152 and resource values 156 when responding to the request. For example, a data consumer 160 might arrange to provide a higher value (e.g., a higher benefit or a higher monetary value or other store of value) to the data aggregation platform 1500 in exchange for access to more precise information about the data sources 110 as compared to less precise information.
- the data aggregation platform 150 may then modify information in the aggregation platform data store 120 (e.g., by filtering data, taking average values, etc.) and provide the modified information to the data consumer 160 .
- FIG. 1 illustrates a system 100 that might be performed according to some embodiments of the present invention.
- FIG. 2 illustrates a method 200 that might be performed according to some embodiments of the present invention.
- the flow charts described herein do not imply a fixed order to the steps, and embodiments of the present invention may be practiced in any order that is practicable.
- any of the methods described herein may be performed by hardware, software, or any combination of these approaches.
- a computer-readable storage medium may store thereon instructions that when executed by a machine result in performance according to any of the embodiments described herein.
- the system may collect, from a plurality of data source devices, information associated with a plurality of data sources.
- data source might refer to an individual, a family, an enterprise, a business, or any other entity capable of providing data.
- the system may store, at an aggregation platform data store, electronic records representing the collected information.
- the collected information might be associated with health data such as heart rate data, activity data, sleep data, blood pressure data, glucose monitoring data, insulin data, etc.
- the information collected from data sources might include media consumption data such as television data (e.g., which channels or programs an individual watches), online data (e.g., what web sites does he or she visit), application data (e.g., which smartphone apps or video games does an individual access), streaming data (e.g., what movies or television shows does he or she watch), advertising data, etc.
- media consumption data such as television data (e.g., which channels or programs an individual watches), online data (e.g., what web sites does he or she visit), application data (e.g., which smartphone apps or video games does an individual access), streaming data (e.g., what movies or television shows does he or she watch), advertising data, etc.
- the collected information could also include communication data such as telephone communication data (e.g., who does the person call and how often), email communication data, social network communication data, real world proximity data (e.g., what people or groups does he or she spend time interacting with in the real world), etc.
- the collected information might include demographic data (e.g., age, gender, home address, etc.), psychographic data (e.g., hobbies, mood, income, etc.), location data, telematic data associated with driving habits, survey data, genetic data, credit score data, spending data, credit card data, bank account data, etc.
- the collected information might include sales data, profit data, employee data, debt data, etc.
- data collected in connection with a business might include information about an industrial asset item (e.g., a wind turbine, a gas turbine, etc.), a “digital twin” that models operation of a physical industrial asset item, an additive manufacturing process, etc.
- a data aggregation computer processor may receive a data request from a data consumer device.
- data consumer might refer to an enterprise, a business, an individual, or any other entity interested in receiving data generated by data sources. Examples of data consumers might include a researcher, an insurer, an advertiser, a governmental entity, an educational entity, etc.
- a data aggregation platform might be implemented via a single network cloud-hosted topology, a multiple network cloud-hosted topology, a participant hosted intranet environment, etc.
- the system may determine a “precision tier” associated with the data request.
- precision tier may refer to various levels of precision associated with the data. For example, some types of granularity associated with precision tiers might be associated with a complete data set (e.g., a person's heart rate as measured once per hour by an activity tracking device), an average of multiple data items associated with a data source (e.g., a person's average heart rate during a particular week), an average of multiple data items associated with multiple data sources (e.g., the average heart rate of all women between the ages of 40 and 45), data items sharing at least one characteristic specified in the data request (e.g., the average heart rate of all people who have pacemakers), etc.
- a complete data set e.g., a person's heart rate as measured once per hour by an activity tracking device
- an average of multiple data items associated with a data source e.g., a person's average heart rate during a particular week
- the system may determine a “privacy tier” associated with the data request.
- the phrase “privacy tier” may refer to various levels of specificity associated with identifying a particular person or entity as being the data source. Examples of this type of information include a personal identifier (e.g., a Social Security Number (“SSN”)), a name, a health condition, an age band (e.g., from 25 to 35 years old), a birthday, a location, an address (e.g., a home address or a communication address such as an email), a gender, etc.
- the privacy tier might be associated with complete anonymity (i.e., no personal data may be provided at all). Note that not all steps illustrated in FIG. 2 might be performed in accordance with some embodiments of the present invention (e.g., as illustrated by dashed lines around some steps).
- the system may then automatically calculate a “resource value” for the data request based on the precision tier and, in embodiments that have a privacy tier, the privacy tier.
- the phrase “resource value” might refer to any type of benefit that is provided to data sources in exchange for sharing information. Note that data sources may receive higher compensation in exchange for sharing more specific and/or more private data. For example, if a person's hourly heart rate was transmitted to a researcher along with his or her name the amount of compensation might be much greater as compared to having that same information being used to determine an average heart rate for all 25-year-old men (in which case, all 25-year-old men might each receive a much smaller amount of compensation).
- resource values examples include an online payment, a micropayment, a credit account payment, a debit account payment, a bank transfer, a cryptocurrency and digital payment system, etc.
- a non-monetary benefit might be provided to a data source, such as access to data (e.g., the ability to watch a movie) or an amount of points to be subsequently redeemed by the data source (e.g., frequent flier miles).
- the system may arrange for information from the aggregation platform data store to be modified and transmitted to the data consumer device.
- the types of modifications that might be performed on the information from the aggregation platform data store include data aggregation, averaging multiple data items associated with a single data source, averaging multiple data items associated with multiple data sources, combining information from multiple data source devices each associated with a single data source, removing information (e.g., de-personalization), supplementing information with third-party data (e.g., appending a person's credit score to a data file), data translation (e.g., from one format or protocol to another), etc.
- the system may then arrange for least a portion of the resource value to be provided to at least one data source. That is, the data source may be compensated in exchange for having the data consumer receive his or her information via the data aggregation platform.
- the system may record information associated with the data request via a secure, distributed transaction ledger.
- details about the transaction may be recorded in a transaction ledger associated with blockchain technology.
- the recorded information might include for example, data request information, data source information, payment information, data integrity information, precision information, privacy information, resource value information, indications of data availability, etc.
- FIG. 3 A illustrates 300 hierarchical data monetization in accordance with some embodiments.
- a cloud platform 310 e.g., associated with a data aggregation platform or website aggregator
- a substantial amount of information e.g., including statistical data
- various types of detailed information might be available.
- raw heart data 332 and activity data 334 might be available for person 1 and person 2 .
- FIG. 3 B illustrates 350 hierarchical data monetization in accordance with some embodiments.
- a cloud platform 360 e.g., associated with a website aggregator
- a substantial amount of information e.g., including statistical data
- various gas or wind turbines 370 For each turbine 370 , various types of detailed information might be available.
- FIG. 3 illustrates 350 hierarchical data monetization in accordance with some embodiments.
- a cloud platform 360 e.g., associated with a website aggregator
- information e.g., including statistical data
- turbine 3 B kilo-Watt-hours (kWh) output 382 and turbine speed 384 might be available for turbine 1 and turbine 2 .
- different turbines 370 might be associated with different levels or types of data (e.g., either because of the preference or a business operating the turbines 370 or the use of different sensor nodes).
- turbine 3 might have temperature data 386 available in addition to the kWh output 382 and turbine speed data 384 .
- FIG. 4 is a more detailed view of a system 400 according to some embodiments.
- the system 400 includes an automated data aggregation platform 450 that communicates with one or more data sources 410 (e.g., data sources 1 through n) and one or more data consumers 460 .
- the data sources 410 might comprise consumers who wear health monitoring devices and the data consumers 460 might comprise devices associated with medical researchers or insurance companies who are interested in the data generated by the health monitoring devices.
- the automated data aggregation platform 450 arranges for information from the data sources 410 to be stored into an aggregation platform data store 420 .
- the data aggregation platform 450 receives a data request from a data consumer 460 .
- the data aggregation platform 450 may access precision tiers 452 , privacy tier 454 , and resource values 456 when responding to the request.
- a data consumer 460 might arrange to provide a higher value to the data aggregation platform 450 in exchange for access to more precise information about the data sources 410 (along with personal information) as compared to less precise (and less personal) information.
- the data aggregation platform 450 may then modify information in the aggregation platform data store 420 (e.g., by filtering data, taking average values, etc.) and provide the modified information to the data consumer 460 at (C).
- information from a third-party platform 470 might be used to supplement or modify the information before it is provided to the data consumer 460 .
- the third-party platform 470 might add information about a person's income to records in the aggregation platform data store 420 .
- the data aggregation platform 450 might utilize a payment platform 480 (e.g., a credit card or banking application) to arrange for the data consumer 460 to provide payment and/or for one or more data sources 410 to receive payment in exchange for sharing information.
- information about the transaction might be recorded in a secure, distributed ledger (e.g., via blockchain technology).
- information about the transaction that might be recording in a secure, distribute ledger includes information about the data request from the data consumer, optionally modified by a precision tier and/or privacy tier, payment information, data integrity information, etc.
- the data aggregation platform 450 may be associated with data that can be described with different levels of fidelity and/or abstraction.
- a data source 410 may choose to sell high fidelity data—for example, their heart rate at high sample rate. From this data, it might be discernible that the person has an irregular heart rate—which an insurer could use to classify them as a “high risk” individual. As a result, this high-fidelity data might be very valuable to the insurer.
- Another data consumer 460 may not be interested in the high sample rate data, but would instead be interested in average heart rates of groups of people—for example, to determine a general level of health. Those data sources 410 contributing data at this level of fidelity can also be compensated, but perhaps at a reduced rate as compared to those who contribute higher fidelity data.
- the data aggregation platform 450 and/or distributed ledger 490 may allow for the provenance, integrity, and/or confidentiality of hierarchical data using blockchain technology).
