US10747982B2 - Method and apparatus for contact image sensing - Google Patents

Method and apparatus for contact image sensing Download PDF

Info

Publication number
US10747982B2
US10747982B2 US16/577,607 US201916577607A US10747982B2 US 10747982 B2 US10747982 B2 US 10747982B2 US 201916577607 A US201916577607 A US 201916577607A US 10747982 B2 US10747982 B2 US 10747982B2
Authority
US
United States
Prior art keywords
sbg
light
waveguide
array
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US16/577,607
Other versions
US20200012839A1 (en
Inventor
Milan Momcilo Popovich
Jonathan David Waldern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DigiLens Inc
Original Assignee
DigiLens Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DigiLens Inc filed Critical DigiLens Inc
Priority to US16/577,607 priority Critical patent/US10747982B2/en
Publication of US20200012839A1 publication Critical patent/US20200012839A1/en
Assigned to DIGILENS INC. reassignment DIGILENS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POPOVICH, MILAN MOMCILO, WALDERN, JONATHAN DAVID
Priority to US16/990,840 priority patent/US11443547B2/en
Application granted granted Critical
Publication of US10747982B2 publication Critical patent/US10747982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • G06K9/00046
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • G02B27/4277Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path being separated by an air space
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • G06K9/0004
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • H01L27/14678
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/198Contact-type image sensors [CIS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements

Definitions

  • the present invention relates to an imaging sensor, and more particularly to a contact image sensor using electrically switchable Bragg gratings.
  • a contact image sensor is an integrated module that comprises an illumination system, an optical imaging system and a light-sensing system—all within a single compact component.
  • the object to be imaged is place in contact with a transparent outer surface (or platen) of the sensor.
  • Well known applications of contact image sensors include document scanners, bar code readers and optical identification technology.
  • Another field of application is in biometric sensors, where there is growing interest in automatic finger print detection. Fingerprints are a unique marker for a person, even an identical twin, allowing trained personnel or software to detect differences between individuals. Fingerprinting using the traditional method of inking a finger and applying the inked finger to paper can be extremely time-consuming.
  • Digital technology has advanced the art of fingerprinting by allowing images to be scanned and the image digitized and recorded in a manner that can be searched by computer. Problems can arise due to the quality of inked images. For example, applying too much or too little ink may result in blurred or vague images. Further, the process of scanning an inked image can be time-consuming.
  • a better approach is to use “live scanning” in which the fingerprint is scanned directly from the subject's finger. More specifically, live scans are those procedures which capture fingerprint ridge detail in a manner which allows for the immediate processing of the fingerprint image with a computer. Examples of such fingerprinting systems are disclosed in Fishbine et al. (U.S. Pat. Nos. 4,811,414 and 4,933,976); Becker (U.S. Pat.
  • a contact image sensor comprises the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and ITO electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; an air gap; a transmission grating; a third transparent substrate (low index glue layer); a SBG cover glass; a ITO layer; a second SBG array device comprising an array of selectively switchable SBG column elements; a ITO layer; a barrier film; a waveguiding layer comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer having a generally lower refractive index than the
  • the apparatus further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the core into an output optical path; and a detector comprising at least one photosensitive element, the photosensitive element being optically coupled to at least one the core.
  • ITO electrodes are applied to the opposing faces of the third transparent substrate and the waveguiding layer.
  • the column elements of the first and second SBG arrays have longer dimensions disposed orthogonally to the first TIR beam direction.
  • the air gap may be replaced by a refracting material layer.
  • Each SBG element in the first and second SBG arrays has a diffracting state when no electric field is present across the ITO electrodes and a non-diffracting state when an electric field is present across the ITO electrodes, the SBG elements diffracting only the first polarization light.
  • the elements of the second SBG device which are in a non-diffracting state have a generally lower refractive index than the cores.
  • the third transparent substrate has a generally lower refractive index than the cores.
  • an active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first beam direction.
  • the transmission grating diffracts the first beam direction light upwards into a second beam direction.
  • contact is made with an external material at a point on the platen a portion of the second beam direction light incident at the point on the platen contacted by said external material is transmitted out of the platen. All other light incident on the outer surface of the platen is reflected downwards in a third optical path, the third optical path traversing the cores.
  • An active SBG element of the second SBG array along the third beam direction diffracts the third angle light downwards into a fourth beam direction.
  • the fourth beam direction light is reflected upwards at the third transparent substrate into a fifth beam direction.
  • the fifth beam direction light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array or second SBG array/third transparent substrate interfaces, providing a TIR path to the detector.
  • the first to fifth beam directions lie in a plane orthogonal to the first SBG array.
  • the third transparent substrate has a generally lower refractive index than the element of the second SBG array in its diffracting state.
  • the third transparent substrate has a generally lower refractive index than the element of the second SBG array in its non-diffracting state.
  • the apparatus further comprises a transparent slab of index lower than that of the third substrate disposed between the third substrate and the transmission grating.
  • the output from detector array element is read out in synchronism with the switching of the elements of the first SBG array.
  • the apparatus further comprises a transparent slab of index lower than that of the third substrate disposed between the third substrate and the transmission grating.
  • An active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first optical path in a plane orthogonal to the first SBG array.
  • the transmission grating diffracts the first optical path light upwards into a second optical path.
  • the third optical path traverses the core.
  • An active SBG element of the second SBG array along the third optical path diffracts the third angle light downwards into a fourth optical path.
  • the fourth optical path light is reflected upwards at least one of the third transparent substrate or the slab into a fifth optical path.
  • the fifth optical path light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array, second SBG array/third substrate or third substrate/slab interfaces, providing a TIR path to the detector.
  • the first to fifth optical paths lie in a plane orthogonal to the first SBG array.
  • the illumination means comprises a laser and a collimator lens.
  • the means for coupling light from the illumination means into the first TIR light guide is a grating.
  • the means for coupling light from the illumination means into the first TIR light guide is a prismatic element.
  • the means for coupling the second TIR light into the waveguide is a grating.
  • the means for coupling light out of the waveguide is a grating.
  • first and second SBG arrays each comprise continuous SBG layers and the selectively switchable elements of first and second SBG arrays are defined by configuring at least one of the transparent electrodes as a multiplicity of selectively switchable electrode elements.
  • an air gap is provided between the first SBG array and the transmission grating.
  • the senor further comprises a priming layer between the upper clad layer and the platen.
  • At least one of the transparent electrodes and substrates sandwiches a barrier layer.
  • the transparent substrates are fabricated from plastic.
  • the waveguide cores are fabricated from an electrically conductive material.
  • the waveguide cores are fabricated from CNT.
  • the waveguides are fabricated from CNT using a lift-off stamping process.
  • the waveguides are coupled to linear array of detectors.
  • the waveguides are coupled to a two dimensional detector array.
  • the transparent electrodes are fabricated from ITO.
  • the transparent electrodes are fabricated from CNT.
  • the transparent electrodes are fabricated from PDOT.
  • the waveguides are fabricated from PDOT.
  • the waveguide cores are fabricated from a conductive photopolymer the waveguide cores and second SBG array elements being disposed such that only the portions off the SBG array elements lying directly under the waveguide cores are switched.
  • the SBG arrays are fabricated using a reverse mode HPDLC.
  • an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and ITO electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; an air gap; a transmission grating; a transparent substrate (low index glue); an SBG cover glass; a ITO layer; a second SBG array device comprising array of selectively switchable SBG column elements; a ITO layer; a barrier film; a waveguiding layer comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer having a generally lower refractive index than the cores (which is also referred to as the bottom buffer); a priming layer
  • the first to fifth optical paths lie in a plane orthogonal to the first SBG array.
  • the method further comprises a transparent slab of index lower than the substrate disposed between the substrate and the transmission grating, such that the fourth optical path light is reflected upwards at the substrate into a fifth optical path and the fifth optical path light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array, second SBG array/third substrate or third substrate/slab interfaces, providing a TIR path to the detector.
  • the air gap may be replaced by a refracting material layer.
  • the illumination means comprises a multiplicity of laser illumination channels, each said channel comprising a laser and collimating lens system.
  • the illumination means provides a multiplicity of collimated, abutting beams of rectangular cross section.
  • the illumination means comprises a laser and a collimator lens.
  • the said illumination means provides a collimated beam of rectangular cross section.
  • the optical wave guiding structure comprises a multiplicity of parallel strip cores separated by cladding material.
  • the optical wave guiding structure comprises a single layer core.
  • the SBG elements are strips aligned normal to the propagation direction of the TIR light.
  • the SBG elements are switched sequentially across the SBG array and only one SBG element is in its diffracting state at any time.
  • the senor further comprises a micro lens array disposed between the SBG device and the first cladding layer.
  • the means for coupling light from the illumination means into the first TIR light guide is a grating.
  • the illumination device of claim the means for coupling light from the illumination means into the first TIR light guide is a prismatic element.
  • the means for coupling the second TIR light into the wave-guiding structure is a grating.
  • the means for coupling light out of the wave-guiding structure is a grating.
  • the output light from the wave guiding device is coupled into a linear detector array.
  • the output light from the wave guiding device is coupled into a two dimensional detector array.
  • a contact image sensor further comprises a half wave retarder array disposed between the air gap and the transmission grating.
  • the half wave retarder array comprises an array of column-shaped elements sandwiched by transparent substrates. Each retarder element in the half wave retarder array is switchable between a polarization rotating state in which it rotates the polarization of incident light through ninety degrees and a non polarization rotating state.
  • the column elements of the half wave retarder array have longer dimensions disposed parallel the first TIR beam direction.
  • Each half wave retarder array element overlaps at least one strip element of the first SBG array.
  • one element of the first SBG array is in a diffracting state and is overlapped by an element of the half wave retarder array in its non-polarization rotating state
  • one element of the second SBG array is in a diffracting state
  • all other elements of the first and second SBG arrays are in a non-diffracting state and all other elements of the half wave retarder array are in their polarization rotating states.
  • a contact image sensor comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column, and transparent electrodes applied to opposing faces of said substrate, the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; a transmission grating; a second SBG array device further comprising third and fourth transparent substrates sandwiching a multiplicity of high index HPDLC regions separated by low index HPDLC regions and patterned transparent electrodes applied to opposing faces of the substrates; and a platen.
  • the apparatus and further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element.
  • the high index regions provide waveguiding cores disposed parallel to the first beam direction.
  • the low index HPDLC regions provide waveguide cladding.
  • the third and fourth substrate layers have a generally lower refractive index than the cores.
  • the patterned electrodes applied to the third substrate comprise column shaped elements defining a multiplicity of selectively switchable columns of SBG elements which are aligned orthogonally to the waveguiding cores.
  • the patterned electrodes applied to the fourth substrate comprise elongate elements overlapping the low index HPDLC regions.
  • the detector comprises an array of photosensitive elements, each photosensitive element being optically coupled to at least one waveguiding core.
  • Each SBG element in the first and second SBG arrays is switchable between a diffracting state and a non-diffracting state with the SBG elements diffracting only first polarization light.
  • the diffracting state exists when an electric field is applied across the SBG element and a non diffracting state exists when no electric field is applied.
  • the diffracting state exists when no electric field is applied across the SBG element and the non diffracting states exists when an electric field is applied.
  • one element of the first SBG array is in a diffracting state
  • one element of the second SBG array is in a diffracting state
  • all other elements of the first and second are in a non-diffracting state.
  • an active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first beam direction.
  • the transmission grating diffracts the first beam direction light upwards into a second beam direction.
  • a portion of the second beam direction light incident at the point on the platen contacted by the external material is transmitted out of the platen.
  • Light incident on the outer surface of the platen in the absence of external material is reflected downwards in a third optical path which traverses the cores.
  • An active column of the second SBG array along the third beam direction diffracts the third angle light into a second TIR path down the traversed core towards the detector.
  • the first to third optical paths and the first and second TIR paths lie in a common plane.
  • the output from detector array element is read out in synchronism with the switching of the elements of the first SBG array.
  • an air gap between the first SBG array and the transmission grating there is provided an air gap between the first SBG array and the transmission grating.
  • an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and transparent electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; a transmission grating; a transparent substrate; a second SBG array device further comprising third and fourth substrates sandwiching a multiplicity of high index HPDLC regions separated by low index HPDLC regions and patterned transparent electrodes applied to opposing faces of the substrates; a platen; and a detector; and further comprising: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element; the high index regions providing waveguiding cores disposed parallel to the first beam direction and the low index
  • a contact image sensor using a single SBG array layer comprising: an illumination means for providing a collimated beam of first polarisation light; an SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG columns, and transparent electrodes applied to opposing faces of the substrates, said SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; a first transmission grating layer overlaying the lower substrate of the SBG array device; a second transmission grating layer overlaying the upper substrates of the SBG array device; a quarter wavelength retarder layer overlaying the second transmission grating layer; a platen overlaying the quarter wavelength retarder layer; and a polarization rotating reflecting layer overlaying the first transmission grating layer.
  • the apparatus further comprises: means for coupling light from said illumination means into said SBG array device; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element.
  • a contact image sensor comprises: an illumination means for providing a collimated beam of first polarization light; an illuminator waveguide for propagating light in a first TIR path containing a first array of switchable grating columns; a detector waveguide for propagating light in a second TIR path containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; a detector comprising at least one photosensitive element; and a platen.
  • Each switchable grating element in the first and second switchable grating arrays is switchable between a diffracting state and a non-diffracting state.
  • the switchable grating elements diffract only the first polarization light.
  • Each external surface of the detector waveguide is divided into a first grid of strips interspersed with a second grid of strips.
  • the first and second grids have different light-modifying characteristics. Overlapping strips from the first grid of strips on each external surface are operative to waveguide light. Overlapping strips from the second grid of strips on each external surface are operative to absorb light scattered out of regions of the detector waveguide sandwiched by overlapping strips from the first grid of strips on each external surface.
  • the strips are orthogonal to the switchable grating columns.
  • first grid of each external waveguide surface is one of clear or scattering and the second grid of at least one external waveguide surface is infrared absorbing.
  • the beam steering means comprises: a first transmission grating layer; a half wavelength retarder layer overlaying the first transmission grating layer; a second transmission grating layer overlaying the half wavelength retarder layer; and a quarter wavelength retarder layer sandwiched by the second transmission grating layer and the platen.
  • the external faces of the detector waveguide and the illuminator waveguide abut an air space or a low refractive index material layer.
  • the first waveguide coupler couples light from the illumination means into the first TIR path in the illuminator waveguide.
  • a switchable grating element of the illuminator waveguide in a diffracting state diffracts the first TIR path light towards the platen into a first beam direction.
  • the beam steering means deflects the first beam direction light towards the platen in a second beam direction.
  • An active column of the second switchable grating array along the third beam direction diffracts the third angle light into a second TIR path in the detector waveguide.
  • the second waveguide coupler couples the second TIR path light into an output optical path towards the detector.
  • the first to third optical paths and the first and second TIR paths are in a common plane.
  • the first direction light traverses the detector waveguide.
  • the second direction light traverses the illuminator waveguide.
  • an apparatus comprising: an illumination means for providing a collimated beam of first polarisation light; an illuminator waveguide for propagating light in a first TIR beam direction containing a first array of switchable grating columns; a detector waveguide for propagating light in a first TIR beam direction containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a platen; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; and a detector comprising at least one photosensitive element.
  • the external surfaces of the detector waveguide comprise interspersed multiplicities of strips with different light modifying characteristics.
  • the strips are orthogonal to the switchable grating columns, each light modifying strip overlapping a clear strip; b) coupling light from the illumination means into the illuminator waveguide; c) an external material contacting a point on the external surface of the platen; d) sequentially switching elements of the first switchable grating array into a diffracting state, all other elements being in their non-diffracting states; e) sequentially switching columns of the second switchable grating array into a diffracting state, all other columns being in their non-diffracting states; f) each diffracting switchable grating element of the first switchable grating array diffracting incident first TIR light upwards into a first optical path; g) the beam steering means deflecting the first optical path light into a second optical path; h) a portion of the second optical path light incident at the point on the platen contacted by the
  • first to third optical paths and the first and second TIR paths are in a common plane.
  • FIG. 1 is a schematic side elevation view of a contact image sensor in a first embodiment of the invention.
  • FIG. 2 is a schematic front elevation of the waveguiding structure used in the first embodiment of the invention showing the cross sections of the waveguide cores and cladding.
  • FIG. 3A is a schematic plan view of a first operational state of an SBG device used in a first embodiment of the invention.
  • FIG. 3B is a schematic plan view of a second operational state of an SBG device used in a first embodiment of the invention.
  • FIG. 4 is a schematic side elevation view of a contact image sensor in a first embodiment of the invention showing the principle ray paths.
  • FIG. 5A is a schematic side elevation view of a detail of the contact image sensor showing the ray propagation through the waveguide core and second SBG array in one embodiment of the invention.
  • FIG. 5B is a schematic side elevation view of a detail of the contact image sensor showing the ray propagation through the waveguide core and second SBG array in one embodiment of the invention.
  • FIG. 6 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
  • FIG. 7 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
  • FIG. 8 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
  • FIG. 9 is a schematic side elevation view of a detection scheme based on terminating waveguides in the wave-guiding structure with an angled polished facet as used in one embodiment of the invention.
  • FIG. 10 is a schematic side elevation view of a detection scheme based on applying out coupling gratings to waveguides in the wave-guiding structure as used in one embodiment of the invention.
  • FIG. 11 is a schematic plan view of a detection scheme based on a two dimensional array used in one embodiment of the invention.
  • FIG. 12A is a schematic side elevation view of an illumination means in one embodiment of the invention.
  • FIG. 12B is a schematic plan view of an illumination means in one embodiment of the invention.
  • FIG. 13 is a schematic plan view of an illumination means in one embodiment of the invention.
  • FIG. 14 is a flow chart illustrating a method of making a contact image measurement in one embodiment of the invention
  • FIG. 15 is a schematic side elevation view of a contact image sensor in one embodiment of the invention.
  • FIG. 16 is a schematic side elevation view of a contact image sensor in one embodiment of the invention showing the principle ray paths.
  • FIG. 17 is a schematic side elevation view of a contact image sensor in one embodiment of the invention.
  • FIG. 18 is a table showing typical refractive indices and layer thicknesses used in the first embodiment of the invention.
  • FIG. 19 is a schematic side elevation view of a contact image sensor in one embodiment of the invention.
  • FIG. 20 is a schematic diagram showing the key components a contact image sensor in one embodiment of the invention.
  • FIG. 21 is a schematic side elevation view of a detector waveguide in one embodiment of the invention.
  • FIG. 22 is a schematic side elevation view of a detector waveguide in one embodiment of the invention showing the coupling of signal light via an active element of the SBHG array.
  • FIG. 23 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
  • FIG. 24 is a cross-sectional view showing a detail of a detector component using a SBG waveguiding structure in one embodiment of the invention.
  • FIG. 25 is a plan view of the SBG switching electrodes used in one layer of a detector component based a SBG waveguiding structure in one embodiment of the invention.
  • FIG. 26 is a plan view of the SBG switching electrodes used in one layer of a detector component based a SBG waveguiding structure in one embodiment of the invention.
  • FIG. 27 is a side elevation view of a contact image sensor in one embodiment of the invention in which the detector and illuminator components are performed by a single waveguide containing a single SBG array.
  • FIG. 28A is a side elevation view of a contact image sensor in one embodiment of the invention in which external surfaces of the detector waveguide are divided into interspersed grids of strips having different light-modifying characteristics to provide a multiplicity of parallel waveguiding paths.
  • FIG. 28B is a detail of the embodiment of FIG. 28A showing the interspersed grid of strips on a first external surface.
  • FIG. 28C is a detail of the embodiment of FIG. 28A showing the interspersed grid of strips on a first external surface.
  • FIG. 28D is a detail of the embodiment of FIG. 28A showing a cross section of the detector waveguide with beam cross sections.
  • FIG. 29 is a side elevation view of the detector waveguide in the embodiment of FIG. 28A showing a side view of the SBG array and the interspersed grids of strips applied to the external surface.
  • FIG. 30 is a front elevation view of the detector waveguide in the embodiment of FIG. 28A showing a cross section of the SBG array.
  • FIG. 31A shows an alternative configuration of the strips on a first external surface of the detector waveguide of FIG. 28A .
  • FIG. 31B shows an alternative configuration of the strips on a second external surface of the detector waveguide of FIG. 28A .
  • FIG. 32 shows alternative of strip configurations that may be used on the external surfaces of the detector waveguide of FIG. 28A .
  • FIG. 33 is a schematic three dimensional view showing the platen and detector waveguide in one embodiment in which the detector waveguide is coupled to the detector by means of a micro lens array.
  • FIG. 34 is a schematic three dimensional view showing the platen and detector waveguide in one embodiment in which the detector waveguide is directly coupled to the detector.
  • FIG. 35 is a flow chart illustrating a method of making a contact image measurement using the apparatus of FIG. 28A .
  • FIG. 36A is a side elevation view of a contact image sensor in one embodiment of the invention in which the detector comprises a SBG array and a waveguide array and external surfaces of the waveguide array is divided into interspersed grids of strips having different light-modifying characteristics to provide a multiplicity of parallel waveguiding paths.
  • FIG. 36B is a detail of the embodiment of FIG. 36A showing a plan view of the interspersed grid of strips on the external surface.
  • FIG. 36C is a cross sectional view of the waveguide array in the embodiment of FIG. 36A .
  • FIG. 37A is a plan view of a first operational state of a two dimensional SBG array used in the at least one of the detector and illuminator waveguides in one embodiment.
  • FIG. 37B is a plan view of a second operational state of a two dimensional SBG array used in the at least one of the detector and illuminator waveguides in one embodiment of the invention.
  • FIG. 38 is a block diagram illustrating the key system modules of a software platform for use with a contact image sensor for finger print sensing in one embodiment of the invention.
  • on-axis in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention.
  • light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
  • grating will refer to a Bragg grating.
  • switchable grating will refer to a Bragg grating that can be electrically switched between an active or diffracting state and an inactive or non-diffractive state.
  • the preferred switchable grating will be a Switchable Bragg Grating (SBG) recording in a Holographic Polymer Dispersed Liquid Crystal (HPDLC) material.
  • SBG Switchable Bragg Grating
  • HPDLC Holographic Polymer Dispersed Liquid Crystal
  • a non switchable grating may be based on any material or process currently used for fabricating Bragg gratings.
  • the grating may be recorded in a holographic photopolymer material.
  • An SBG comprises a HPDLC grating layer sandwiched between a pair of transparent substrates to which transparent electrode coatings have been applied.
  • the first and second beam deflectors essentially comprise planar fringe Bragg gratings. Each beam deflector diffracts incident planar light waves through an angle determined by the Bragg equation to provide planar diffracted light waves.
  • SBG volume phase grating
  • PDLC polymer dispersed liquid crystal
  • SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. Techniques for making and filling glass cells are well known in the liquid crystal display industry. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A volume phase grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure.
  • PDLC polymer dispersed liquid crystal
  • the monomers polymerize and the HPDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer.
  • the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.
  • the resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer.
  • an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels resulting in for a “non diffracting” state.
  • the electrodes and the circuits and drive electronics required to perform switching of the SBG elements are not illustrated in the Figures.
  • Methods for fabricated patterned electrodes suitable for use in the present invention are disclosed in PCT US2006/043938. Other methods for fabricating electrodes and schemes for switching SBG devices are to be found in the literature.
  • the present invention does not rely on any particular method for fabricating transparent switching electrodes or any particular scheme for switching arrays of SBGs.
  • the description makes reference to SBG arrays the invention may be applied using any type of switchable grating.
  • a contact image sensor is illustrated in the schematic side elevation view of FIG. 1 .
  • the apparatus comprises the following parallel optical layers configured as a stack: an illumination means 1 for providing a collimated beam of first polarized light; a first SBG array device 2 further comprising first and second transparent substrates 21 , 22 sandwiching an array 20 of selectively switchable SBG column elements, and ITO electrodes 20 A, 20 B applied to opposing faces of the substrates, the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; an air gap 23 ; a transmission grating 43 ; a third transparent substrate(low index glue layer 42 ; a low refractive index SBG cover glass 41 ; a ITO layer 40 B; a second SBG array device 4 comprising an array of selectively switchable SBG column elements; a ITO layer 40 B; a barrier film 40 C; a waveguiding layer 50 comprising a multiplicity of waveguide cores separated by cladding material having a generally
  • Each core of the waveguide structure is optically couple to an element of a detector array.
  • the apparatus further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the core into an output optical path; and a detector comprising at least one photosensitive element, the photosensitive element being optically coupled to at least one the core.
  • the illumination means may further comprise optical stops to eliminate stray light and scatter.
  • the first polarized light may be either S or P polarized. Since SBGs recorded in the inventors preferred HPDLC material system are P-polarization sensitive that polarization will be assumed for the purposes of describing the invention.
  • the transmission grating 43 is advantageously a conventional transmission Bragg grating recorded in a holographic photopolymer. However, other equivalent means for providing a transmission grating may be used. Desirably, the contact image sensor uses infrared light from at least one laser. In one embodiment of the invention the light wavelength is 785 nanometers.
  • FIG. 2 A cross sectional view (in the XZ plane) of the waveguiding structure is shown in FIG. 2 which illustrates the waveguiding structure 40 sandwiched by the barrier film 40 C and the clad layer 51 (or bottom buffer). A core 71 and a region of cladding 72 between adjacent cores is indicted in the drawing.
  • the first SBG device 20 comprises an array of strips or columns aligned normal to the light propagation direction of the TIR light.
  • the second SBG array also comprises an array of strips or columns aligned parallel to the strips in the first SBG device.
  • the SBGs in the first and second SBG arrays are recorded as single continuous element in each case.
  • Transparent electrodes are applied to the opposing surfaces of the substrates 21 , 22 with at least one electrode being patterned to define the SBG elements.
  • each SBG element in the first and second SBG arrays has a diffracting state when no electric field is present across the ITO electrodes and a non-diffracting state when an electric field is present across the ITO electrodes, the SBG elements diffracting only the first polarization light.
  • Transparent electrodes are applied to the opposing faces of the third transparent substrate and the waveguiding layer with at least one electrode being patterned to define the SBG elements.