- the data aggregation platform 450 may provide a means for a data source 410 to be remunerated for increasingly detailed information—with higher fidelity (and more private) information being assessed at a higher value than lower granularity (e.g., averages or aggregated sets of data.
- the distributed ledger 490 may be used to:
- FIG. 5 illustrates a platform 500 that may be, for example, associated with the systems 100 , 400 of FIGS. 1 and 4 , respectively (as well as other systems described herein).
- the platform 500 comprises a processor 510 , such as one or more commercially available Central Processing Units (“CPUs”) in the form of one-chip microprocessors, coupled to a communication device 520 configured to communicate via a communication network (not shown in FIG. 5 ).
- the communication device 520 may be used to communicate, for example, with one or more remote data sources and/or data consumers.
- communications exchanged via the communication device 520 may utilize security features, such as those between a public internet user and an internal network of an insurance enterprise.
- the security features might be associated with, for example, web servers, firewalls, and/or PCI infrastructure.
- the platform 500 further includes an input device 540 (e.g., a mouse and/or keyboard to enter information about a data source, a data hierarchy, pricing information, etc.) and an output device 550 (e.g., to output system reports, generate data monetization dashboards, etc.).
- an input device 540 e.g., a mouse and/or keyboard to enter information about a data source, a data hierarchy, pricing information, etc.
- an output device 550 e.g., to output system reports, generate data monetization dashboards, etc.
- the processor 510 also communicates with a storage device 530 .
- the storage device 530 may comprise any appropriate information storage device, including combinations of magnetic storage devices (e.g., a hard disk drive), optical storage devices, mobile telephones, and/or semiconductor memory devices.
- the storage device 530 stores a program 512 and/or network security service tool or application for controlling the processor 510 .
- the processor 510 performs instructions of the program 512 , and thereby operates in accordance with any of the embodiments described herein.
- the processor 510 may facilitate hierarchical data exchange by collecting, from a plurality of data source devices, information associated with a plurality of data sources.
- the processor 510 may also receive a data request from a data consumer device, and, responsive to the received data request, determine a precision tier associated with the data request. The processor 510 may then automatically calculate a resource value for the data request based on the precision tier. It may then be arranged by the processor 510 for information from the aggregation platform data store to be modified and transmitted to the data consumer device.
- the program 512 may be stored in a compressed, uncompiled and/or encrypted format.
- the program 512 may furthermore include other program elements, such as an operating system, a database management system, and/or device drivers used by the processor 510 to interface with peripheral devices.
- information may be “received” by or “transmitted” to, for example: (i) the platform 500 from another device; or (ii) a software application or module within the platform 500 from another software application, module, or any other source.
- the storage device 530 further stores a precision tier database 600 , privacy tier database 700 , and resource values database 800 .
- databases that might be used in connection with the platform 500 will now be described in detail with respect to FIGS. 6 through 8 .
- the databases described herein are only examples, and additional and/or different information may be stored therein.
- various databases might be split or combined in accordance with any of the embodiments described herein.
- precision tier database 600 and the privacy tier database 700 might be combined and/or linked to each other within the program 512 .
- a table is shown that represents the precision tier database 600 that may be stored at the platform 500 in accordance with some embodiments.
- the table may include, for example, entries identifying different levels of data granularity or specificity.
- the table may also define fields 602 , 604 , 606 for each of the entries.
- the fields 602 , 604 , 606 may, according to some embodiments, specify: a precision tier identifier 602 , precision tier description 604 , and resource value 606 .
- the precision tier database 600 may be created and updated, for example, based on information electrically received from data sources, a data aggregation platform administrator, etc.
- the precision tier identifier 602 may be, for example, a unique alphanumeric code identifying a level of data granularity or specificity.
- the precision tier description 604 may described the level of data granularity or specificity associated with data in that tier (e.g., from the most specific “hourly heart rate” to the least specific “overall lifetime average heart rate”).
- the resource value 606 might represent, for example, a monetary value or some other benefit that might be provided by a data consumer and/or provided to a data source. Note that more specific data might be associated with higher resource values 606 .
- a table that represents the privacy tier database 700 that may be stored at the platform 500 in accordance with some embodiments.
- the table may include, for example, entries identifying levels of personal information associated with data.
- the table may also define fields 702 , 704 , 706 for each of the entries.
- the fields 702 , 704 , 706 may, according to some embodiments, specify: a privacy tier identifier 702 , privacy tier description 704 , and a resource value 706 .
- the privacy tier database 700 may be created and updated, for example, based on information electrically received from data sources, a data aggregation platform administrator, etc.
- the privacy tier identifier 702 may be, for example, a unique alphanumeric code identifying a level of personal information and may be based on or associated with the privacy tier identifier 802 in the resource values database 800 .
- the privacy tier description 704 may describe the level of personal information associated with data in that tier (e.g., from the most personal “exact name/SSN” to the least personal “no information”).
- the resource value 706 might represent, for example, a monetary value or some other benefit that might be provided by a data consumer and/or provided to a data source. Note that more personal data might be associated with higher resource values 706 .
- a table is shown that represents the resource values database 800 that may be stored at the platform 500 in accordance with some embodiments.
- the table may include, for example, entries identifying different resource values that are assigned to various levels of precision and/or privacy.
- the table may also define fields 802 , 804 , 806 for each of the entries.
- the fields 802 , 804 , 806 may, according to some embodiments, specify: a privacy tier identifier 802 , a privacy tier description 804 , and resource values 806 for various precision levels.
- the resource values database 800 may be created and updated, for example, based on information electrically received from data sources, data providers, a data aggregation platform administrator, etc.
- the privacy tier identifier 802 may be, for example, a unique alphanumeric code identifying a level of personal information and may be based on or associated with the privacy tier identifier in the privacy tier database 700 .
- the privacy tier description 804 may describe the level of personal information associated with data in that tier (e.g., including a lower level of personal information “age band or birthday” and a relatively higher level of personal information “gender”).
- the resource values 808 might be specified for each of a number of different levels of data precision. That is, the resource values 808 might represent a matrix of benefit that might be provided with more precise and/or more personal data being associated with higher benefit as compared to less precise and/or less personal data.
- FIG. 9 illustrates an interactive user interface display 900 according to some embodiments.
- the display 900 includes a data hierarchy graphical user interface 910 including a cloud platform (e.g., a website aggregator), statistical data for various people, and specific types of data elements.
- a cloud platform e.g., a website aggregator
- selection of an element in the interface 910 e.g., via a computer mouse pointer 920 or touch screen
- results in further information about that element being displayed e.g., an associated resource value might be displayed in a pop-up window and/or adjusted by an administrator.
- Selection of an “Export Data” icon might, according to some embodiments, result in a transfer of data from a data source to a data consumer.
- a data aggregation platform and/or other elements of a data hierarchy monetization system may record information about transactions using a secure, distributed transaction ledger (e.g., via a blockchain verification process).
- the data aggregation platform might record a request date and time, a data description, a data source identifier, a price, a bid, etc. via the secure, distributed transaction ledger in accordance with any of the embodiments described herein.
- the distributed ledger might be associated with the HYPERLEDGER® blockchain verification system.
- FIG. 10 is a system 1000 implementing hierarchical data monetization transactions incorporating blockchain validation according to some embodiments.
- a cloud-based integrity monitor 1010 may provide transaction integrity data via a web browser and exchange information with a blockchain 1020 (or other secure distributed transaction ledger) and a data aggregation platform 1050 via Representational State Transfer (“REST”) web services or other similar web services.
- the REST web services may, for example, provide interoperability between computer systems on the Internet (e.g., by allowing requesting systems to access and manipulate textual representations of web resources using a uniform, predefined set of stateless operations).
- portions of the data aggregation platform 1050 may be associated with database, such as a MySQL database.
- FIG. 10 illustrates a system 1000 with a single blockchain 1020 and data aggregation platform 1050
- FIG. 11 is a system 1100 implementing a hierarchical data monetization transaction incorporating multiple data aggregation platforms 1150 , 1152 in accordance with some embodiments.
- an additional blockchain 1122 and data aggregation platform 1152 may provide protection for an additional client 1142 .
- FIG. 11 illustrates a system 1100 implementing a hierarchical data monetization transaction incorporating multiple data aggregation platforms 1150 , 1152 in accordance with some embodiments.
- an additional blockchain 1122 and data aggregation platform 1152 may provide protection for an additional client 1142 .
- each data aggregation platform 1150 , 1152 may be associated with multiple blockchains 1120 , 1122 providing additional protection for the system 1100 (e.g., by storing information at multiple, geographically disperse nodes making attacks impractical). That is, each verifier (e.g., data aggregation platform 1150 , 1152 ) may commit a brief summary to an independent data store (including for example, information about hierarchical data transaction) and, once recorded, the information cannot be changed without detection to provide a tamper-proof System of Records (“SoR”).
- SoR System of Records
- FIG. 12 is a data supply chain 1200 for data markets according to some embodiments.
- Information from various data sources 1210 may be aggregated and/or normalized via analytics 1220 .
- Application of insight analytics 1230 may result in actionable analytics 1240 that can be implemented via actuation and control processes 1250 (e.g., including both digital and physical implementations).
- actionable analytics 1240 can be implemented via actuation and control processes 1250 (e.g., including both digital and physical implementations).
- one or more components of the data supply chain 1200 might request information that has been generated by the data sources 1210 (e.g., the component that looks for actionable analytics 1240 might act as a data consumer who requests data associated with specific precision and pricing levels).
- Such transactions may be recorded via a transaction and authentication service 1260 (e.g., utilizing blockchain) and/or retained in a storage service 1270 .