  • the first SBG array has a resolution of 1600 elements.
  • the resolution of the second SBG array is lower, typically 512 elements.
  • the column elements of the first and second SBG arrays have longer dimensions disposed orthogonally to the first TIR beam direction.
  • the elements of the second SBG device which are in a non-diffracting state have a generally lower refractive index than the waveguide cores.
  • the third transparent substrate has a generally lower refractive index than the cores.
  • the air gap 23 may be replace by a refracting material layer.
  • the second SBG array 4 acts as the lower cladding layer of the wave guiding structure while the waveguide core 50 and the third transparent substrate 41 act as the containing substrates of the second SBG array device 4 .
  • the first and second transparent substrates 21 , 22 sandwiching the first SBG array together provide a first TIR light guide with the TIR occurring in the plane of the drawing.
  • the second SBG array device 4 is sandwiched by the waveguide core and the third transparent substrate 41 which form a second TIR light guide.
  • the contact image sensor further comprises a means 11 for coupling light from said illumination means 1 into the first SBG array lightguide.
  • the invention does not assume any particular coupling means.
  • One particular solution discussed later is based on prismatic elements.
  • the coupling means may be based on gratings.
  • the contact image sensor further comprises a means for coupling light out of the wave-guiding structure into an output optical path leading to a detector.
  • the coupling means which schematically represented by the dashed line 52 is advantageously a grating device which will be discussed in more detail later.
  • the column elements of the first and second SBG arrays are switched sequentially in scrolling fashion, backwards and forwards.
  • the SBG elements are switched sequentially across the SBG array and only one SBG element in each array is in its diffracting state at any time. The effect is to produce a narrow scanning column of light that sweeps backwards and forwards across the platen.
  • FIGS. 3A-3B which provides schematic plan views of the SBG array 20 at two consecutive switching states.
  • the SBG element indicated by 25 is in its diffracting state and all other SBG elements are in their non diffracting states, allowing TIR light to be transmitted through the arrays without substantial transmission loss or path deviation.
  • the SBG element 24 is switched to its non-diffracting stated while the adjacent element 25 is switched to its diffracting state.
  • Incident light 200 from the illuminator means 1 is coupled into the first SBG device 2 by a coupling means indicated by 11 which will be discussed below.
  • the light undergoes TIR in the light guide formed by the substrates 21 , 22 as indicted by the rays 201 - 203 .
  • the active (i.e. diffracting) SBG column element 23 diffracts light 204 out of the light guide
  • the light 204 is now diffracted by the transmission grating into the ray 206 which propagates towards the platen without significant deviation or loss through the intervening optical layers.
  • the symbol P indicates that the light is P-polarized, i.e. it retains the polarization of the input laser light.
  • the fingers are placed onto the scanner surface.
  • the light incident on the platen outer surface is totally internally reflected downwards towards the wave guiding structure 50 and then on to the detector.
  • the finger skin touching the platen surface causes reflection at the outer surface of the platen to be frustrated such that light leaks out of the platen.
  • the parts of the finger skin that touch the platen surface therefore becomes the dark part of the finger print image because light never makes it to the detector array.
  • the X coordinate of the contacting feature is given by the detector array element providing the dark-level or minimum output signal. The latter will be determined by the noise level of the detector.
  • the Y coordinate of the contacting feature is computed from the geometry of the ray path from the last SBG element in the first SBG array that was in a diffracting state just prior to TIR occurring in the platen and a signal from the reflected light being recorded at the detector.
  • the ray path is computed using the diffraction angle and the thicknesses and refractive indices of the optical layers between the SBG element and the platen surface.
  • an alternative detection scheme is based on the principle that in the absence of any external pressure art the platen/air interface the incident light is transmitted out of the platen.
  • external pressure from a body 62 of refractive index lower than the platen causes the light to be totally internally reflected downwards towards the wave guiding structure 50 .
  • the X coordinate of the contacting feature is now given by the detector array element providing the peak output signal.
  • the procedure for computing the Y coordinate remains unchanged.
  • SBG when in the state designated as “non-diffracting” will, in practice, have a very small refractive index modulation and will therefore diffract a small amount of light. This residual diffraction is negligible in most applications of SBGs. However, in applications such as the present invention any residual refractive modulation will result in a small amount of light being diffracted out of the light guide. For example referring to FIG. 4 , SBG elements such as 24 will have a small diffraction efficiency leading to a small portion of TIR light being diffracted upwards into the ray path represented by the dashed lines and the ray directions indicated by 220 - 223 .
  • This light will follow a parallel path to the light from the active SBG element (the signal light) and will be reflected off the platen outer surface towards the waveguides. Coupling of this stray light into the waveguides, where it will contribute a background leakage noise to the output signal, is prevented by switching the second SBG array elements in synchronization with the first array elements such that only the element of the first and second SBGs array lying on the signal ray path are in a diffracting state at any time.
  • the readout of the signal from detector array is in turn synchronized with the switching of the elements of the first and second SBG arrays.
  • the wave guiding structure 50 and the SBG array 4 together provide the means for coupling light out of the sensor onto a detector array.
  • the SBG provides the lower cladding and the layer 51 provides the upper cladding.
  • the coupling of light into the waveguide relies on the second SBG array which acts as a switchable cladding layer as will be discussed below.
  • the second SBG array is operated in a similar fashion to the first SBG array with column elements being switched sequentially in scrolling fashion, backwards and forwards. Only one SBG element is in a diffracting state at any time.
  • the non active elements perform the function of a clad material.
  • the role of the active SBG element is to steer incident ray into the TIR angle.
  • FIG. 5A shows a detail of the wave guiding structure including the cladding 51 , core 50 , second SBG array 4 and SBG substrate 41 . Note that in FIGS. 5A-5B the layers 40 A, 40 B, 40 C are not illustrated.
  • the SBG grating is represented by the single Bragg fringe 44 .
  • the ray 207 on entering the active SBG element 43 at an incidence angle w is diffracted into the ray 207 A.
  • the deflection of the ray is determined by the Bragg diffraction equation. Since the average index of the SBG medium is higher than that of the substrate layer 41 the diffracted ray 207 A undergoes TIR within the SBG medium and the reflected ray 208 propagates into the core at an angle u which is slightly higher than the critical angle of the core/cladding interface.
  • the angle u is determined by the slant angles of the Bragg fringes and the incidence angle w.
  • the ray 208 undergoes TIR to give the downward ray 209 which enters the non diffracting SBG element 45 at the angle u as the ray 210 .
  • the ray 210 undergoes TIR at the interface of the SBG element/third substrate and re-enters the core as the ray 211 which from reflection symmetry is at angle u. This process is repeated along the waveguide until the light is coupled out towards the detector. Since all of the remaining SBG elements along the waveguide path are in their non diffracting states TIR between the cladding layer and the SBG lower substrate continues until the light is couple out of the waveguide towards the detector.
  • the invention also covers the case where the SBG substrate abuts a low index slab 42 which has a lower index than the third substrate.
  • the layer 42 is not essential in all applications of the invention but will in general provide more scope for optimizing the optical performance of the sensor. Referring to FIG. 5B it will be seen that the ray paths are similar to those of FIG. 5A except that the TIR of the diffracted ray 207 A now takes place at the interface between the substrate 41 and the low index slab 42 .
  • the diffracted ray 207 A is transmitted into the substrate 41 as the ray 207 B and undergoes TIR into the ray 207 C at the low index layer after transmission through the substrate 41 and the SBG array 4 the ray now indicated by 208 A propagates into the core at an angle v which is slightly higher than the critical angle of the core/clad interface.
  • the ray 208 A undergoes TIR to give the downward ray 209 A which enters the non activated SBG element 45 as the ray 210 A.
  • the ray 210 A undergoes TIR at the low index layer and re-enters the core as the ray 211 A which from reflection symmetry is at angle v. This process is repeated along the waveguide until the light is coupled out towards the detector. It should be appreciated that in situations where the collimation of the beam is not very tightly controlled it is possible that TIR may occur at the SBG substrate index for some rays and at the low index slab substrate for other rays.
  • the third transparent substrate has a generally lower refractive index than an element of the second SBG array in its diffracting state.
  • the third transparent substrate has a generally lower refractive index than the element of the second SBG array in its non-diffracting state.
  • the cleared SBG will still have a small residual refractive index modulation which causes a small amount of the incident light to be diffracted.
  • the direction of diffraction will depend on the TIR angle. In some cases the ray may not be at the Bragg angle but may still be sufficiently close to the Bragg angle to be diffracted, but with a lower diffraction efficiency. If not diffracted it may end up in the TIR beam, thereby contributing to the output signal.
  • the wave-guiding structure 50 which is illustrated in schematic plan view in FIG. 1 and in cross section in FIG. 2 comprises a multiplicity of parallel strip waveguides generally indicated by 70 , the waveguide core element of one of the waveguides and the surrounding cladding being indicated by numerals 71 , 72 .
  • the invention does not assume any particular waveguide geometry or material for fabricating the waveguiding layer. It should be apparent to those skilled in the art of integrated optics that a large number of different core/cladding combinations may be used in the invention.
  • the core will have a refractive index of typically between 1.51 to 1.56 or and the cladding layers will have refractive indices in the range from 1.41 to 1.47.
  • the core may be rectangular with cross sectional dimensions of 25-40 microns in depth ⁇ 40 microns in width.
  • the cores may have much larger or much smaller cross sectional dimensions subject to the specifications for coupling efficiency, waveguide crosstalk and other waveguide parameters set by the application.
  • the wave-guiding structure may use a polymer waveguide core of index typically in the range 1.50 to 1.60 with cladding index typically 1.45 to 1.55.
  • the invention does not assume any particular waveguide optical materials.
  • the waveguide cladding in the waveguiding layer 51 and the cladding layer 51 may be fabricated from one material. In some cases it may be advantages to have more than one cladding material in order to provide better control of the guide wave mode structure.
  • the highest refractive index UV curable material suitable for use as either core or cladding in a high transparency waveguiding structure of the type required in the invention is believed to have a refractive index of about 1.56 at 633 nm.
  • the index might be slightly lower at longer wavelength.
  • the problem with index values above about 1.56 is that the materials become either colored or slightly metallic and hence lose their transparency. Higher index transparent materials exist but they are not UV curable, which makes them unsuitable for waveguide fabrication using currently available embossing process.
  • FIGS. 6-8 provides schematic plan views of alternative schemes for coupling the wave guiding structure 50 to the detector 8 .
  • the detector comprises at least one element.
  • a multiplicity of waveguide cores is generally indicated by 70 with a typical core element 71 and the surrounding cladding 71 being indicated in each case. Each core terminates at a coupler linked to a detector element.
  • the ray paths from the active SBG element 23 to the waveguide termination are indicated by 206 , 207 , 213 using the numerals of FIG. 4 .
  • the detector 8 is a linear array of elements such as 81 .
  • a ray path from the waveguide termination to the detector is indicated by 214 .
  • the cores are each terminated by a 45 degree facet with directs light upwards or downwards (relative to the drawing surface) towards the detector along direction 214 which should be read as normal to the plane of the drawing.
  • the detector pitch matches the core spacing.
  • a parallel path waveguide routing element may be provided between the waveguide termination and the detector. In the embodiment of FIG.
  • the output light paths generally indicated by 502 from the waveguides are converged onto a linear detector array that is much smaller than the width of the platen by means convergent path waveguide routing element 84 A.
  • the cores are terminated by a 45 degree facet which directs the light upwards or downwards.
  • the output light paths generally indicated by 503 from the waveguides are converged by means of a convergent path waveguide routing element 85 onto a single element detector 83 .
  • the cores are terminated by a 45 degree facet which directs the light upwards or downwards.
  • the apparatus may further comprise a micro lens array disposed between the waveguide ends and the detector array where the micro lens elements overlap detector elements.
  • FIG. 9 is a schematic side elevation view of one method of coupling light out of the wave-guiding structure in which there is provided a 45 degree facet 86 A terminating each waveguide element in the wave-guiding structure.
  • FIG. 9 may be a cross section of any of the schemes illustrated above.
  • the detector 8 and the waveguide cladding layers 75 , 76 and core 74 are illustrated.
  • the core 74 may be a continuation of one of the cores 70 or a core of material of similar optical properties optically coupled to one of said cores 70 .
  • the cladding layer may be a continuation of the cladding layer 51 in FIG. 1 and FIG. 3 or material of similar refractive index.
  • the cladding layer may be continuation of the HPDLC material of the SBG array 4 or material of similar refractive index to the SBG array in its non-active state.
  • FIG. 10 is a schematic side elevation view of another method of coupling light out of the wave-guiding structure in which a grating device 86 B is applied to each waveguide element.
  • FIG. 10 may be a cross section of any of the schemes illustrated in FIGS. 7-9 .
  • the grating may be a surface relief structure etched into the waveguide cladding. Alternatively, the grating may be a separate layer in optical contact with one or both of the core or cladding. In one embodiment of the invention the grating may be recorded into a cladding layer as a Bragg grating.
  • the detector 8 is a linear array.
  • the detector elements are distributed over two dimensions. This avoids some of the alignment problems of coupling waveguide elements to detector elements with a very high resolution linear array.