- transactions providing information from a data source 1210 to a data consumer might be implemented in a number of different ways, including, for example: a per use or limited use license (e.g., of data generated by one or more data sources 1210 ), a sell-out license, a sub-license right, etc.
- embodiments might utilize supply chain factoring, incremental upgrades, and/or anonymized data and transactions.
- Information may be traceable and/or auditable back to an original source (e.g., data source 1210 ) and, in some embodiments, be tagged through an entire chain, tree, or mesh associated with the transaction.
- Automated rules and/or processes might be used to negotiate prices between data sources 1210 and data consumers (e.g., prices associated with various precision and privacy levels).
- parameterized and/or machine learning might facilitate such negotiations.
- data values e.g., ranging from a free give away to substantial monetization
- the information associated with transactions in the supply chain 1200 might, for example, represent three-dimensional printing files (e.g., for additive manufacture), optical displays, audio streams, etc.
- various components of the supply chain 120 could provide additional services, such as certification, authentication (with blockchain being only one option among many), license rights services, quality control, use control and restrictions, anti-counterfeit measures, etc.
- the transaction and authentication service 1260 might, according to some embodiments, be associated with any type of distributed ledger having a de-centralized consensus-based network that supports smart contracts, digital assets, record repositories, and/or cryptographic security.
- FIG. 13 is a distributed ledger reference architecture 1300 according to some embodiments.
- the architecture 1300 includes ledger services and an event stream 1310 that may contain hierarchical data transaction information (e.g., from a data aggregation platform).
- Membership services 1320 e.g., including registration, identity managements, and/or an auditability process
- Blockchain services may manage the distributed ledger, for example, through a P2P protocol to maintain a single state that replicated at many nodes to support blockchains 1360 and transactions 1370 .
- Chaincode services 1340 e.g., secure container and/or a secure registry associated with a smart contract
- the environment may be a “locked down” and secured container with a set of signed base images that contain a secure OS and programming languages.
- APIs Software Development Kits (“SDKs”), and/or a Command Line Interface (“CLI”) may be utilized to support a network security service via the reference architecture 1300 .
- the information recorded via the architecture 1300 might include, for example, data request information, data source information, payment information, data integrity information, precision information, privacy information, resource value information, indications of data availability, etc.
- embodiments described herein may provide technical advantages and help solve an “all or nothing” problem where data is shared in full or not shared at all (which can limit a person's willingness to share data and also limit the development of data markets where different price points are required or desired for different levels of disclosure).
- embodiments may democratize a data market and dis-intermediate a data aggregator that currently monopolize the market place.
- a payment mechanism may be established that mutually benefits multiple parties—data buyers and sellers, data sources, data consumers, etc.
- FIG. 14 illustrates a tablet computer 1400 with an interactive resource value display 1410 that might utilize a graphical user interface.
- the display 1410 might comprise matrix of prices associated with various levels of precision and/or privacy.
- the display 1410 might comprise an interactive user interface (e.g., via a touchscreen) and include an “Adjust” 1420 icon to let an operator or administrate change various tiers and/or prices points in accordance with any of the embodiments described herein.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Computer Security & Cryptography (AREA)
- Bioethics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
-
- facilitate payment transactions between
data sources 410 anddata consumers 460; - publish availability of data and/or associated options for granularity and data quality;
- establish a tiered pricing model for data;
- control access to data at agreed upon granularity;
- establish authenticity and/or provenance of data; and
- federate data and link to the aggregation
platform data store 420.
- facilitate payment transactions between
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/727,342 US11683397B2 (en) | 2017-11-14 | 2022-04-22 | Hierarchical data exchange management system |
US18/144,493 US12088687B2 (en) | 2017-11-14 | 2023-05-08 | Hierarchical data exchange management system |
US18/825,940 US20250063106A1 (en) | 2017-11-14 | 2024-09-05 | Hierarchical data exchange management system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/812,003 US10938950B2 (en) | 2017-11-14 | 2017-11-14 | Hierarchical data exchange management system |
US17/167,854 US11323544B2 (en) | 2017-11-14 | 2021-02-04 | Hierarchical data exchange management system |
US17/727,342 US11683397B2 (en) | 2017-11-14 | 2022-04-22 | Hierarchical data exchange management system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/167,854 Continuation US11323544B2 (en) | 2017-11-14 | 2021-02-04 | Hierarchical data exchange management system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/144,493 Continuation US12088687B2 (en) | 2017-11-14 | 2023-05-08 | Hierarchical data exchange management system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220256013A1 US20220256013A1 (en) | 2022-08-11 |
US11683397B2 true US11683397B2 (en) | 2023-06-20 |
Family
ID=66431501
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/812,003 Active 2038-06-29 US10938950B2 (en) | 2017-11-14 | 2017-11-14 | Hierarchical data exchange management system |
US17/167,854 Active US11323544B2 (en) | 2017-11-14 | 2021-02-04 | Hierarchical data exchange management system |
US17/727,342 Active US11683397B2 (en) | 2017-11-14 | 2022-04-22 | Hierarchical data exchange management system |
US18/144,493 Active US12088687B2 (en) | 2017-11-14 | 2023-05-08 | Hierarchical data exchange management system |
US18/825,940 Pending US20250063106A1 (en) | 2017-11-14 | 2024-09-05 | Hierarchical data exchange management system |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/812,003 Active 2038-06-29 US10938950B2 (en) | 2017-11-14 | 2017-11-14 | Hierarchical data exchange management system |
US17/167,854 Active US11323544B2 (en) | 2017-11-14 | 2021-02-04 | Hierarchical data exchange management system |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/144,493 Active US12088687B2 (en) | 2017-11-14 | 2023-05-08 | Hierarchical data exchange management system |
US18/825,940 Pending US20250063106A1 (en) | 2017-11-14 | 2024-09-05 | Hierarchical data exchange management system |
Country Status (6)
Country | Link |
---|---|
US (5) | US10938950B2 (en) |
EP (1) | EP3710950B1 (en) |
JP (1) | JP7312746B2 (en) |
KR (1) | KR102566881B1 (en) |
CN (1) | CN111344690B (en) |
WO (1) | WO2019099335A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111433803B (en) * | 2017-12-01 | 2024-09-03 | 快特网络有限公司 | Blockchain communications and ordering |
US20200074111A1 (en) | 2018-08-30 | 2020-03-05 | Www.Trustscience.Com Inc. | Data safe |
US12125054B2 (en) | 2018-09-25 | 2024-10-22 | Valideck International Corporation | System, devices, and methods for acquiring and verifying online information |
US11593515B2 (en) | 2019-09-30 | 2023-02-28 | Data Vault Holdings, Inc. | Platform for management of user data |
WO2021152817A1 (en) * | 2020-01-31 | 2021-08-05 | 日本電信電話株式会社 | Data distribution management device, data distribution management method, and program |
US11443380B2 (en) | 2020-02-20 | 2022-09-13 | Mark Cummings | System and method of providing and recording personalized context-specific advice in the form of an artificial intelligence view of a hierarchical portfolio |
US12176097B2 (en) * | 2020-03-09 | 2024-12-24 | ScriptLock | Methods for managing health care information |
US10771243B1 (en) | 2020-04-29 | 2020-09-08 | Ecosteer Srl | Multicast encryption scheme for data-ownership platform |
US20210365564A1 (en) * | 2020-05-22 | 2021-11-25 | Disney Enterprises, Inc. | Techniques for monitoring computing infrastructure |
US12086285B1 (en) | 2020-06-29 | 2024-09-10 | Wells Fargo Bank, N.A. | Data subject request tiering |
US11907185B2 (en) | 2020-08-20 | 2024-02-20 | State Farm Mutual Automobile Insurance Company | Shared hierarchical data design model for transferring data within distributed systems |
TWI756831B (en) * | 2020-09-18 | 2022-03-01 | 英業達股份有限公司 | Network service decentralized data transmission system and method thereof |
US20240202827A1 (en) * | 2021-04-23 | 2024-06-20 | Lattice Industries, Inc. | Method and system for data security and verification |
EP4429203A1 (en) | 2023-03-09 | 2024-09-11 | Abb Schweiz Ag | Method for enabling an efficient data processing in a distributed network of devices |
Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002329126A (en) | 2001-04-27 | 2002-11-15 | Magical Soft Service:Kk | Information system |
US20030167079A1 (en) * | 2002-02-25 | 2003-09-04 | Birnbaum Burton H. | Method and apparatus for processing heart rate information in a portable computer device |
US20030187688A1 (en) * | 2000-02-25 | 2003-10-02 | Fey Christopher T. | Method, system and computer program for health data collection, analysis, report generation and access |
JP2005031965A (en) | 2003-07-11 | 2005-02-03 | Nippon Telegr & Teleph Corp <Ntt> | Presence information using method, information user side terminal equipment, information provider side terminal equipment, and server device |
US7197502B2 (en) * | 2004-02-18 | 2007-03-27 | Friendly Polynomials, Inc. | Machine-implemented activity management system using asynchronously shared activity data objects and journal data items |
US20070239741A1 (en) | 2002-06-12 | 2007-10-11 | Jordahl Jena J | Data storage, retrieval, manipulation and display tools enabling multiple hierarchical points of view |
US20080104012A1 (en) * | 2006-11-01 | 2008-05-01 | Microsoft Corporation | Associating branding information with data |
US20080294018A1 (en) * | 2007-05-22 | 2008-11-27 | Kurtz Andrew F | Privacy management for well-being monitoring |
US20090069720A1 (en) * | 2007-09-12 | 2009-03-12 | Cardiac Pacemakers, Inc. | Logging daily average metabolic activity using a motion sensor |
US20090132395A1 (en) * | 2007-11-15 | 2009-05-21 | Microsoft Corporation | User profiling in a transaction and advertising electronic commerce platform |
US20090326981A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Universal health data collector and advisor for people |
US20100169108A1 (en) * | 2008-12-31 | 2010-07-01 | Microsoft Corporation | Distributed networks used for health-based data collection |
US20110307311A1 (en) * | 2005-06-20 | 2011-12-15 | Virgin Healthmiles, Inc. | Interactive, internet supported health and fitness management system |
US8175895B2 (en) * | 1999-06-23 | 2012-05-08 | Koninklijke Philips Electronics N.V. | Remote command center for patient monitoring |
US20120235821A1 (en) * | 2009-05-18 | 2012-09-20 | Adidas Ag | Methods and Program Products for Providing Heart Rate Information |
US8321556B1 (en) * | 2007-07-09 | 2012-11-27 | The Nielsen Company (Us), Llc | Method and system for collecting data on a wireless device |
JP2013003763A (en) | 2011-06-15 | 2013-01-07 | Nippon Telegr & Teleph Corp <Ntt> | Information recommendation device, information recommendation method and information recommendation program |
US8495007B2 (en) * | 2008-08-28 | 2013-07-23 | Red Hat, Inc. | Systems and methods for hierarchical aggregation of multi-dimensional data sources |
CN103329129A (en) | 2011-01-12 | 2013-09-25 | 国际商业机器公司 | Multi-tenant audit awareness in support of cloud environments |
US20140229349A1 (en) * | 2013-02-08 | 2014-08-14 | Kostadin Dimitrov Yanev | Facilitating a personal data market |
US20140245161A1 (en) * | 2010-09-30 | 2014-08-28 | Fitbit, Inc. | Motion-Activated Display of Messages on an Activity Monitoring Device |
JP2014229039A (en) | 2013-05-22 | 2014-12-08 | 株式会社日立製作所 | Privacy protection type data provision system |
CN104380690A (en) | 2012-06-15 | 2015-02-25 | 阿尔卡特朗讯 | Architecture of privacy protection system for recommendation services |
US20150154646A1 (en) | 2012-06-15 | 2015-06-04 | New York University | Storage, retrieval, analysis, pricing, and marketing of personal health care data using social networks, expert networks, and markets |
JP2015103111A (en) | 2013-11-26 | 2015-06-04 | ヤフー株式会社 | Information transaction apparatus, information transaction method and information transaction program |
US20150242890A1 (en) * | 2014-02-26 | 2015-08-27 | Blazer and Flip Flops, Inc. dba The Experience Engine | Increasing customer monetization |
US20150347784A1 (en) * | 2014-05-30 | 2015-12-03 | Apple Inc. | Managing user information - authorization masking |
US20150379510A1 (en) * | 2012-07-10 | 2015-12-31 | Stanley Benjamin Smith | Method and system to use a block chain infrastructure and Smart Contracts to monetize data transactions involving changes to data included into a data supply chain. |
US20160004820A1 (en) * | 2005-02-01 | 2016-01-07 | Newsilike Media Group, Inc. | Security facility for maintaining health care data pools |
US20160034696A1 (en) * | 2014-07-30 | 2016-02-04 | Google Inc. | Data Permission Management for Wearable Devices |
WO2016103055A1 (en) | 2014-12-25 | 2016-06-30 | Yandex Europe Ag | Method of generating hierarchical data structure |
US20160224996A1 (en) * | 2007-01-26 | 2016-08-04 | Information Resources, Inc. | Similarity matching of products based on multiple classification schemes |
US20160232318A1 (en) * | 2015-02-10 | 2016-08-11 | Dexcom, Inc. | Systems and methods for distributing continuous glucose data |
US20160321403A1 (en) * | 2013-11-29 | 2016-11-03 | Huawei Technologies Co., Ltd. | Data collection method and apparatus |
US20160321654A1 (en) * | 2011-04-29 | 2016-11-03 | Stephen Lesavich | Method and system for storage and retrieval of blockchain blocks using galois fields |
US20160324432A1 (en) * | 2015-05-07 | 2016-11-10 | Whoop, Inc. | Heart rate detection using ambient light |
US20170006412A1 (en) * | 2015-06-30 | 2017-01-05 | International Business Machines Corporation | Leader and follower management system for wearable devices |
US20170032401A1 (en) | 2014-04-09 | 2017-02-02 | Orit Shifman | Methods, platforms and systems for paying persons for use of their personal intelligence profile data |
US20170031449A1 (en) * | 2013-09-04 | 2017-02-02 | Zero360, Inc. | Wearable device |
US20170039336A1 (en) * | 2015-08-06 | 2017-02-09 | Microsoft Technology Licensing, Llc | Health maintenance advisory technology |
US20170039330A1 (en) * | 2015-08-03 | 2017-02-09 | PokitDok, Inc. | System and method for decentralized autonomous healthcare economy platform |
US20170053015A1 (en) * | 2015-08-17 | 2017-02-23 | Accenture Global Solutions Limited | Platform data aggregation and semantic modeling |
US20170071487A1 (en) * | 2015-09-14 | 2017-03-16 | Whoop, Inc. | Probability-based usage of multiple estimators of a physiological signal |
US20170091397A1 (en) * | 2012-01-26 | 2017-03-30 | Netspective Communications Llc | Device-driven non-intermediated blockchain system over a social integrity network |
US20170140141A1 (en) * | 2015-11-16 | 2017-05-18 | Personnus | System for identity verification |
WO2017090329A1 (en) | 2015-11-24 | 2017-06-01 | ソニー株式会社 | Information processing device, information processing method, and program |
US20170169800A1 (en) * | 2015-09-03 | 2017-06-15 | Synthro Inc. | Systems and techniques for aggregation, display, and sharing of data |
US9690538B1 (en) * | 2015-02-03 | 2017-06-27 | HCA Holdings, Inc. | Customizable real-time electronic whiteboard system |
US20170213209A1 (en) * | 2016-01-21 | 2017-07-27 | International Business Machines Corporation | Enterprise blockchains and transactional systems |
US20170243241A1 (en) * | 2015-06-09 | 2017-08-24 | Fidelity National Information Services, Inc. | Methods and Systems for Regulating Operation of Units Using Encryption Techniques Associated with a Blockchain |
US20170262654A1 (en) * | 2016-03-14 | 2017-09-14 | Rita H. Wouhaybi | Secure group data exchange |
US20170293772A1 (en) * | 2016-04-07 | 2017-10-12 | Samsung Electronics Co., Ltd. | Private dataaggregation framework for untrusted servers |
US20170308671A1 (en) * | 2016-04-20 | 2017-10-26 | Bionous, LLC | Personal health awareness system and methods |
US20170330438A1 (en) * | 2016-05-10 | 2017-11-16 | iBeat, Inc. | Autonomous life monitor system |
US20170364637A1 (en) * | 2016-05-24 | 2017-12-21 | ICmed, LLC | Mobile health management database, targeted educational assistance (tea) engine, selective health care data sharing, family tree graphical user interface, and health journal social network wall feed, computer-implemented system, method and computer program product |
US20170367634A1 (en) * | 2016-06-24 | 2017-12-28 | Rita H. Wouhaybi | Method and system for emotion mapping |
US20180046766A1 (en) * | 2016-06-27 | 2018-02-15 | Novus Paradigm Technologies Corporation | System for rapid tracking of genetic and biomedical information using a distributed cryptographic hash ledger |
US20180078843A1 (en) * | 2016-02-02 | 2018-03-22 | Bao Tran | Smart device |
US20180117446A1 (en) * | 2016-05-02 | 2018-05-03 | Bao Tran | Smart device |
US20180144101A1 (en) * | 2016-11-22 | 2018-05-24 | Microsoft Technology Licensing, Llc | Identifying diagnosis-relevant health information |
US10003591B2 (en) * | 2015-09-08 | 2018-06-19 | Plaid Technologies, Inc. | Secure permissioning of access to user accounts, including secure deauthorization of access to user accounts |
US20180203926A1 (en) * | 2017-01-13 | 2018-07-19 | Samsung Electronics Co., Ltd. | Peer-based user evaluation from multiple data sources |
US20180211059A1 (en) * | 2017-01-23 | 2018-07-26 | Health2047, Inc. | Trust based access to records via encrypted protocol communications with authentication system |
US20180232464A1 (en) * | 2017-02-15 | 2018-08-16 | Mastery Transcript Consortium | Automatic transformation of a multitude of disparate types of input data into a holistic, self-contained, reference database format that can be rendered at varying levels of granularity |