  • the waveguides from the wave-guiding structure generally indicated by 87 are fanned out in the waveguide groups 87 A, 87 C.
  • the detectors are generally indicated by 88 .
  • the waveguide groups 87 A, 87 C contain waveguide cores such as 87 B which overlays the detector 88 B in the detector group 88 A and waveguide 87 D which overlays the detector 88 D in the detector group 88 C.
  • the waveguide to detector computing may employ 45 degrees core terminations, gratings, prisms or any other methods known to those skilled in the art. From consideration of FIG. 11 it should be apparent that many alternative configurations for coupling the waveguiding structure to a two dimensional detector array are possible.
  • the beams produced by the illumination means will not be perfectly collimated even with small laser die and highly optimized collimating optics. For this reason the interactions of the guided beams with the SBG elements will not occur at the optimum angles for maximum Bragg diffraction efficiency (DE) leading to a small drop in the coupling efficiency into the waveguiding structure.
  • DE Bragg diffraction efficiency
  • the reduction in signal to noise ratio (SNR) resulting from the cumulative depletion of the beam by residual gratings along the TIR path in the output waveguide may be an issue in certain applications of the invention.
  • a trade-off may be made between the peak and minimum SBG diffraction efficiencies to reduce such out-coupling.
  • the inventors have found that minimum diffraction efficiencies of 0.02% are readily achievable and efficiencies as low as 0.01% are feasible.
  • a small amount of diffusion ( ⁇ 0.1%) can be encoded into the SBG to provide a broader range of angles ensuring that guided light is not all at the Bragg angle.
  • a small amount of diffusion will be provided by scatter within the HPDLC material itself. Further angular dispersion of the beam may also be provided by etching both the ITO and the substrate glass during the laser etching of the ITO switching electrode.
  • the refractive index modulation of second SBG array is varied along the length of the array during exposure to provide more uniform coupling along the waveguide length.
  • the required variation may be provided by placing a variable neutral density filter in proximity to the SBG cell during the holographic recording. In any case the power depletion along the waveguide can be calibrated fairly accurately.
  • the SBG array comprises a continuous grating with the individual elements being defined by the electrode patterning.
  • the gaps between the elements of the first SBG arrays should therefore be made as small as possible to eliminate stray light which might get coupled into the waveguiding layer reducing the SNR of the output signal.
  • the gap should be not greater than 2 micron.
  • the noise signal contributed by the gaps is integrated over the area of an active column element of the second SBG array element while the light contributing to the useful signal is integrated over the simultaneously active column element of the first SBG array.
  • SNR SNR should be higher than 100.
  • the transparent electrodes are fabricated from PDOT (poly ethylenedioxythiophene) conductive polymer.
  • PDOT poly ethylenedioxythiophene
  • This material has the advantage of being capable of being spin-coated onto plastics.
  • PDOT (and CNT) eliminates the requirement for barrier films and low temperature coating when using ITO.
  • a PDOT conductive polymer can achieve a resistivity of 100 Ohm/sq.
  • PDOT can be etched using Reactive Ion Etching (ME) processes.
  • the first and second SBG arrays are switched by using a common patterned array of column shaped electrodes.
  • Each element of the second SBG array, which is of lower resolution than the first SBG array uses subgroups of the electrode array.
  • the waveguides are fabricated from PDOT. The inventors believe that such a waveguide will exhibit high signal to noise ratio (SNR).
  • the waveguides are fabricated from CNT using a lift-off stamping process.
  • An exemplary CNT material and fabrication process is the one provided by OpTIC (Glyndwr Innovations Ltd., St. Asaph, Wales, and United Kingdom).
  • the waveguide cores are conductive photopolymer such as PDOT or CNT. Only the portions of the SBG array lying directly under the waveguide cores are switched. This avoids the problems of crosstalk between adjacent waveguide cores thereby improving the SNR at the detector.
  • the TIR angle in the platen depends on the refractive indices of the platen glass and the thin layer of water (perspiration) between the subject's skin and the platen.
  • the platen is made from SF11 glass the refractive index at 785 nm is 1.765643, while the index of water at 785 nm is 1.3283.
  • the arc-sine of the ratio of these two indices (sin ⁇ 1 (1.3283/1.76564) gives a critical angle of 48.79°. Allowing for the salt content of perspiration we should assume an index of 1.34, which increases the critical angle to 49.37°.
  • the TIR angle at the platen should be further increased to 50° to provide for alignment tolerances, fabrication tolerances, and water variations as well as collimation tolerances too for less than perfect lenses and placements of these parts.
  • other materials may be used for the plate. It is certainly not essential to use a high index to achieve moisture discrimination.
  • the choice of platen material will be influenced by the need to provide as large a bend angle as possible at the SBG stage. The reason for this is that higher diffraction efficiencies occur when the bend angle (i.e. the difference between the input angle at the SBG and the diffracted beam angle) is large. Typically bend angles in the region of 20-25° are required.
  • the platen may be fabricated from a lower refractive material such as Corning Eagle XG glass which has a refractive index of 1.5099.
  • This material has the benefit of relatively low cost and will allow a sufficiently high TIR angle to enable salty water discrimination. Assuming the above indices for perspiration (salt water) of 1.34 and water of 1.33 the critical angle for salt water is 62.55777° and the critical angle for water of 61.74544°.
  • the indices of the SBG substrates and the element 42 are all chosen to be 1.65 and the platen index is chosen to be 1.5099.
  • the material used in the low index layer 42 is equal in index to the SBG substrates, or slightly lower.
  • the TIR angle in the SBG layer is 78 degrees. At this index value the diffracted beam angle with respect to the surface normal within the upper SBG substrate will be 55 degrees. For a TIR angle of 78 degrees in the SBG the effective diffraction bend angle is 23 degrees.
  • the TIR angle in the platen based on the above prescription is 63.5 degrees allowing for typical refractive index tolerances (i.e. a 0.001 refractive index tolerance and 0.3 degree minimum margin for glass tolerances).
  • n ⁇ sin (U) constant where n is the refractive index and U is the refraction angle.
  • FIG. 1 there is an air gap between the first SBG array 2 and the transmission grating.
  • Other air gaps may be provided between other layers in the sensor architecture subject to the restrictions imposed by the Snell invariant and the diffraction bend angle as discussed above.
  • the invention requires tight control of refractive index and angle tolerances to maintain beam collimation otherwise cross talk between adjacent waveguides may occur leading to output signal ambiguities.
  • Index variations of 0.001 may lead to TIR boundaries shifting by around 0.25° for example.
  • Angular tolerances are typically 0.1° in transmission. At reflection interfaces the angular error increases. In the worst case a ray will experience reflections off five different surfaces.
  • the TIR paths used in the sensor can typically undergo up to 18 bounces.
  • the effects of a wedge angle in the substrates will be cumulative. For example, a 30 seconds of arc wedge may lead to a 0.3° error after 18 bounces. Desirably, the cumulative angular errors should allow a margin for TIR of at least 1°.
  • Typical refractive indices and layer thicknesses used in the embodiment of FIG. 1 are provided in the table of FIG. 18 .
  • FIG. 12 illustrates the illumination module of the contact image sensor in one embodiment in more detail.
  • FIG. 12A is a schematic side elevation view showing the illumination means and the SBG device in one embodiment of the invention.
  • FIG. 12B provides a side elevation view of the same embodiment of the invention.
  • the wave guiding structure is not illustrated in FIG. 12A .
  • the illumination means comprises a multiplicity of lasers indicated by 13 A- 13 D providing separate parallel illumination modules, each module comprising a pair of crossed cylindrical lenses such as 16 A, 16 B a light guide 17 , transparent slabs 12 , 19 and transparent substrate 13 .
  • the slabs 12 , 19 abut the first SBG array 2 comprising the transparent substrates 21 , 22 sandwiching the SBG layer 20 .
  • the lenses 16 A, 16 B may be crossed cylindrical lenses such that the first lens 16 A collimates the input light 101 A to provide a first beam 102 A that is collimated in a first plane and the second lens 16 B collimates the beam 102 A in the orthogonal plane to provide a beam 103 A collimated in a second plane orthogonal to the first plane such that the resulting beam in the light guiding element 17 is collimated in both beam planes.
  • the lenses are of rectangular cross section.
  • the beams from the lasers 13 A- 13 D are identical and abut to form a continuous rectangular beam extending over an area substantially the same as the first SBG array in plan view.
  • the lightguide element 17 comprises a transparent slab with a planar input surface orthogonal to the beam direction and a reflecting surface 14 at an angle to the beam direction.
  • the surface 14 reflects the beam 104 A into the direction 105 A orthogonal to 104 A.
  • the slab portions 12 and 19 are illustrated as being air separated they may abut.
  • the slab 12 has a tilted reflecting surface 18 for directing light 106 A into the SBG array device 2 .
  • the slab 12 has an identical refractive index to the substrates 21 , 22 sandwiching the SBG array 20 .
  • the slab 19 essentially performs the function of a spacer.
  • the slab 13 also acts as spacer.
  • the slab 13 is coated with a polarization selective coating in the region illuminated by the upward propagating light reflected off the mirror surface 14 .
  • the refractive index of the slab 19 is chosen to ensure that rays such as 106 A, 107 A entering the first SBG array device exceed the critical angles for TIR within the light guide formed by the first SBG array device.
  • the reflective surfaces 14 , 18 essentially provide the coupling means indicated schematically by the symbol 11 in FIG. 1 It should be apparent to those skilled in the art of optical design that in other embodiments of the invention other equivalent optical configurations including diffractive optical surfaces may be used to perform the function of the surfaces 14 and 18 .
  • the SBG array an average refractive index of 1.55 in its non-diffractive state and 1.62 when in a diffracting state.
  • the substrates 21 , 22 have refractive indices of 1.55.
  • the slab 12 has an index of typically between 1.5 and 1.7 to match the SBG substrates.
  • the slab 19 is advantageously a polymer material of refractive index 1.49. The resulting critical angle in the first TIR light guide formed by the first array SBG device is therefore approximate 74 degrees.
  • the illumination means comprises a single laser 13 E and a collimator lens system comprising the crossed cylindrical lenses 46 a , 46 b .
  • the said illumination means provides a single collimated beam of rectangular cross section 104 E.
  • a sensor according to the principles of the present application may fabricated using the HPDLC material system and processes disclosed in PCT Application No.: PCT/GB2012/000680 entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES which is incorporated by reference herein in its entirety.
  • the SBG substrates may fabricated from polycarbonate, which is favored for its low birefringence.
  • Two other currently available plastic substrates materials are a cyclic olefin copolymer (COC) manufactured by TOPAS Advanced Polymers and sold under the trade name TOPAS.
  • the other was a cyclic olefin polymer (COP) manufactured by ZEON Corporation and sold under the trade names ZEONEX and ZEONOR. These materials combine excellent optical properties (including high transmission and low birefringence) with excellent physical properties (including low specific gravity, low moisture absorption, and relatively high glass transition temperature).
  • COP cyclic olefin polymer
  • the inventors have found that an adequate diffraction efficiency (i.e. ⁇ 70%) can be obtained when using plastic substrates.
  • the diffraction efficiency compares favorably with glass.
  • the switching time of plastic SBG is also found to be sufficient to produce satisfactory devices.
  • Transparent conductive (ITO) coatings applied to the above plastics have been found to be entirely satisfactory, where satisfactory is defined in terms of resistivity, surface quality, and adhesion. Resistivity values were excellent, typically around 100 ⁇ /square. Surface quality (i.e., the size, number and distribution of defects) was also excellent. Observable defects are typically smaller than 1 micron in size, relatively few in number, and sparsely distributed. Such imperfections are known to have no impact on overall cell performance. ITO suffers from the problem of its lack of flexibility. Given the rugged conditions under some SBG devices may operate, it is desirable to use a flexible TCC with a plastic substrate. In addition, the growing cost of indium and the expense of the associated deposition process also raise concerns.
  • Carbon nanotubes (CNTs), a relatively new transparent conductive coating, are one possible alternative to ITO. If deposited properly, CNTs are both robust and flexible. They can be applied much faster than ITO coatings, are easier to ablate without damaging the underlying plastic, and exhibit excellent adhesion. At a resistivity of 200 ⁇ /sq, the ITO coatings on TOPAS 5013S exhibit more than 90% transmission. At a resistivity of 230 ⁇ /sq, the CNT coatings deposited on the same substrates material exhibited more than 85% transmission. It is anticipated that better performance will results from improvements to the quality and processing of the CNTs
  • An adhesion layer is required to support the transparent conductive coating.
  • the inventors have found that the adhesion of ITO or CNT directly to plastics such as TOPAS and ZEONEX was poor to marginal. The inventors have found that this problem can be overcome by means of a suitable adhesion layer.
  • One exemplary adhesion layer is Hermetic TEC 2000 Hard Coat from the Noxtat Company. This material has been found to yield a clear, mar-resistant film when applied to a suitably prepared plastic substrate. It can be applied by flow, dip, spin, or spray coating. TEC 2000 Hard Coat is designed to give good adhesion to many thermoplastic substrates that are cast, extruded, molded or blow molded.