US20180261307A1 (en) * | 2017-02-10 | 2018-09-13 | Spxtrm Health Inc. | Secure monitoring of private encounters |
US20180263512A1 (en) * | 2015-09-23 | 2018-09-20 | Emfit Oy | Heart rate monitoring device, system, and method for increasing performance improvement efficiency |
US20180303381A1 (en) * | 2017-04-24 | 2018-10-25 | Whoop, Inc. | Activity recognition |
US20180350451A1 (en) * | 2015-11-24 | 2018-12-06 | David Leason | Automated health data acquisition, processing and communication system and method |
US20180344215A1 (en) * | 2015-11-24 | 2018-12-06 | Dacadoo Ag | Automated health data acquisition, processing and communication system and method |
US20190012466A1 (en) * | 2017-07-10 | 2019-01-10 | Burstiq Analytics Corporation | Secure adaptive data storage platform |
US10347374B2 (en) * | 2008-10-13 | 2019-07-09 | Baxter Corporation Englewood | Medication preparation system |
US20190265971A1 (en) * | 2015-01-23 | 2019-08-29 | C3 Iot, Inc. | Systems and Methods for IoT Data Processing and Enterprise Applications |
US10438686B2 (en) * | 2008-07-01 | 2019-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for assessment of clinical infertility |
US20190332807A1 (en) * | 2013-11-01 | 2019-10-31 | Anonos Inc. | Systems and methods for enforcing privacy-respectful, trusted communications |
US20200005347A1 (en) * | 2012-12-22 | 2020-01-02 | Quotient Technology Inc. | Automatic recommendation of digital offers to an offer provider based on historical transaction data |
US10646405B2 (en) * | 2012-10-26 | 2020-05-12 | Baxter Corporation Englewood | Work station for medical dose preparation system |
US10818387B2 (en) * | 2014-12-05 | 2020-10-27 | Baxter Corporation Englewood | Dose preparation data analytics |
US10971257B2 (en) * | 2012-10-26 | 2021-04-06 | Baxter Corporation Englewood | Image acquisition for medical dose preparation system |
US20210210188A1 (en) * | 2012-09-04 | 2021-07-08 | Whoop, Inc. | Continuously wearable monitoring device |
US11107574B2 (en) * | 2014-09-30 | 2021-08-31 | Baxter Corporation Englewood | Management of medication preparation with formulary management |
US20220050921A1 (en) * | 2013-11-01 | 2022-02-17 | Anonos Inc. | Systems and methods for functionally separating heterogeneous data for analytics, artificial intelligence, and machine learning in global data ecosystems |
US11521714B1 (en) * | 2021-02-03 | 2022-12-06 | Vignet Incorporated | Increasing diversity of participants in health research using adaptive methods |
US11527316B2 (en) * | 2019-06-01 | 2022-12-13 | Apple Inc. | Health application user interfaces |
Family Cites Families (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322502B1 (en) * | 1996-12-30 | 2001-11-27 | Imd Soft Ltd. | Medical information system |
DE19819205A1 (en) * | 1998-04-29 | 1999-11-04 | Siemens Ag | Data retention system for persistent data |
US6278999B1 (en) * | 1998-06-12 | 2001-08-21 | Terry R. Knapp | Information management system for personal health digitizers |
KR20000007758A (en) * | 1998-07-07 | 2000-02-07 | 윤종용 | Pn code searching method of cellular terminal |
US7650291B2 (en) * | 1999-06-23 | 2010-01-19 | Koninklijke Philips Electronics N.V. | Video visitation system and method for a health care location |
US7256708B2 (en) * | 1999-06-23 | 2007-08-14 | Visicu, Inc. | Telecommunications network for remote patient monitoring |
US7315825B2 (en) * | 1999-06-23 | 2008-01-01 | Visicu, Inc. | Rules-based patient care system for use in healthcare locations |
US7395216B2 (en) * | 1999-06-23 | 2008-07-01 | Visicu, Inc. | Using predictive models to continuously update a treatment plan for a patient in a health care location |
US7411509B2 (en) * | 1999-06-23 | 2008-08-12 | Visicu, Inc. | System and method for observing patients in geographically dispersed health care locations |
US7475019B2 (en) * | 1999-11-18 | 2009-01-06 | Visicu, Inc. | System and method for physician note creation and management |
US7321862B2 (en) * | 1999-06-23 | 2008-01-22 | Visicu, Inc. | System and method for patient-worn monitoring of patients in geographically dispersed health care locations |
US7454360B2 (en) * | 1999-06-23 | 2008-11-18 | Visicu, Inc. | Order evaluation system for use in a healthcare location |
US7433827B2 (en) * | 1999-06-23 | 2008-10-07 | Visicu, Inc. | System and method for displaying a health status of hospitalized patients |
US7991625B2 (en) * | 1999-06-23 | 2011-08-02 | Koninklijke Philips Electronics N.V. | System for providing expert care to a basic care medical facility from a remote location |
US7454359B2 (en) * | 1999-06-23 | 2008-11-18 | Visicu, Inc. | System and method for displaying a health status of hospitalized patients |
US7467094B2 (en) * | 1999-06-23 | 2008-12-16 | Visicu, Inc. | System and method for accounting and billing patients in a hospital environment |
US7376700B1 (en) * | 1999-08-23 | 2008-05-20 | Wellcoaches Corporation | Personal coaching system for clients with ongoing concerns such as weight loss |
US7630986B1 (en) * | 1999-10-27 | 2009-12-08 | Pinpoint, Incorporated | Secure data interchange |
US7383358B1 (en) * | 1999-12-29 | 2008-06-03 | Ge Medical Technology Services, Inc. | System and method for remote servicing of in-field product |
US20020046061A1 (en) * | 2000-02-11 | 2002-04-18 | Wright Kenneth L. | Personal information system |
US6893396B2 (en) * | 2000-03-01 | 2005-05-17 | I-Medik, Inc. | Wireless internet bio-telemetry monitoring system and interface |
US7099801B1 (en) * | 2000-03-27 | 2006-08-29 | Cardiobeat.Com | Medical testing internet server system and method |
US6957218B1 (en) * | 2000-04-06 | 2005-10-18 | Medical Central Online | Method and system for creating a website for a healthcare provider |
WO2002017210A2 (en) * | 2000-08-18 | 2002-02-28 | Cygnus, Inc. | Formulation and manipulation of databases of analyte and associated values |
CA2355771C (en) * | 2000-08-18 | 2010-10-12 | Hermedus Inc. | Medical information system, method and article of manufacture |
US6873989B1 (en) * | 2000-10-04 | 2005-03-29 | Bmc Software, Inc. | Graphical display of IMS space usage characteristics |
US7080076B1 (en) * | 2000-11-28 | 2006-07-18 | Attenex Corporation | System and method for efficiently drafting a legal document using an authenticated clause table |
US7011629B2 (en) * | 2001-05-14 | 2006-03-14 | American Doctors On-Line, Inc. | System and method for delivering medical examination, treatment and assistance over a network |
US6638218B2 (en) * | 2001-05-14 | 2003-10-28 | American Doctors On-Line, Inc. | System and method for delivering medical examination, diagnosis, and treatment over a network |
US9269116B2 (en) * | 2001-05-14 | 2016-02-23 | American Doctors Online, Inc. | System and method for delivering medical examination, treatment and assistance over a network |
US7179226B2 (en) * | 2001-06-21 | 2007-02-20 | Animas Corporation | System and method for managing diabetes |
US6922523B2 (en) * | 2001-11-08 | 2005-07-26 | Johnson & Johnson Consumer Companies, Inc. | Method of promoting skin care products |
US7738032B2 (en) * | 2001-11-08 | 2010-06-15 | Johnson & Johnson Consumer Companies, Inc. | Apparatus for and method of taking and viewing images of the skin |
US7457731B2 (en) * | 2001-12-14 | 2008-11-25 | Siemens Medical Solutions Usa, Inc. | Early detection of disease outbreak using electronic patient data to reduce public health threat from bio-terrorism |
US7346522B1 (en) * | 2002-01-08 | 2008-03-18 | First Access, Inc. | Medical payment system |
US7730063B2 (en) * | 2002-12-10 | 2010-06-01 | Asset Trust, Inc. | Personalized medicine service |
US6838993B2 (en) * | 2002-02-22 | 2005-01-04 | Bioalert Systems, Inc. | Early warning system and methods for detection of a bioterrorism event |
US20040059599A1 (en) * | 2002-09-25 | 2004-03-25 | Mcivor Michael E. | Patient management system |
US7469416B2 (en) * | 2002-11-05 | 2008-12-23 | International Business Machines Corporation | Method for automatically managing information privacy |
US7890341B2 (en) * | 2002-12-09 | 2011-02-15 | Baxter International Inc. | System and a method for providing integrated access management for peritoneal dialysis and hemodialysis |
US20040153440A1 (en) * | 2003-01-30 | 2004-08-05 | Assaf Halevy | Unified management of queries in a multi-platform distributed environment |
US8620678B2 (en) * | 2003-01-31 | 2013-12-31 | Imd Soft Ltd. | Medical information query system |
US7848935B2 (en) * | 2003-01-31 | 2010-12-07 | I.M.D. Soft Ltd. | Medical information event manager |
US7567964B2 (en) * | 2003-05-08 | 2009-07-28 | Oracle International Corporation | Configurable search graphical user interface and engine |
US7729992B2 (en) * | 2003-06-13 | 2010-06-01 | Brilliant Digital Entertainment, Inc. | Monitoring of computer-related resources and associated methods and systems for disbursing compensation |
US8029454B2 (en) * | 2003-11-05 | 2011-10-04 | Baxter International Inc. | High convection home hemodialysis/hemofiltration and sorbent system |
US8447738B1 (en) * | 2003-11-17 | 2013-05-21 | Medco Health Solutions, Inc. | Computer system and method for de-identification of patient and/or individual health and/or medical related information, such as patient micro-data |
IL161263A0 (en) * | 2004-04-02 | 2004-09-27 | Crossix Solutions Llc | A privacy preserving data-mining protocol |
US9492084B2 (en) * | 2004-06-18 | 2016-11-15 | Adidas Ag | Systems and methods for monitoring subjects in potential physiological distress |
US7223234B2 (en) * | 2004-07-10 | 2007-05-29 | Monitrix, Inc. | Apparatus for determining association variables |
US8060376B2 (en) * | 2004-10-01 | 2011-11-15 | Nomoreclipboard, Llc | System and method for collection of community health and administrative data |
US8026942B2 (en) * | 2004-10-29 | 2011-09-27 | Johnson & Johnson Consumer Companies, Inc. | Skin imaging system with probe |
US8082280B2 (en) * | 2004-10-29 | 2011-12-20 | Cerner Innovation, Inc. | Computerized method and system for coding-based navigation |
US8204771B1 (en) * | 2004-12-16 | 2012-06-19 | Cerner Innovation, Inc. | Computerized method and system for updating a task list from an action item documentation view |
US7612679B1 (en) * | 2004-12-28 | 2009-11-03 | Cerner Innovation, Inc. | Computerized method and system for providing alerts from a multi-patient display |
US8273018B1 (en) * | 2004-12-28 | 2012-09-25 | Cerner Innovation, Inc. | Computerized method for establishing a communication between a bedside care location and a remote care location |
US8099304B2 (en) * | 2005-09-02 | 2012-01-17 | Siemens Medical Solutions Usa, Inc. | System and user interface for processing patient medical data |
US8527299B2 (en) * | 2005-12-16 | 2013-09-03 | Accenture Global Services Limited | System and method for managing pedigree information |
AU2007207661B2 (en) * | 2006-01-17 | 2013-01-10 | Accenture Global Services Limited | Platform for interoperable healthcare data exchange |
US20100274573A1 (en) * | 2006-03-09 | 2010-10-28 | Microsoft Corporation | Data relevation and pattern or event recognition |
US8626764B2 (en) * | 2006-04-13 | 2014-01-07 | International Business Machines Corporation | Methods, systems and computer program products for organizing and/or manipulating cohort based information |
US8577933B2 (en) * | 2006-08-02 | 2013-11-05 | Crossix Solutions Inc. | Double blinded privacy-safe distributed data mining protocol |
EP2057572B1 (en) * | 2006-08-16 | 2021-04-14 | Sime Diagnostics Ltd. | An interactive testing system for analysing biological samples. |
US9202184B2 (en) * | 2006-09-07 | 2015-12-01 | International Business Machines Corporation | Optimizing the selection, verification, and deployment of expert resources in a time of chaos |
US7764303B2 (en) * | 2006-10-02 | 2010-07-27 | Johnson & Johnson Consumer Companies, Inc. | Imaging apparatus and methods for capturing and analyzing digital images of the skin |
US8145582B2 (en) * | 2006-10-03 | 2012-03-27 | International Business Machines Corporation | Synthetic events for real time patient analysis |
US8055603B2 (en) * | 2006-10-03 | 2011-11-08 | International Business Machines Corporation | Automatic generation of new rules for processing synthetic events using computer-based learning processes |
US7792774B2 (en) * | 2007-02-26 | 2010-09-07 | International Business Machines Corporation | System and method for deriving a hierarchical event based database optimized for analysis of chaotic events |
US7853611B2 (en) * | 2007-02-26 | 2010-12-14 | International Business Machines Corporation | System and method for deriving a hierarchical event based database having action triggers based on inferred probabilities |
US7930262B2 (en) * | 2007-10-18 | 2011-04-19 | International Business Machines Corporation | System and method for the longitudinal analysis of education outcomes using cohort life cycles, cluster analytics-based cohort analysis, and probabilistic data schemas |
US7779051B2 (en) * | 2008-01-02 | 2010-08-17 | International Business Machines Corporation | System and method for optimizing federated and ETL'd databases with considerations of specialized data structures within an environment having multidimensional constraints |
WO2010022402A1 (en) * | 2008-08-22 | 2010-02-25 | Datcard Systems, Inc. | System and method of encryption for dicom volumes |
US8600777B2 (en) * | 2008-08-28 | 2013-12-03 | I.M.D. Soft Ltd. | Monitoring patient conditions |
US9928379B1 (en) * | 2008-09-08 | 2018-03-27 | Steven Miles Hoffer | Methods using mediation software for rapid health care support over a secured wireless network; methods of composition; and computer program products therefor |
US8788519B2 (en) * | 2008-10-24 | 2014-07-22 | John C. Canessa | System and methods for metadata management in content addressable storage |
US20110141116A1 (en) * | 2009-12-16 | 2011-06-16 | Baxter International Inc. | Methods and apparatus for displaying flow rate graphs and alarms on a dialysis system |
US20120078727A1 (en) * | 2009-12-30 | 2012-03-29 | Wei-Yeh Lee | Facilitation of user management of unsolicited server operations via modification thereof |
US8407244B2 (en) * | 2010-04-23 | 2013-03-26 | Datcard Systems, Inc. | Management of virtual packages of medical data in interconnected content-addressable storage systems |
WO2011163017A2 (en) * | 2010-06-20 | 2011-12-29 | Univfy, Inc. | Method of delivering decision support systems (dss) and electronic health records (ehr) for reproductive care, pre-conceptive care, fertility treatments, and other health conditions |
WO2012012342A2 (en) * | 2010-07-19 | 2012-01-26 | Mediamath, Inc. | Systems and methods for determining competitive market values of an ad impression |
US11544652B2 (en) * | 2010-09-01 | 2023-01-03 | Apixio, Inc. | Systems and methods for enhancing workflow efficiency in a healthcare management system |
US20160358278A1 (en) * | 2010-09-29 | 2016-12-08 | Certify Data Systems, Inc. | Electronic medical record exchange system |
US10318877B2 (en) * | 2010-10-19 | 2019-06-11 | International Business Machines Corporation | Cohort-based prediction of a future event |
WO2012078898A2 (en) * | 2010-12-10 | 2012-06-14 | Datcard Systems, Inc. | Secure portable medical information access systems and methods related thereto |
KR101730185B1 (en) * | 2010-12-31 | 2017-05-11 | 한국과학기술원 | Method for supplying knowledge service and system of the same |
EP2523139A1 (en) * | 2011-05-10 | 2012-11-14 | Nagravision S.A. | Method for handling privacy data |
US8834389B2 (en) * | 2011-11-25 | 2014-09-16 | Tepsync | Temperature based fertility monitoring system and related method |
US8832162B2 (en) * | 2012-03-25 | 2014-09-09 | Think Computer Corporation | Method and system for storing, categorizing and distributing information concerning relationships between data |
US20140032259A1 (en) * | 2012-07-26 | 2014-01-30 | Malcolm Gary LaFever | Systems and methods for private and secure collection and management of personal consumer data |
CN105556513A (en) * | 2013-03-14 | 2016-05-04 | 昂托米克斯公司 | System and methods for personalized clinical decision support tools |
US20140344015A1 (en) * | 2013-05-20 | 2014-11-20 | José Antonio Puértolas-Montañés | Systems and methods enabling consumers to control and monetize their personal data |
US10483003B1 (en) * | 2013-08-12 | 2019-11-19 | Cerner Innovation, Inc. | Dynamically determining risk of clinical condition |
US10262035B2 (en) * | 2013-11-14 | 2019-04-16 | Hewlett Packard Enterprise Development Lp | Estimating data |
US10769296B2 (en) * | 2013-12-10 | 2020-09-08 | Early Warning Services, Llc | System and method of permission-based data sharing |
US10542004B1 (en) * | 2014-02-24 | 2020-01-21 | C/Hca, Inc. | Providing notifications to authorized users |
AU2015234868A1 (en) * | 2014-03-28 | 2016-10-20 | Mti Ltd. | Ovulation day prediction program and ovulation day prediction method |
US9449346B1 (en) * | 2014-05-21 | 2016-09-20 | Plaid Technologies, Inc. | System and method for programmatically accessing financial data |
US9595023B1 (en) * | 2014-05-21 | 2017-03-14 | Plaid Technologies, Inc. | System and method for facilitating programmatic verification of transactions |
WO2016014964A1 (en) * | 2014-07-25 | 2016-01-28 | Rxguard, Llc | Method and system for a management system for user authentication and prescription refill verification |
US10289867B2 (en) * | 2014-07-27 | 2019-05-14 | OneTrust, LLC | Data processing systems for webform crawling to map processing activities and related methods |
US10904261B2 (en) * | 2014-10-23 | 2021-01-26 | Dele Atanda | Intelligent personal information management system |
US20160188821A1 (en) * | 2014-12-24 | 2016-06-30 | Larry Ozeran | System and method for aggregation and intelligent analysis of individual health data with multimodal communication |
EP3245601B1 (en) * | 2015-01-16 | 2021-06-16 | Pricewaterhousecoopers LLP | Healthcare data interchange system and method |
US10832299B1 (en) * | 2015-02-27 | 2020-11-10 | State Farm Mutual Automobile Insurance Company | Data bank for managing streams of personal data |
US11574331B2 (en) * | 2015-09-22 | 2023-02-07 | Yahoo Assets Llc | Method and system for sharing personal information with web sites |
US9894076B2 (en) * | 2015-10-09 | 2018-02-13 | International Business Machines Corporation | Data protection and sharing |
US10726491B1 (en) * | 2015-12-28 | 2020-07-28 | Plaid Inc. | Parameter-based computer evaluation of user accounts based on user account data stored in one or more databases |
US10984468B1 (en) * | 2016-01-06 | 2021-04-20 | Plaid Inc. | Systems and methods for estimating past and prospective attribute values associated with a user account |