  • TEC 2000 When applied to TOPAS, ZEONEX or other compatible plastics, the strength and break resistance provided by TEC 2000 is nearly as scratch and abrasion resistant as glass. Hermetic Hard Coat forms a transparent 3-6 micron film on plastic surfaces. The Refractive index of the coating is 1.4902.
  • a sample of TOPAS plastic sheet coated with TEC 2000 Noxtat protective Hard Coat is shown in FIG. 13 .
  • the next step in SBG cell production process is applying the TCC (ITO or CNT) to the hard coat.
  • FIG. 14 shows Noxtat Hard Coat samples with additional ITO and CNT coatings.
  • the Hard Coat plays two roles in SBG cell production. One is to increase adhesion of the conductive layer to the plastic and prevent degassing during vacuum coating. The second role is to seal the plastic surface from environmental influence. It was found that TEC 2000 Hard Coat performs very well with TOPAS and ZEONEX materials.
  • a fundamental feature of SBGs fabricated using current HPDLC material systems is that the grating is present when the device is in its passive state. An electric field must be applied across the HPDLC layer to clear the grating.
  • An alternative HPDLC material system that may be used with the present invention provides a reverse mode SBG in which the grating is clear when in its passive state. A reverse mode SBG will provide lower power consumption. Reverse mode SBG devices are disclosed in PCT Application No.: PCT/GB2012/000680.
  • FIG. 14 A method of a method of making a contact image measurement in one embodiment of the invention in accordance with the basic principles of the invention is shown in the flow diagram in FIG. 14 . Referring to the flow diagram, we see that the said method comprises the following steps:
  • an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarization light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and ITO electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; an air gap; a transmission grating; a third transparent substrate (low index glue layer); a SBG cover glass; a ITO layer; a second SBG array device comprising array of selectively switchable SBG column elements; a ITO layer; a barrier film; a waveguiding layer comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer having a generally lower refractive index than the cores (also referred to as the bottom buffer); a prim
  • step 502 sequentially switching elements of the first SBG array into a diffracting state, all other elements being in their non-diffracting states;
  • step 503 sequentially switching elements of the second SBG array into a diffracting state, all other elements being in their non-diffracting states;
  • step 505 the transmission grating diffracting the first optical path light upwards into a second optical path
  • step 506 a portion of the second optical path light incident at the point on the platen being transmitted out of the platen and light incident on the outer surface of the platen in the absence of said contact with an external material being reflected downwards in a third optical path, said third optical path traversing said cores,
  • step 508 an active SBG element of the second SBG array along the third optical path diffracting the third angle light downwards into a fourth optical path
  • the fourth optical path light being reflected upwards into a fifth optical path at the third substrate, the fifth optical path light exceeding the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array or second SBG array/third substrate interfaces, and proceeding along a TIR path to the detector.
  • the first to fifth optical paths in the method of FIG. 14 lie in a plane orthogonal to the first SBG array.
  • the method of FIG. 14 further comprises the step of providing a transparent slab of index lower than the third transparent substrate disposed between the third substrate and the transmission grating, such that the fourth optical path light is reflected upwards at the substrate into a fifth optical path and the fifth optical path light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array, second SBG array/third substrate or third substrate/slab interfaces, providing a TIR path to the detector.
  • a contact image sensor is illustrated in the schematic side elevation view of FIG. 15 .
  • the apparatus is identical to that of FIG. 1 but further comprises a half wave retarder array 3 disposed between the air gap 15 and the transmission grating 43 .
  • the half wave retarder array 3 comprises an array of column-shaped elements 30 sandwiched by transparent substrates 31 , 32 .
  • Each retarder element in the half wave retarder array is switchable between a polarization rotating state in which it rotates the polarization of incident light through ninety degrees and a non polarization rotating state.
  • the column elements of the half wave retarder array have longer dimensions disposed parallel to the Y-axis i.e. orthogonally to the first TIR beam direction. Each half wave retarder array element overlaps at least one strip element of the first SBG array. At any time one element of the first SBG array is in a diffracting state and is overlapped by an element of the half wave retarder array in its non-polarization rotating state, one element of the second SBG array is in a diffracting state, all other elements of the first and second SBG arrays are in a non-diffracting state and all other elements of the half wave retarder array are in their polarization rotating states.
  • the function of the half wave retarder array is to control stray light such as that indicated by the ray 220 which is diffracted by the residual refractive index modulation of the element 24 .
  • the switchable half wave retarder array solves the problem of background leakage noise by converting unwanted light at source into S-polarized light.
  • the active (i.e. diffracting) SBG column element 23 diffracts light 204 out of the light guide through the element 33 of the half wave retarder array 30 array as light 205 . Since the element 33 is in its non-polarization rotating state the light 205 remains P-polarized. Note that all other elements of the half wave retarder array are in their polarization rotating states.
  • the diffracted ray 220 is transmitted through the half wave retarder element 34 which is in its polarization rotating state such that the P-polarized light 220 is converted into S-polarized light 221 .
  • the ray 221 is next diffracted into the ray 222 by the transmission grating 43 .
  • the ray 223 is reflected off the platen/air interface into a downwards path as the ray 223 . Since the ray 223 is S-polarized it is not diffracted by the second SBG and is therefore not coupled into the waveguide path to the detector.
  • the light 223 propagates downwards though the stack of optical layers until it emerges from the bottom of the illuminator means 1 and is absorbed by a light-trapping means which is not illustrated. Typically, the light-trapping means would be an absorber.
  • Other means for disposing of light of the type represented by the ray 223 will be apparent to those skilled in the art of optical design. The invention does not assume any particular means for disposing of such stra
  • FIG. 17 there is provided a means for contact imaging of an object that emits light of a second wavelength when illuminated by light of a first wavelength.
  • the apparatus of FIG. 17 is identical to the sensor FIG. 4 except that in FIG. 15 the rays 237 , 238 , 239 which replace the ray 207 , 208 , 209 of FIG. 4 now correspond to second wavelength light emitted from the object 63 which is in contact with the platen and illuminated by first wavelength light 206 .
  • the object 63 may be a fluorescent material excited by UV radiation.
  • the ray 243 which replaces the ray 223 of FIG. 4 again represents a stray light path. It should be noted that the embodiment of FIG.
  • FIG. 18 is a table of the optical prescriptions of each layer (refractive index at 785 nm. and layer thickness in microns) of a typical implementation of the embodiment of FIG. 1 .
  • Each layer is reference by the numerals used in FIG. 1 .
  • many other combinations of layer materials and thickness may be used.
  • the contact sensor essentially comprises three modules: a scanner a detector and the platen. These components are illustrated in FIGS. 19-20 in which FIG. 19 is essentially FIG. 1 with the components comprising the detector layer 9 (that is the second SBG array 4 and the waveguiding 5 ) contained in a dashed line box.
  • the platen comprises the illuminator module and the first SBG array device 2 .
  • the contact sensor comprises the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarization light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column, and transparent electrodes applied to opposing faces of the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; and a transmission grating; and a platen, as illustrated in FIG. 1 but not shown in FIGS. 21-26 .
  • the second SBG array device further comprising third and fourth transparent substrates 46 A, 46 B sandwiching the SBG layer which is generally indicated by 48 and will be explained in more detail next.
  • the layer essentially consists of a multiplicity of high index HPDLC regions separated by low index HPDLC regions. Patterned transparent electrodes 47 A, 47 B are applied to opposing faces of the substrates.
  • the high index regions provide waveguiding cores disposed parallel to the first beam direction generally indicated by 250 .
  • the low index HPDLC regions provide waveguide cladding.
  • the waveguide structure is shown in plan view in FIG. 23 which shows a waveguide core 77 and adjoining cladding regions 77 A, 77 B.
  • the waveguide structure is shown in cross section in FIG.
  • the third and fourth substrate layers 46 A, 46 B have a generally lower refractive index than the cores and will typically match the indices of the cladding regions
  • the patterned electrodes applied to the third substrate comprise column shaped elements such as 55 defining a multiplicity of selectively switchable columns of SBG elements such as the one indicted by 26 which are aligned orthogonally to the waveguiding cores shown in FIG. 26 .
  • the patterned electrodes applied to the fourth substrate comprise elongate elements such as 56 overlapping the low index HPDLC regions.
  • the apparatus further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector 80 comprising at least one photosensitive element 89 in FIG. 23 .
  • the detector comprises an array of photosensitive elements, each photosensitive element being optically coupled to at least one waveguiding core.
  • Each SBG element in the first and second SBG arrays is switchable between a diffracting state and a non-diffracting state with the SBG elements diffracting only first polarization light.
  • the SBGs operate in reverse mode such that the diffracting state exists when an electric field is applied across the SBG element and a non diffracting state exists when no electric field is applied.
  • the SBGs may operate in forward mode, that is the diffracting state exists when no electric field is applied across the SBG element and a non diffracting states exists when an electric field is applied.
  • An air gap may be provided between first SBG array and the transmission grating.
  • a low refractive index material may be used for this purpose.
  • an active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first beam direction.
  • first TIR light upwards into a first beam direction.
  • FIG. 22 light incident on the outer surface of the platen in the absence of external material is reflected downwards in a third optical path 275 .
  • the third optical path traverses the cores.
  • An active column 49 of the second SBG array along the third beam direction diffracts the third angle light into a second TIR path 276 down the traversed core towards the detector.
  • the first to third optical paths and the first and second TIR paths are in a common plane.
  • the output from detector array element is read out in synchronism with the switching of the elements of the first SBG array.
  • an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarization light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and transparent electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; a transmission grating; a transparent substrate; a second SBG array device further comprising third and fourth substrates sandwiching a multiplicity of high index HPDLC regions separated by low index HPDLC regions and patterned transparent electrodes applied to opposing faces of the substrates; a platen; and a detector; and further comprising: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element; the high index regions providing waveguiding cores disposed parallel to the first beam direction and the low index
  • a contact image sensor using a single SBG array layer comprising: an illumination means 97 for providing a collimated beam of first polarization light; an SBG array device further comprising first and second transparent substrates 27 A, 27 B sandwiching an array of selectively switchable SBG columns 27 , and transparent electrodes (not shown) applied to opposing faces of the substrates, said SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; a first transmission grating layer 91 B overlaying the lower substrate of the SBG array device; a second transmission grating layer 91 A overlaying the upper substrates of the SBG array device; a quarter wavelength retarder layer 99 overlaying the second transmission grating layer; a platen 6 overlaying the quarter wavelength retarder layer; and a polarization rotating reflecting layer 98 overlaying the first transmission grating layer.
  • the apparatus further comprises: means 97 for coupling light from said illumination means into said SBG array device; means 96 for coupling light out of the second SBG array device into an output optical path; and a detector (not illustrated) comprising at least one photosensitive element.
  • the light path from the illumination means to the platen via a diffracting SBG column 27 C is illustrated by the solid line.
  • the path of the reflected light from the platen to the detector means is shown as a dashed line.
  • the new contact sensor architecture which is shown in detail in FIG. 28 retains the key functional elements of scanner detector and platen as already discussed above.
  • the waveguides are formed by means of passive surface coatings which confine the collimated light reflected from the platen to parallel waveguide-like paths leading to the detector.
  • a contact image sensor comprises: an illumination means for providing a collimated beam of first polarization light; an illuminator waveguide for propagating light in a first TIR path containing a first array of switchable grating columns; a detector waveguide for propagating light in a second TIR path containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; a detector comprising at least one photosensitive element; and a platen.
  • Each switchable grating element in the first and second switchable grating arrays is switchable between a diffracting state and a non-diffracting state.
  • the switchable grating elements diffract only the first polarization light.
  • Each external surface of the detector waveguide is divided into a first grid of strips interspersed with a second grid of strips.
  • the first and second grids have different light-modifying characteristics. Overlapping strips from the first grid of strips on each external surface are operative to waveguide light. Overlapping strips from the second grid of strips on each external surface are operative to absorb light scattered out of regions of the detector waveguide sandwiched by overlapping strips from the first grid of strips on each external surface.
  • the strips are orthogonal to the switchable grating columns.
  • the first grid of each external waveguide surface is one of clear or scattering and the second grid of at least one external waveguide surface is infrared absorbing.
  • the beam steering means comprises: a first transmission grating layer; a half wavelength retarder layer overlaying the first transmission grating layer; a second transmission grating layer overlaying the half wavelength retarder layer; and a quarter wavelength retarder layer sandwiched by the second transmission grating layer and the platen.
  • the scanner is an active SBG column array 20 which directs sheets of collimated integrated leaser light upwards the transparent detector layer into the plate by switching the column elements in scrolling fashion.
  • the scanning grating comprises 1600 48.8 micron wide ITO electrodes etched onto a glass substrate with a 50.8 micron pitch (that is, 500 electrodes per inch).
  • the laser source 35 emits collimated light 280 which is coupled into the scanner waveguide by a grating coupler 36 into to the TIR path represented by rays 281 - 284 .
  • the scanner When a potential is applied across one of the transparent electrodes such as 23 , light is diffracted out of the scanner waveguide into a direction such as 285 (typically normal the waveguide substrate. When the voltage is removed, diffraction ceases and the light continues to be totally internally reflected between the scanner substrates.
  • the TIR light in the scanner is labelled as a being S-polarized (using S-polarization-sensitive SBGs).