US10467659B2 (en) * | 2016-08-03 | 2019-11-05 | Mediamath, Inc. | Methods, systems, and devices for counterfactual-based incrementality measurement in digital ad-bidding platform |
US11276038B2 (en) * | 2016-08-07 | 2022-03-15 | Verifi Media, Inc. | Distributed data store for managing media |
EP3537961A1 (en) * | 2016-11-10 | 2019-09-18 | The Research Foundation for The State University of New York | System, method and biomarkers for airway obstruction |
AU2018230763A1 (en) * | 2017-03-08 | 2019-10-31 | Ip Oversight Corporation | System and method for creating commodity asset-secured tokens from reserves |
US10878421B2 (en) * | 2017-07-22 | 2020-12-29 | Plaid Inc. | Data verified deposits |
US11468085B2 (en) * | 2017-07-22 | 2022-10-11 | Plaid Inc. | Browser-based aggregation |
WO2019070689A2 (en) * | 2017-10-02 | 2019-04-11 | Pebblepost, Inc. | Prospect selection for direct mail |
US11537748B2 (en) * | 2018-01-26 | 2022-12-27 | Datavant, Inc. | Self-contained system for de-identifying unstructured data in healthcare records |
US11527331B2 (en) * | 2018-06-15 | 2022-12-13 | Xact Laboratories, LLC | System and method for determining the effectiveness of medications using genetics |
US11316862B1 (en) * | 2018-09-14 | 2022-04-26 | Plaid Inc. | Secure authorization of access to user accounts by one or more authorization mechanisms |
USD963685S1 (en) * | 2018-12-06 | 2022-09-13 | Sonos, Inc. | Display screen or portion thereof with graphical user interface for media playback control |
USD921000S1 (en) * | 2019-05-06 | 2021-06-01 | Google Llc | Display screen or portion thereof with an animated graphical user interface |
EP3987426B1 (en) * | 2019-06-21 | 2024-07-24 | nference, inc. | Systems and methods for computing with private healthcare data |
USD946596S1 (en) * | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US11755779B1 (en) * | 2020-09-30 | 2023-09-12 | Datavant, Inc. | Linking of tokenized trial data to other tokenized data |
USD946598S1 (en) * | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD946597S1 (en) * | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD971933S1 (en) * | 2020-09-30 | 2022-12-06 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US11327960B1 (en) * | 2020-10-16 | 2022-05-10 | Plaid Inc. | Systems and methods for data parsing |
US11546381B1 (en) * | 2021-11-08 | 2023-01-03 | Beijing Bytedance Network Technology Co., Ltd. | Unified data security labeling framework |
-
2017
- 2017-11-14 US US15/812,003 patent/US10938950B2/en active Active
-
2018
- 2018-11-13 WO PCT/US2018/060589 patent/WO2019099335A1/en unknown
- 2018-11-13 JP JP2020526118A patent/JP7312746B2/en active Active
- 2018-11-13 EP EP18880028.8A patent/EP3710950B1/en active Active
- 2018-11-13 KR KR1020207016814A patent/KR102566881B1/en active Active
- 2018-11-13 CN CN201880073502.3A patent/CN111344690B/en active Active
-
2021
- 2021-02-04 US US17/167,854 patent/US11323544B2/en active Active
-
2022
- 2022-04-22 US US17/727,342 patent/US11683397B2/en active Active
-
2023
- 2023-05-08 US US18/144,493 patent/US12088687B2/en active Active
-
2024
- 2024-09-05 US US18/825,940 patent/US20250063106A1/en active Pending
Patent Citations (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8175895B2 (en) * | 1999-06-23 | 2012-05-08 | Koninklijke Philips Electronics N.V. | Remote command center for patient monitoring |
US20030187688A1 (en) * | 2000-02-25 | 2003-10-02 | Fey Christopher T. | Method, system and computer program for health data collection, analysis, report generation and access |
JP2002329126A (en) | 2001-04-27 | 2002-11-15 | Magical Soft Service:Kk | Information system |
US20030167079A1 (en) * | 2002-02-25 | 2003-09-04 | Birnbaum Burton H. | Method and apparatus for processing heart rate information in a portable computer device |
US20070239741A1 (en) | 2002-06-12 | 2007-10-11 | Jordahl Jena J | Data storage, retrieval, manipulation and display tools enabling multiple hierarchical points of view |
JP2005031965A (en) | 2003-07-11 | 2005-02-03 | Nippon Telegr & Teleph Corp <Ntt> | Presence information using method, information user side terminal equipment, information provider side terminal equipment, and server device |
US7197502B2 (en) * | 2004-02-18 | 2007-03-27 | Friendly Polynomials, Inc. | Machine-implemented activity management system using asynchronously shared activity data objects and journal data items |
US20160004820A1 (en) * | 2005-02-01 | 2016-01-07 | Newsilike Media Group, Inc. | Security facility for maintaining health care data pools |
US20110307311A1 (en) * | 2005-06-20 | 2011-12-15 | Virgin Healthmiles, Inc. | Interactive, internet supported health and fitness management system |
US20080104012A1 (en) * | 2006-11-01 | 2008-05-01 | Microsoft Corporation | Associating branding information with data |
US20160224996A1 (en) * | 2007-01-26 | 2016-08-04 | Information Resources, Inc. | Similarity matching of products based on multiple classification schemes |
US20080294018A1 (en) * | 2007-05-22 | 2008-11-27 | Kurtz Andrew F | Privacy management for well-being monitoring |
US8321556B1 (en) * | 2007-07-09 | 2012-11-27 | The Nielsen Company (Us), Llc | Method and system for collecting data on a wireless device |
US20090069720A1 (en) * | 2007-09-12 | 2009-03-12 | Cardiac Pacemakers, Inc. | Logging daily average metabolic activity using a motion sensor |
US20090132395A1 (en) * | 2007-11-15 | 2009-05-21 | Microsoft Corporation | User profiling in a transaction and advertising electronic commerce platform |
US20090326981A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Universal health data collector and advisor for people |
US10438686B2 (en) * | 2008-07-01 | 2019-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for assessment of clinical infertility |
US8495007B2 (en) * | 2008-08-28 | 2013-07-23 | Red Hat, Inc. | Systems and methods for hierarchical aggregation of multi-dimensional data sources |
US10347374B2 (en) * | 2008-10-13 | 2019-07-09 | Baxter Corporation Englewood | Medication preparation system |
US20100169108A1 (en) * | 2008-12-31 | 2010-07-01 | Microsoft Corporation | Distributed networks used for health-based data collection |
US20120235821A1 (en) * | 2009-05-18 | 2012-09-20 | Adidas Ag | Methods and Program Products for Providing Heart Rate Information |
US20140245161A1 (en) * | 2010-09-30 | 2014-08-28 | Fitbit, Inc. | Motion-Activated Display of Messages on an Activity Monitoring Device |
CN103329129A (en) | 2011-01-12 | 2013-09-25 | 国际商业机器公司 | Multi-tenant audit awareness in support of cloud environments |
US20160321654A1 (en) * | 2011-04-29 | 2016-11-03 | Stephen Lesavich | Method and system for storage and retrieval of blockchain blocks using galois fields |
JP2013003763A (en) | 2011-06-15 | 2013-01-07 | Nippon Telegr & Teleph Corp <Ntt> | Information recommendation device, information recommendation method and information recommendation program |
US20170091397A1 (en) * | 2012-01-26 | 2017-03-30 | Netspective Communications Llc | Device-driven non-intermediated blockchain system over a social integrity network |
CN104380690A (en) | 2012-06-15 | 2015-02-25 | 阿尔卡特朗讯 | Architecture of privacy protection system for recommendation services |
US20150154646A1 (en) | 2012-06-15 | 2015-06-04 | New York University | Storage, retrieval, analysis, pricing, and marketing of personal health care data using social networks, expert networks, and markets |
US20150379510A1 (en) * | 2012-07-10 | 2015-12-31 | Stanley Benjamin Smith | Method and system to use a block chain infrastructure and Smart Contracts to monetize data transactions involving changes to data included into a data supply chain. |
US20210210188A1 (en) * | 2012-09-04 | 2021-07-08 | Whoop, Inc. | Continuously wearable monitoring device |
US10646405B2 (en) * | 2012-10-26 | 2020-05-12 | Baxter Corporation Englewood | Work station for medical dose preparation system |
US10971257B2 (en) * | 2012-10-26 | 2021-04-06 | Baxter Corporation Englewood | Image acquisition for medical dose preparation system |
US20200005347A1 (en) * | 2012-12-22 | 2020-01-02 | Quotient Technology Inc. | Automatic recommendation of digital offers to an offer provider based on historical transaction data |
US20140229349A1 (en) * | 2013-02-08 | 2014-08-14 | Kostadin Dimitrov Yanev | Facilitating a personal data market |
JP2014229039A (en) | 2013-05-22 | 2014-12-08 | 株式会社日立製作所 | Privacy protection type data provision system |
US20170031449A1 (en) * | 2013-09-04 | 2017-02-02 | Zero360, Inc. | Wearable device |
US20220050921A1 (en) * | 2013-11-01 | 2022-02-17 | Anonos Inc. | Systems and methods for functionally separating heterogeneous data for analytics, artificial intelligence, and machine learning in global data ecosystems |
US20190332807A1 (en) * | 2013-11-01 | 2019-10-31 | Anonos Inc. | Systems and methods for enforcing privacy-respectful, trusted communications |
JP2015103111A (en) | 2013-11-26 | 2015-06-04 | ヤフー株式会社 | Information transaction apparatus, information transaction method and information transaction program |
US20160321403A1 (en) * | 2013-11-29 | 2016-11-03 | Huawei Technologies Co., Ltd. | Data collection method and apparatus |
US20150242890A1 (en) * | 2014-02-26 | 2015-08-27 | Blazer and Flip Flops, Inc. dba The Experience Engine | Increasing customer monetization |
US20170032401A1 (en) | 2014-04-09 | 2017-02-02 | Orit Shifman | Methods, platforms and systems for paying persons for use of their personal intelligence profile data |