  • the scanner may use conventional P-polarization-sensitive SBGs with a HWF layer being provided adjacent the scanner to rotate the out-coupled P-polarized light to S.
  • S-polarized output light is required to avoid interaction with the SBGs in the detector layer.
  • the first and second TIR paths are parallel to each other the switchable grating columns are preferentially orthogonal to the TIR paths.
  • the first and second switchable grating arrays are switched in cyclic fashion with only one the column element in each array being in a diffracting state at any time.
  • the illuminator and detector waveguides each comprise first and second transparent substrates sandwiching an array of switchable grating columns, and transparent electrodes applied to opposing faces of the substrates.
  • the switchable grating is one of a forward mode SBG, a reverse mode SBG, or a stack of thin switchable gratings.
  • the diffracting state exists when no electric field is applied across the switchable grating element and the non diffracting states exists when an electric field is applied. This situation is reversed for reverse mode SBGs.
  • one element of the first switchable grating array is in a diffracting state
  • one element of the second switchable grating array is in a diffracting state
  • all other elements of the first and second switchable grating arrays are in a non-diffracting state.
  • the output from detector array element is read out in synchronism with the switching of the elements of the first switchable grating array.
  • the scanned light needs to be directed onto the platen 6 at a preferred angle. This ensures a clear image capture that is tolerant to the enrollee's hand and finger moisture.
  • the tilt gratings are essentially passive transmission grating recorded in holographic polymer film such as the material manufactured by Bayer Inc.
  • a Quarter Wave Film (QWF) 64 A which is sandwiched by the upward beam tilt grating and platen converts the upward going S-polarized light 287 into circularly polarized light 287 A.
  • the sense of the circular polarized light is reversed as indicated by the symbol 287 B so that P polarized light 288 is produced after the second pass through the QWF.
  • the tilt grating 64 D diffracts this light normal to the detector layer in the direction 289 .
  • the user's four fingers are placed onto the platen surface. Wherever the skin touches the platen, it “frustrates” the reflection process, causing light to leak out of the platen. Thus, the parts of the skin that touch the platen surface reflect very little light, forming dark pixels in the fingerprint image.
  • the image is built up line by line into a 500 dpi, FBI-approved industry standard picture ready for comparison checking.
  • the detector 65 comprises an SBG column array 65 A similar to the scanner array sandwiched by substrates 65 B, 65 C. Electrodes (not illustrated) are applied to the opposing surfaces of the substrate with at least one being pattern with ITO columns overlaying the SBG column elements.
  • An outcoupling grating 38 (or other equivalent optical means such as prism) out couples light 292 from the detector waveguide towards a detector array 37 .
  • the TIR path in the waveguide from an active SBG column element 67 to the outcoupling grating 38 is represented by 290 .
  • the detector and scanner waveguides may be air separated. Alternative they may be sandwich a low index material layer which is schematically indicated by the thin layer 68 . Since the scanner waveguide is transparent the out coupled light from the detector waveguide may in an alternative embodiment be transmitted through the detector layer onto a detector array which is disposed alongside the laser source. Other implementations that will result in further compression of the sensor form factor should be apparent to those skilled in the art.
  • the illumination traverses the detector waveguide on its way to the platen.
  • the illuminator waveguide may be disposed between the detector waveguide and the platen (and beam steering gratings) such that light reflection from the platen traverses the illuminator waveguide on its way to the detector waveguide.
  • the ray directions from the source to the detector lie in a common plane.
  • Each external surface of the detector waveguide is divided into a first grid of strips interspersed with a second grid of strips.
  • the first and second grids have different light-modifying characteristics. Overlapping strips from the first grid of strips on each external surface are operative to confine light to a waveguide path. Overlapping strips from the second grid of strips on each external surface are operative to absorb light scattered out of regions of the detector waveguide sandwiched by overlapping strips from the first grid of strips on each external surface.
  • the strips are orthogonal to the switchable grating columns.
  • the first grid of each external waveguide surface is one of clear or scattering and the second grid of at least one external waveguide surface is infrared absorbing. Essentially, three types of surface strip are required: clear, scattering and light (infrared) absorbing.
  • the scattering properties will be provided by frosting the surface or applying some computer generated surface relief structure using an etching process. Other methods of providing controlled scatter using diffractive surface structures may also be used.
  • the stripes define parallel propagation channels terminating at the linear detector array. Typically, the channel widths are 40 micron with gaps of 12 micron give a pitch of 52 micron equivalent to 500 dpi.
  • FIG. 28B and FIG. 28C are plan views of the bottom and top of the detector.
  • the bottom surface 69 A of the detector (that is, the one nearest the scanner) has alternating clear regions such as 39 A and regions to which a frost etch has been applied such as 39 B.
  • the top surface 9 B of the detector (that is, the one nearest the platen has alternating clear regions such as 39 C and regions to which an infrared absorbing thin film has been applied.
  • the infrared absorbing coating regions of the top surface overlay the clear regions of the bottom surface.
  • FIG. 28D is a cross section of the detector waveguide showing light spots emerging from the waveguiding structure of FIGS. 28B-28C .
  • FIGS. 29-30 A cross section of the detector waveguide showing the SBG array, substrates and upper and lower surface coatings are provided in FIGS. 29-30 .
  • the SBG array comprises the column elements 66 A separated by small gaps 66 D.
  • the external faces of the detector waveguide and the illuminator waveguide abut an air space or a low refractive index material layer.
  • any forward scattered light or multiple scatter between near neighboring channels will tend to diminish in intensity with each ray surface interaction and will form a background noise level that can be subtracted from the fingerprint signature by the processing software.
  • a variation on the above detector design uses alternating clear regions of IR absorber stripes at the top ( 39 A, 39 B) and bottom ( 39 F, 39 G) of the waveguide instead of the IR absorber/frost etch arrangement of FIGS. 28B-28C .
  • the strip combinations are illustrated schematically by the 5 ⁇ 2 matrices labelled 38 H- 39 N in which the top row represents the strips applied to the upper surface of the detector waveguide and the bottom row represents the strips applied to the bottom surface of the detector waveguide.
  • the light-modifying strips are labelled by characters A (absorbing), F (frosted).
  • the matrix cells containing no characters indicate clear strips.
  • a particular strip pattern is at the top or bottom of the waveguide is not critical. It is of course necessary to ensure that at least one of the strips on the waveguide surface nearest the platen is transparent to allow light reflected from the platen to enter the detector waveguide.
  • the scanner SBG operates in reverse mode. That is the SBG columns diffract only when an electric field is applied across the ITO electrodes. With normal mode SBGs the noise from diffraction and scatter occurring within the gaps between the electrodes would swamp the optical signal.
  • the linear array of photo detectors 37 B is connected to the detector layer via an array of micro lenses 37 A as shown in the schematic illustration of FIG. 33 .
  • the detector may marry up directly to the frosted surface of the detector layer as shown in FIG. 34 .
  • the illumination of the platen outer surface by a light sheet 300 containing the incident ray 301 which is reflected into the ray path 302 and is coupled into a TIR path 303 incised a waveguide region 39 A of the detector waveguide 65 is shown.
  • the TIR light is coupled via a microns array 37 A into an element of the detector array 37 B by means of an outcoupling grating 38 .
  • the linear detector may be based on any fast, high resolution array technology.
  • One candidate technology would be CCD.
  • An alternative technology that may be used is the Contact Image Sensors (CIS) which is rapidly replacing CCDs in low cost low power and portable applications such as copiers, flatbed scanners as well as barcode readers and optical identification technology.
  • CIS Contact Image Sensors
  • a typical CIS will provide high speed sensing; high speed ADC 12 bit 600 dpi.
  • Mitsubishi Electric WC6R305X At the time of writing an exemplary CIS is Mitsubishi Electric WC6R305X. Current CIS will not have as high sensitivity as the best commercially available CCD arrays. With collimated laser illumination a CIS detector can be highly power efficient, allowing scanners to be powered through the minimal line voltage supplied via a USB connection.
  • a CIS contact sensor is smaller and lighter than a CCD line sensor, and allows all the necessary optical elements to be included in a compact module, thus helping to simplify the inner structure of the scanner.
  • the CIS greatly simplifies the sensor electronics.
  • Many other detector configurations may be used with the invention. In one embodiment two linear arrays may be combined. However, such embodiments require complicated waveguiding and electronics routing and output signal stitching.
  • a method of making a contact image measurement using the apparatus of FIG. 28 comprising the steps of:
  • an apparatus comprising: an illumination means for providing a collimated beam of first polarization light; an illuminator waveguide for propagating light in a first TIR beam direction containing a first array of switchable grating columns; a detector waveguide for propagating light in a first TIR beam direction containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a platen; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; and a detector comprising at least one photosensitive element.
  • the external surfaces of the detector waveguide comprise interspersed multiplicities of strips with different light modifying characteristics.
  • the strips are orthogonal to the switchable grating columns, each light modifying strip overlapping a clear strip; b) coupling light from the illumination means into the illuminator waveguide; c) an external material contacting a point on the external surface of the platen; d) sequentially switching elements of the first switchable grating array into a diffracting state, all other elements being in their non-diffracting states; e) sequentially switching columns of the second switchable grating array into a diffracting state, all other columns being in their non-diffracting states; f) each diffracting switchable grating element of the first switchable grating array diffracting incident first TIR light upwards into a first optical path; g) the beam steering means deflecting the first optical path light into a second optical path; h) a portion of the second optical path light incident at the point on the platen contacted by the
  • a method of making a contact image measurement in one embodiment of the invention (using the apparatus of FIG. 28 ) in accordance with the basic principles of the invention is shown in the flow diagram in FIG. 35 .
  • the said method comprises the following steps.
  • At step 550 provide a light source; a platen; an illuminator waveguide containing a first array of SBG elements; a detector waveguide containing a second array of SBG elements, external surfaces of the detector waveguide being divided into interspersed grids of light-modifying strips, a beam steering grating system; a first coupler for coupling light into the illuminator waveguide; a second coupler for coupling light out of the detector waveguide towards a detector.
  • At step 551 couple light from light source into TIR path in illuminator waveguide.
  • an external material of lower refractive index than said platen contacts a point on the external surface of said platen.
  • step 553 sequentially switch first SBG array elements into diffracting state.
  • step 554 sequentially switch elements of second SBG array into a diffracting state, all other elements being in non-diffracting states.
  • each diffracting SBG element of first SBG array diffracts incident light into a first optical path.
  • beam steering grating system diffracts first optical path light into second optical path.
  • step 557 second optical path light incident at said point on platen is reflected in a third optical path.
  • step 558 active SBG elements of second SBG array along third optical path diffract third angle light into TIR path in detector waveguide.
  • At step 558 couple light out of detector waveguide towards detector.
  • FIG. 36 shows a further embodiment of the invention that combines polymer waveguides of the type discussed earlier with the light modifying stripe principle used in the embodiment of FIG. 28 . Since the basic principles of the ray propagation and diffraction by elements of the SBG arrays have already been discussed in some detail in relation to the embodiment of FIG. 28 only an outline description is provided here.
  • the platen, beam steering grating layers and illuminator waveguide are identical to the ones illustrated in FIG. 28 .
  • the detector waveguide comprises a polymer waveguide layer 69 C onto which is overlaid a SBG array 65 comprising the SBG array 65 A sandwiched by the substrates 65 B, 65 C to which electrodes are applied as discussed above.
  • the upper surface of the substrate 65 B which is labelled 69 D in the plan view of FIG. 36D has infrared absorbing stripes 39 A interspersed with clear stripes 39 B.
  • the waveguide layer 70 comprises waveguide cores 71 in cladding material 72 .
  • the design issues relating to the design of waveguides for use with the invention have been discussed in detail earlier (see FIGS. 4-11 and the accompanying description).
  • the ray path from the source to the detector 37 is indicated by the rays 280 - 312 .
  • FIG. 37 shows two operational states of a two dimension switchable grating array 20 C (for use in one or both of the detector and illumination SBG arrays) containing addressable pixels 20 D.
  • a pixel 20 E is in a diffracting state while in FIG. 37B a neighboring pixel 20 F is in a diffracting state.
  • the pixels could be switched one column at a time.
  • the real benefit of two dimensional arrays lies in enabling more sophisticated image sensing strategies, for example area-of-interest-based image acquisition. Such applications of the invention will require fast detectors and fast switching of the grating arrays.
  • FIG. 38 shows a preliminary software architecture for use in a fingerprint scanning implementation of the invention.
  • the preferred software platform would be a ruggedized computer tablet such as, for example, the Panasonic Android Touchpad. It is expected that Microsoft Windows 8 computer tablet technology will stimulate further product development in these areas. Desirably, any platform should provide an integrated GPS module.
  • FIG. 38 illustrates one possible implementation.
  • the system components implemented on the software platform 520 comprise an executive program 521 , biometric software 522 , hardware control 523 , finger print server 524 , fingerprint database 525 , graphical user interface (GUI) 526 and communication interfaces 527 .
  • the biometric software will typically provide 1:1 and 1;N comparisons; noise removal, matching algorithms, image enhancement and options for saving images.
  • the hardware control module includes software for control the electronics for detector channel switching and readout, illuminator component switching, laser control and basic functions such as an on/off switch. Communication interfaces will typically include LAN, WAN and INTERNET.
  • FIG. 38 also shows the biometric scanner 530 comprising 512 element detector array, SBG array driver 532 , detector 533 , illuminator component 534 and laser module 535 .
  • SDKs System Development Kits
  • High level SDKs free the user from needing to understand the parameters involved with fingerprint comparison, how they work, why they are significant, and how data needs to be extracted from an image as well as data type mapping, database management, data synchronization, exception handling.
  • the ability to perform 1:N comparison for large databases is a highly desirable feature important feature; opening a record set from the database and matching one-by-one will not produce fast results.
  • high level SDKs will be better at handling poor image quality, bad image acquisition, and unpredictable user input.
  • the SDK should support a variety of development environments including: C++, VB, NET, Delphi, PowerBuilder, Java, Clarion, and web applications.
  • High level SDKs avoid the need for development of special DLLs which can consume 6-12 months in development.
  • the illumination light is advantageously in the infrared.
  • the laser emits light of wavelength 785 nm.
  • the invention is not limited to any particular illumination wavelength.
  • a live scan can include, but is not limited to, a scan of a finger, a finger roll, a flat finger, a slap print of four fingers, a thumb print, a palm print, or a combination of fingers, such as, sets of fingers and/or thumbs from one or more hands or one or more palms disposed on a platen.
  • a live scan for example, one or more fingers or palms from either a left hand or a right hand or both hands are placed on a platen of a scanner. Different types of print images are detected depending upon a particular application.
  • a flat print consists of a fingerprint image of a digit (finger or thumb) pressed flat against the platen.
  • a roll print consists of an image of a digit (finger or thumb) made while the digit (finger or thumb) is rolled from one side of the digit to another side of the digit over the surface of the platen.
  • a slap print consists of an image of four flat fingers pressed flat against the platen.
  • a palm print involves pressing all or part of a palm upon the platen.
  • the present invention essentially provides a solid state analogue of a mechanical scanner.
  • the invention may be used in a portable fingerprint system which has the capability for the wireless transmission of fingerprint images captured in the field to a central facility for identity verification using an automated fingerprint identification system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Integrated Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A contact image sensor having an illumination source; a first SBG array device; a transmission grating; a second SBG array device; a waveguiding layer including a multiplicity of waveguide cores separated by cladding material; an upper clad layer; and a platen. The sensor further includes: an input element for coupling light from the illumination source into the first SBG array; a coupling element for coupling light out of the cores into output optical paths coupled to a detector having at least one photosensitive element.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 16/148,583, entitled “Method and Apparatus for Contact Image Sensing” to Popovich et al., filed on Oct. 1, 2018, which application is a continuation of U.S. patent application Ser. No. 15/670,734, entitled “Method and Apparatus for Contact Image Sensing” to Popovich et al., filed on Aug. 7, 2017, which is a continuation of U.S. patent application Ser. No. 14/910,921, entitled “Method and Apparatus for Contact Image Sensing” to Popovich et al., filed Feb. 8, 2016 and issued on Aug. 8, 2017 as U.S. Pat. No. 9,727,772, which is the U.S. national phase of PCT Application No. PCT/GB2014/000295, entitled “Method and Apparatus for Contact Image Sensing” to Popovich et al., filed on Jul. 30, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/958,552, entitled “Method and apparatus for contact image sensing” to Waldern et al., filed on Jul. 31, 2013, the disclosures of which are incorporated in their entirety by reference herein.
TECHNICAL FIELD
The present invention relates to an imaging sensor, and more particularly to a contact image sensor using electrically switchable Bragg gratings.
BACKGROUND
A contact image sensor is an integrated module that comprises an illumination system, an optical imaging system and a light-sensing system—all within a single compact component. The object to be imaged is place in contact with a transparent outer surface (or platen) of the sensor. Well known applications of contact image sensors include document scanners, bar code readers and optical identification technology. Another field of application is in biometric sensors, where there is growing interest in automatic finger print detection. Fingerprints are a unique marker for a person, even an identical twin, allowing trained personnel or software to detect differences between individuals. Fingerprinting using the traditional method of inking a finger and applying the inked finger to paper can be extremely time-consuming. Digital technology has advanced the art of fingerprinting by allowing images to be scanned and the image digitized and recorded in a manner that can be searched by computer. Problems can arise due to the quality of inked images. For example, applying too much or too little ink may result in blurred or vague images. Further, the process of scanning an inked image can be time-consuming. A better approach is to use “live scanning” in which the fingerprint is scanned directly from the subject's finger. More specifically, live scans are those procedures which capture fingerprint ridge detail in a manner which allows for the immediate processing of the fingerprint image with a computer. Examples of such fingerprinting systems are disclosed in Fishbine et al. (U.S. Pat. Nos. 4,811,414 and 4,933,976); Becker (U.S. Pat. No. 3,482,498); McMahon (U.S. Pat. No. 3,975,711); and Schiller (U.S. Pat. Nos. 4,544,267 and 4,322,163). A live scanner must be able to capture an image at a resolution of 500 dots per inch (dpi) or greater and have generally uniform gray shading across a platen scanning area. There is relevant prior art in the field of optical data processing in which optical waveguides and electro-optical switches are used to provide scanned illumination. One prior art waveguide illuminator is disclosed in U.S. Pat. No. 4,765,703. This device is an electro-optic beam deflector for deflecting a light beam within a predetermined range of angle. It includes an array of channel waveguides and plural pairs of surface electrodes formed on the surface of a planar substrate of an electro-optic material such as single crystal Lithium Niobate (LiNbO3).
While the fingerprinting systems disclosed in the foregoing patents are capable of providing optical or optical and mechanical fingerprint images, such systems are only suitable for use at a central location such as a police station. Such a system is clearly not ideal for law enforcement and security applications where there is the need to perform an immediate identity and background check on an individual while in the field. In general, current contact image sensor technology tends to be bulky, low in resolution and unsuitable for operation in the field. Thus there exists a need for a portable, high resolution, lightweight optical contact sensor for generating images in the field.
SUMMARY
It is an object of the present invention to provide a portable, high resolution, lightweight contact image sensor for generating images in the field.
In a first embodiment of the invention a contact image sensor according to the principles of the invention comprises the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and ITO electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; an air gap; a transmission grating; a third transparent substrate (low index glue layer); a SBG cover glass; a ITO layer; a second SBG array device comprising an array of selectively switchable SBG column elements; a ITO layer; a barrier film; a waveguiding layer comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer having a generally lower refractive index than the cores; a priming layer; and a platen. The apparatus further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the core into an output optical path; and a detector comprising at least one photosensitive element, the photosensitive element being optically coupled to at least one the core. ITO electrodes are applied to the opposing faces of the third transparent substrate and the waveguiding layer. The column elements of the first and second SBG arrays have longer dimensions disposed orthogonally to the first TIR beam direction. In one embodiment of the invention the air gap may be replaced by a refracting material layer.
Each SBG element in the first and second SBG arrays has a diffracting state when no electric field is present across the ITO electrodes and a non-diffracting state when an electric field is present across the ITO electrodes, the SBG elements diffracting only the first polarization light.
The elements of the second SBG device which are in a non-diffracting state have a generally lower refractive index than the cores. The third transparent substrate has a generally lower refractive index than the cores. At any time one element of the first SBG array is in a diffracting state, one element of the second SBG array is in a diffracting state, and all other elements of the first and second are in a non-diffracting state.
In one embodiment of the invention an active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first beam direction. The transmission grating diffracts the first beam direction light upwards into a second beam direction. When contact is made with an external material at a point on the platen a portion of the second beam direction light incident at the point on the platen contacted by said external material is transmitted out of the platen. All other light incident on the outer surface of the platen is reflected downwards in a third optical path, the third optical path traversing the cores. An active SBG element of the second SBG array along the third beam direction diffracts the third angle light downwards into a fourth beam direction. The fourth beam direction light is reflected upwards at the third transparent substrate into a fifth beam direction. The fifth beam direction light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array or second SBG array/third transparent substrate interfaces, providing a TIR path to the detector. The first to fifth beam directions lie in a plane orthogonal to the first SBG array.
In one embodiment of the invention the third transparent substrate has a generally lower refractive index than the element of the second SBG array in its diffracting state.
In one embodiment of the invention the third transparent substrate has a generally lower refractive index than the element of the second SBG array in its non-diffracting state.
In one embodiment of the invention the apparatus further comprises a transparent slab of index lower than that of the third substrate disposed between the third substrate and the transmission grating.
In one embodiment of the invention the output from detector array element is read out in synchronism with the switching of the elements of the first SBG array.
In one embodiment of the invention the apparatus further comprises a transparent slab of index lower than that of the third substrate disposed between the third substrate and the transmission grating. An active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first optical path in a plane orthogonal to the first SBG array. The transmission grating diffracts the first optical path light upwards into a second optical path. When contact is made with an external material at a point on the platen a portion of the second beam direction light incident at the point on the platen contacted by said external material is transmitted out of the platen. All other light incident on the outer surface of the platen is reflected downwards in a third optical path, the third optical path traversing the cores. The third optical path traverses the core. An active SBG element of the second SBG array along the third optical path diffracts the third angle light downwards into a fourth optical path. The fourth optical path light is reflected upwards at least one of the third transparent substrate or the slab into a fifth optical path. The fifth optical path light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array, second SBG array/third substrate or third substrate/slab interfaces, providing a TIR path to the detector. The first to fifth optical paths lie in a plane orthogonal to the first SBG array.
In one embodiment of the invention the illumination means comprises a laser and a collimator lens.
In one embodiment of the invention the means for coupling light from the illumination means into the first TIR light guide is a grating.
In one embodiment of the invention the means for coupling light from the illumination means into the first TIR light guide is a prismatic element.
In one embodiment of the invention the means for coupling the second TIR light into the waveguide is a grating.
In one embodiment of the invention the means for coupling light out of the waveguide is a grating.
In one embodiment of the invention the first and second SBG arrays each comprise continuous SBG layers and the selectively switchable elements of first and second SBG arrays are defined by configuring at least one of the transparent electrodes as a multiplicity of selectively switchable electrode elements.
In one embodiment of the invention an air gap is provided between the first SBG array and the transmission grating.
In one embodiment of the invention the sensor further comprises a priming layer between the upper clad layer and the platen.
In one embodiment of the invention at least one of the transparent electrodes and substrates sandwiches a barrier layer.
In one embodiment of the invention the transparent substrates are fabricated from plastic.
In one embodiment of the invention the transparent substrates are fabricated from a polycarbonate
In one embodiment of the invention the waveguide cores are fabricated from an electrically conductive material.
In one embodiment of the invention the waveguide cores are fabricated from PDOT
In one embodiment of the invention the waveguide cores are fabricated from CNT.
In one embodiment of the invention the waveguides are fabricated from CNT using a lift-off stamping process.
In one embodiment of the invention the waveguides are coupled to linear array of detectors.
In one embodiment of the invention the waveguides are coupled to a two dimensional detector array.
In one embodiment of the invention the transparent electrodes are fabricated from ITO.
In one embodiment of the invention the transparent electrodes are fabricated from CNT.
In one embodiment of the invention the transparent electrodes are fabricated from PDOT.
In one embodiment of the invention the waveguides are fabricated from PDOT.
In one embodiment of the invention the waveguide cores are fabricated from a conductive photopolymer the waveguide cores and second SBG array elements being disposed such that only the portions off the SBG array elements lying directly under the waveguide cores are switched.
In one embodiment of the invention the SBG arrays are fabricated using a reverse mode HPDLC.
In one embodiment of the invention there is provided a method of making a contact image measurement comprising the steps of:
a) providing an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and ITO electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; an air gap; a transmission grating; a transparent substrate (low index glue); an SBG cover glass; a ITO layer; a second SBG array device comprising array of selectively switchable SBG column elements; a ITO layer; a barrier film; a waveguiding layer comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer having a generally lower refractive index than the cores (which is also referred to as the bottom buffer); a priming layer; a platen; and further comprising: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the waveguide into an output optical path; and a detector comprising at least one photosensitive element, wherein ITO electrodes are applied to the opposing faces of the substrate and the waveguide core;
b) an external material contacting a point on the external surface of the platen;
c) sequentially switching elements of the first SBG array into a diffracting state, all other elements being in their non-diffracting states;
d) sequentially switching elements of the second SBG array into a diffracting state, all other elements being in their non-diffracting states;
e) each diffracting SBG element of the first SBG array diffracting incident first TIR light upwards into a first optical path,
f) the transmission grating diffracting the first optical path light upwards into a second optical path,
g) a portion of the second optical path light incident at the point on the platen contacted by said external material being transmitted out of the platen and any other light being reflected downwards in a third optical path, the third optical path traversing one the core,
h) an active SBG element of the second SBG array along the third optical path diffracting the third angle light downwards into a fourth optical path,
i) the fourth optical path light being reflected upwards into a fifth optical path at the third substrate, the fifth optical path light exceeding the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array or second SBG array/third substrate interfaces, and proceeding along a TIR path to the detector.
The first to fifth optical paths lie in a plane orthogonal to the first SBG array.