US9582642B2 (en) * | 2014-05-30 | 2017-02-28 | Apple Inc. | Managing user information—background processing |
US20150347784A1 (en) * | 2014-05-30 | 2015-12-03 | Apple Inc. | Managing user information - authorization masking |
US20160034696A1 (en) * | 2014-07-30 | 2016-02-04 | Google Inc. | Data Permission Management for Wearable Devices |
US11107574B2 (en) * | 2014-09-30 | 2021-08-31 | Baxter Corporation Englewood | Management of medication preparation with formulary management |
US10818387B2 (en) * | 2014-12-05 | 2020-10-27 | Baxter Corporation Englewood | Dose preparation data analytics |
WO2016103055A1 (en) | 2014-12-25 | 2016-06-30 | Yandex Europe Ag | Method of generating hierarchical data structure |
US10078624B2 (en) | 2014-12-25 | 2018-09-18 | Yandex Europe Ag | Method of generating hierarchical data structure |
US20190265971A1 (en) * | 2015-01-23 | 2019-08-29 | C3 Iot, Inc. | Systems and Methods for IoT Data Processing and Enterprise Applications |
US9690538B1 (en) * | 2015-02-03 | 2017-06-27 | HCA Holdings, Inc. | Customizable real-time electronic whiteboard system |
US20160232318A1 (en) * | 2015-02-10 | 2016-08-11 | Dexcom, Inc. | Systems and methods for distributing continuous glucose data |
US20160324432A1 (en) * | 2015-05-07 | 2016-11-10 | Whoop, Inc. | Heart rate detection using ambient light |
US20170243241A1 (en) * | 2015-06-09 | 2017-08-24 | Fidelity National Information Services, Inc. | Methods and Systems for Regulating Operation of Units Using Encryption Techniques Associated with a Blockchain |
US20170006412A1 (en) * | 2015-06-30 | 2017-01-05 | International Business Machines Corporation | Leader and follower management system for wearable devices |
US20170039330A1 (en) * | 2015-08-03 | 2017-02-09 | PokitDok, Inc. | System and method for decentralized autonomous healthcare economy platform |
US20170039336A1 (en) * | 2015-08-06 | 2017-02-09 | Microsoft Technology Licensing, Llc | Health maintenance advisory technology |
US20170053015A1 (en) * | 2015-08-17 | 2017-02-23 | Accenture Global Solutions Limited | Platform data aggregation and semantic modeling |
US20170054611A1 (en) * | 2015-08-17 | 2017-02-23 | Accenture Global Solutions Limited | Trust framework for platform data |
US20170169800A1 (en) * | 2015-09-03 | 2017-06-15 | Synthro Inc. | Systems and techniques for aggregation, display, and sharing of data |
US10003591B2 (en) * | 2015-09-08 | 2018-06-19 | Plaid Technologies, Inc. | Secure permissioning of access to user accounts, including secure deauthorization of access to user accounts |
US20170071487A1 (en) * | 2015-09-14 | 2017-03-16 | Whoop, Inc. | Probability-based usage of multiple estimators of a physiological signal |
US20180263512A1 (en) * | 2015-09-23 | 2018-09-20 | Emfit Oy | Heart rate monitoring device, system, and method for increasing performance improvement efficiency |
US20170140141A1 (en) * | 2015-11-16 | 2017-05-18 | Personnus | System for identity verification |
US20180350451A1 (en) * | 2015-11-24 | 2018-12-06 | David Leason | Automated health data acquisition, processing and communication system and method |
WO2017090329A1 (en) | 2015-11-24 | 2017-06-01 | ソニー株式会社 | Information processing device, information processing method, and program |
US20180344215A1 (en) * | 2015-11-24 | 2018-12-06 | Dacadoo Ag | Automated health data acquisition, processing and communication system and method |
US20170213209A1 (en) * | 2016-01-21 | 2017-07-27 | International Business Machines Corporation | Enterprise blockchains and transactional systems |
US20180078843A1 (en) * | 2016-02-02 | 2018-03-22 | Bao Tran | Smart device |
US20170262654A1 (en) * | 2016-03-14 | 2017-09-14 | Rita H. Wouhaybi | Secure group data exchange |
US20170293772A1 (en) * | 2016-04-07 | 2017-10-12 | Samsung Electronics Co., Ltd. | Private dataaggregation framework for untrusted servers |
US20170308671A1 (en) * | 2016-04-20 | 2017-10-26 | Bionous, LLC | Personal health awareness system and methods |
US20180117446A1 (en) * | 2016-05-02 | 2018-05-03 | Bao Tran | Smart device |
US20170330438A1 (en) * | 2016-05-10 | 2017-11-16 | iBeat, Inc. | Autonomous life monitor system |
US20170364637A1 (en) * | 2016-05-24 | 2017-12-21 | ICmed, LLC | Mobile health management database, targeted educational assistance (tea) engine, selective health care data sharing, family tree graphical user interface, and health journal social network wall feed, computer-implemented system, method and computer program product |
US20170367634A1 (en) * | 2016-06-24 | 2017-12-28 | Rita H. Wouhaybi | Method and system for emotion mapping |
US20180046766A1 (en) * | 2016-06-27 | 2018-02-15 | Novus Paradigm Technologies Corporation | System for rapid tracking of genetic and biomedical information using a distributed cryptographic hash ledger |
US20180144101A1 (en) * | 2016-11-22 | 2018-05-24 | Microsoft Technology Licensing, Llc | Identifying diagnosis-relevant health information |
US20180203926A1 (en) * | 2017-01-13 | 2018-07-19 | Samsung Electronics Co., Ltd. | Peer-based user evaluation from multiple data sources |
US20180211059A1 (en) * | 2017-01-23 | 2018-07-26 | Health2047, Inc. | Trust based access to records via encrypted protocol communications with authentication system |
US20180261307A1 (en) * | 2017-02-10 | 2018-09-13 | Spxtrm Health Inc. | Secure monitoring of private encounters |
US20180232464A1 (en) * | 2017-02-15 | 2018-08-16 | Mastery Transcript Consortium | Automatic transformation of a multitude of disparate types of input data into a holistic, self-contained, reference database format that can be rendered at varying levels of granularity |
US20200237262A1 (en) * | 2017-04-24 | 2020-07-30 | Whoop, Inc. | Activity recognition |
US20180303381A1 (en) * | 2017-04-24 | 2018-10-25 | Whoop, Inc. | Activity recognition |
US20190012466A1 (en) * | 2017-07-10 | 2019-01-10 | Burstiq Analytics Corporation | Secure adaptive data storage platform |
US11527316B2 (en) * | 2019-06-01 | 2022-12-13 | Apple Inc. | Health application user interfaces |
US11521714B1 (en) * | 2021-02-03 | 2022-12-06 | Vignet Incorporated | Increasing diversity of participants in health research using adaptive methods |
Non-Patent Citations (4)
Title |
---|
Chinese First Office Action; CN Application No. 201880073502.3; dated Dec. 15, 2022. |
Japanese First Office Action; JP Application No. 2020-526118; dated Dec. 14, 2022. |
Kumar, Vimal et al.; "Secure Hierarchical Data Aggregation in Wireless Sensor Networks: Performance Evaluation and Analysis"; 2012 IEEE 13th International Conference on Mobile Data Management, Bengaluru, 2012, pp. 196-201. |
Stanciu, Alexandru; "Blockchain Based Distributed Control System for Edge Computing", 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, 2017, pp. 667-671. |
Also Published As
Publication number | Publication date |
---|---|
US12088687B2 (en) | 2024-09-10 |
CN111344690A (en) | 2020-06-26 |
KR102566881B1 (en) | 2023-08-11 |
US20230275978A1 (en) | 2023-08-31 |
US20190149633A1 (en) | 2019-05-16 |
EP3710950A1 (en) | 2020-09-23 |
CN111344690B (en) | 2023-03-28 |
US11323544B2 (en) | 2022-05-03 |
JP2021503130A (en) | 2021-02-04 |
JP7312746B2 (en) | 2023-07-21 |
US20210160343A1 (en) | 2021-05-27 |
EP3710950B1 (en) | 2023-05-31 |
US20220256013A1 (en) | 2022-08-11 |
EP3710950A4 (en) | 2021-08-18 |
US20250063106A1 (en) | 2025-02-20 |
US10938950B2 (en) | 2021-03-02 |
WO2019099335A1 (en) | 2019-05-23 |
KR20200087800A (en) | 2020-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12088687B2 (en) | Hierarchical data exchange management system | |
US11139954B2 (en) | Blockchain proof of custody, proof against tampering, proof of chain of custody | |
US20200090188A1 (en) | Autonomous data exchange marketplace system and methods | |
US11956363B2 (en) | Systems and methods for hierarchical organization of data within a non-fungible tokens or chain-based decentralized systems | |
US11960622B2 (en) | Platform for management of user data | |
US20240152645A1 (en) | System and method for registering claims of ownership rights | |
US12034705B2 (en) | Systems and methods for exchanging data between devices | |
US20220036377A1 (en) | Data exchange platform from personal data platform | |
US20080189181A1 (en) | Apparatus, system and method for providing digital content to customers | |
US20240111788A1 (en) | Fault tolerant storage of data | |
WO2023215776A1 (en) | Profile badges and access control based on digital wallet blockchain activity | |
US12210496B2 (en) | Security control framework for an enterprise data management platform | |
US12135803B2 (en) | End-to-end privacy ecosystem | |
US12067133B2 (en) | End-to-end privacy ecosystem | |
US11599652B1 (en) | End-to-end privacy ecosystem | |
EP4396760A1 (en) | End-to-end privacy ecosystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: EDISON INNOVATIONS, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOLBY INTELLECTUAL PROPERTY LICENSING, LLC;REEL/FRAME:070293/0273 Effective date: 20250219 |
|
AS | Assignment |
Owner name: GE INTELLECTUAL PROPERTY LICENSING, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:070636/0815 Effective date: 20240630 Owner name: DOLBY INTELLECTUAL PROPERTY LICENSING, LLC, NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:GE INTELLECTUAL PROPERTY LICENSING, LLC;REEL/FRAME:070643/0907 Effective date: 20240819 |