In one embodiment of the invention the method further comprises a transparent slab of index lower than the substrate disposed between the substrate and the transmission grating, such that the fourth optical path light is reflected upwards at the substrate into a fifth optical path and the fifth optical path light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array, second SBG array/third substrate or third substrate/slab interfaces, providing a TIR path to the detector.
In one embodiment of the invention the air gap may be replaced by a refracting material layer.
In one embodiment of the invention the illumination means comprises a multiplicity of laser illumination channels, each said channel comprising a laser and collimating lens system. The illumination means provides a multiplicity of collimated, abutting beams of rectangular cross section.
In one embodiment of the invention the illumination means comprises a laser and a collimator lens. The said illumination means provides a collimated beam of rectangular cross section.
In one embodiment of the invention the optical wave guiding structure comprises a multiplicity of parallel strip cores separated by cladding material.
In one embodiment of the invention the optical wave guiding structure comprises a single layer core.
In one embodiment of the invention the SBG elements are strips aligned normal to the propagation direction of the TIR light.
In one embodiment of the invention the SBG elements are switched sequentially across the SBG array and only one SBG element is in its diffracting state at any time.
In one embodiment of the invention the sensor further comprises a micro lens array disposed between the SBG device and the first cladding layer.
In one embodiment of the invention the means for coupling light from the illumination means into the first TIR light guide is a grating.
The illumination device of claim the means for coupling light from the illumination means into the first TIR light guide is a prismatic element.
In one embodiment of the invention the means for coupling the second TIR light into the wave-guiding structure is a grating.
In one embodiment of the invention the means for coupling light out of the wave-guiding structure is a grating.
In one embodiment of the invention, the output light from the wave guiding device is coupled into a linear detector array.
In one embodiment of the invention, the output light from the wave guiding device is coupled into a two dimensional detector array.
In one embodiment of the invention a contact image sensor further comprises a half wave retarder array disposed between the air gap and the transmission grating. The half wave retarder array comprises an array of column-shaped elements sandwiched by transparent substrates. Each retarder element in the half wave retarder array is switchable between a polarization rotating state in which it rotates the polarization of incident light through ninety degrees and a non polarization rotating state. The column elements of the half wave retarder array have longer dimensions disposed parallel the first TIR beam direction. Each half wave retarder array element overlaps at least one strip element of the first SBG array. At any time one element of the first SBG array is in a diffracting state and is overlapped by an element of the half wave retarder array in its non-polarization rotating state, one element of the second SBG array is in a diffracting state, all other elements of the first and second SBG arrays are in a non-diffracting state and all other elements of the half wave retarder array are in their polarization rotating states.
One embodiment of the invention uses a SBG waveguiding structure. In this embodiment there is provided a contact image sensor comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column, and transparent electrodes applied to opposing faces of said substrate, the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; a transmission grating; a second SBG array device further comprising third and fourth transparent substrates sandwiching a multiplicity of high index HPDLC regions separated by low index HPDLC regions and patterned transparent electrodes applied to opposing faces of the substrates; and a platen. The apparatus and further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element. The high index regions provide waveguiding cores disposed parallel to the first beam direction. The low index HPDLC regions provide waveguide cladding. The third and fourth substrate layers have a generally lower refractive index than the cores. The patterned electrodes applied to the third substrate comprise column shaped elements defining a multiplicity of selectively switchable columns of SBG elements which are aligned orthogonally to the waveguiding cores. The patterned electrodes applied to the fourth substrate comprise elongate elements overlapping the low index HPDLC regions. The detector comprises an array of photosensitive elements, each photosensitive element being optically coupled to at least one waveguiding core. Each SBG element in the first and second SBG arrays is switchable between a diffracting state and a non-diffracting state with the SBG elements diffracting only first polarization light.
In one embodiment of the invention based on an SBG waveguiding structure the diffracting state exists when an electric field is applied across the SBG element and a non diffracting state exists when no electric field is applied.
In one embodiment of the invention based on an SBG waveguiding structure the diffracting state exists when no electric field is applied across the SBG element and the non diffracting states exists when an electric field is applied.
In one embodiment based on an SBG waveguiding structure, at any time, one element of the first SBG array is in a diffracting state, one element of the second SBG array is in a diffracting state, and all other elements of the first and second are in a non-diffracting state.
In one embodiment of the invention based on an SBG waveguiding structure an active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first beam direction. The transmission grating diffracts the first beam direction light upwards into a second beam direction. When contact is made with an external material at a point on the platen a portion of the second beam direction light incident at the point on the platen contacted by the external material is transmitted out of the platen. Light incident on the outer surface of the platen in the absence of external material is reflected downwards in a third optical path which traverses the cores. An active column of the second SBG array along the third beam direction diffracts the third angle light into a second TIR path down the traversed core towards the detector. The first to third optical paths and the first and second TIR paths lie in a common plane.
In one embodiment of the invention based on an SBG waveguiding structure the output from detector array element is read out in synchronism with the switching of the elements of the first SBG array.
In one embodiment of the invention based on an SBG waveguiding structure there is provided an air gap between the first SBG array and the transmission grating.
In one embodiment of the invention based on an SBG waveguiding structure there is provided a method of making a contact image measurement comprising the steps of:
a) providing an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarisation light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and transparent electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; a transmission grating; a transparent substrate; a second SBG array device further comprising third and fourth substrates sandwiching a multiplicity of high index HPDLC regions separated by low index HPDLC regions and patterned transparent electrodes applied to opposing faces of the substrates; a platen; and a detector; and further comprising: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element; the high index regions providing waveguiding cores disposed parallel to the first beam direction and the low index HPDLC regions providing waveguide cladding; the substrates layers having a generally lower refractive index than the cores, the patterned electrodes applied to the third substrate defining a multiplicity of selectively switchable columns orthogonal to the waveguiding cores and the patterned electrodes applied to the fourth substrate overlapping the low index HPDLC regions;
b) an external material contacting a point on the external surface of the platen;
c) sequentially switching elements of the first SBG array into a diffracting state, all other elements being in their non-diffracting states;
d) sequentially switching columns of the second SBG array device into a diffracting state, all other columns being in their non-diffracting states;
e) each diffracting SBG element of the first SBG array diffracting incident first TIR light upwards into a first optical path,
f) the transmission grating diffracting the first optical path light upwards into a second optical path,
g) a portion of the second optical path light incident at the point on the platen contacted by the external material being transmitted out of the platen, while portions of said second optical path light not incident at the point are reflected downwards in a third optical path, the third optical path traversing one core,
h) an active SBG column element of the second SBG array along the third optical path diffracting the third angle light in a second TIR path down the traversed core and proceeding along a TIR path along the core to the detector.
In one embodiment of the invention there is provided a contact image sensor using a single SBG array layer comprising: an illumination means for providing a collimated beam of first polarisation light; an SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG columns, and transparent electrodes applied to opposing faces of the substrates, said SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; a first transmission grating layer overlaying the lower substrate of the SBG array device; a second transmission grating layer overlaying the upper substrates of the SBG array device; a quarter wavelength retarder layer overlaying the second transmission grating layer; a platen overlaying the quarter wavelength retarder layer; and a polarization rotating reflecting layer overlaying the first transmission grating layer. The apparatus further comprises: means for coupling light from said illumination means into said SBG array device; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element.
In one embodiment of the invention a contact image sensor comprises: an illumination means for providing a collimated beam of first polarization light; an illuminator waveguide for propagating light in a first TIR path containing a first array of switchable grating columns; a detector waveguide for propagating light in a second TIR path containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; a detector comprising at least one photosensitive element; and a platen. Each switchable grating element in the first and second switchable grating arrays is switchable between a diffracting state and a non-diffracting state. The switchable grating elements diffract only the first polarization light. Each external surface of the detector waveguide is divided into a first grid of strips interspersed with a second grid of strips. The first and second grids have different light-modifying characteristics. Overlapping strips from the first grid of strips on each external surface are operative to waveguide light. Overlapping strips from the second grid of strips on each external surface are operative to absorb light scattered out of regions of the detector waveguide sandwiched by overlapping strips from the first grid of strips on each external surface. The strips are orthogonal to the switchable grating columns.
In one embodiment the first grid of each external waveguide surface is one of clear or scattering and the second grid of at least one external waveguide surface is infrared absorbing.
In one embodiment the beam steering means comprises: a first transmission grating layer; a half wavelength retarder layer overlaying the first transmission grating layer; a second transmission grating layer overlaying the half wavelength retarder layer; and a quarter wavelength retarder layer sandwiched by the second transmission grating layer and the platen.
In one embodiment the external faces of the detector waveguide and the illuminator waveguide abut an air space or a low refractive index material layer.
In one embodiment the first waveguide coupler couples light from the illumination means into the first TIR path in the illuminator waveguide. A switchable grating element of the illuminator waveguide in a diffracting state diffracts the first TIR path light towards the platen into a first beam direction. The beam steering means deflects the first beam direction light towards the platen in a second beam direction. When contact is made with an external material at a point on the platen a portion of the second beam direction light incident at the point on the platen contacted by the external material is transmitted out of the platen. Light incident on the outer surface of the platen in the absence of the contact with an external material is reflected towards the detector waveguide in a third optical path. An active column of the second switchable grating array along the third beam direction diffracts the third angle light into a second TIR path in the detector waveguide. The second waveguide coupler couples the second TIR path light into an output optical path towards the detector. In one embodiment the first to third optical paths and the first and second TIR paths are in a common plane. In one embodiment the first direction light traverses the detector waveguide. In one embodiment the second direction light traverses the illuminator waveguide.
In one embodiment a method of making a contact image measurement is provided comprising the steps of:
a) providing an apparatus comprising: an illumination means for providing a collimated beam of first polarisation light; an illuminator waveguide for propagating light in a first TIR beam direction containing a first array of switchable grating columns; a detector waveguide for propagating light in a first TIR beam direction containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a platen; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; and a detector comprising at least one photosensitive element. The external surfaces of the detector waveguide comprise interspersed multiplicities of strips with different light modifying characteristics. The strips are orthogonal to the switchable grating columns, each light modifying strip overlapping a clear strip;
b) coupling light from the illumination means into the illuminator waveguide;
c) an external material contacting a point on the external surface of the platen;
d) sequentially switching elements of the first switchable grating array into a diffracting state, all other elements being in their non-diffracting states;
e) sequentially switching columns of the second switchable grating array into a diffracting state, all other columns being in their non-diffracting states;
f) each diffracting switchable grating element of the first switchable grating array diffracting incident first TIR light upwards into a first optical path;
g) the beam steering means deflecting the first optical path light into a second optical path;
h) a portion of the second optical path light incident at the point on the platen contacted by the external material being transmitted out of the platen, portions of the second optical path light not incident at the point being reflected into a third optical path;
i) an active switchable grating column element of the second switchable grating array along the third optical path diffracting the third angle light in a second TIR path; and
j) coupling light out of the detector waveguide towards the detector.
In one embodiment the first to third optical paths and the first and second TIR paths are in a common plane.
A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings wherein like index numerals indicate like parts. For purposes of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic side elevation view of a contact image sensor in a first embodiment of the invention.
FIG. 2 is a schematic front elevation of the waveguiding structure used in the first embodiment of the invention showing the cross sections of the waveguide cores and cladding.
FIG. 3A is a schematic plan view of a first operational state of an SBG device used in a first embodiment of the invention.
FIG. 3B is a schematic plan view of a second operational state of an SBG device used in a first embodiment of the invention.
FIG. 4 is a schematic side elevation view of a contact image sensor in a first embodiment of the invention showing the principle ray paths.
FIG. 5A is a schematic side elevation view of a detail of the contact image sensor showing the ray propagation through the waveguide core and second SBG array in one embodiment of the invention.
FIG. 5B is a schematic side elevation view of a detail of the contact image sensor showing the ray propagation through the waveguide core and second SBG array in one embodiment of the invention.
FIG. 6 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
FIG. 7 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
FIG. 8 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
FIG. 9 is a schematic side elevation view of a detection scheme based on terminating waveguides in the wave-guiding structure with an angled polished facet as used in one embodiment of the invention.
FIG. 10 is a schematic side elevation view of a detection scheme based on applying out coupling gratings to waveguides in the wave-guiding structure as used in one embodiment of the invention.
FIG. 11 is a schematic plan view of a detection scheme based on a two dimensional array used in one embodiment of the invention.
FIG. 12A is a schematic side elevation view of an illumination means in one embodiment of the invention.
FIG. 12B is a schematic plan view of an illumination means in one embodiment of the invention.
FIG. 13 is a schematic plan view of an illumination means in one embodiment of the invention.
FIG. 14 is a flow chart illustrating a method of making a contact image measurement in one embodiment of the invention
FIG. 15 is a schematic side elevation view of a contact image sensor in one embodiment of the invention.
FIG. 16 is a schematic side elevation view of a contact image sensor in one embodiment of the invention showing the principle ray paths.
FIG. 17 is a schematic side elevation view of a contact image sensor in one embodiment of the invention.
FIG. 18 is a table showing typical refractive indices and layer thicknesses used in the first embodiment of the invention.
FIG. 19 is a schematic side elevation view of a contact image sensor in one embodiment of the invention.
FIG. 20 is a schematic diagram showing the key components a contact image sensor in one embodiment of the invention.
FIG. 21 is a schematic side elevation view of a detector waveguide in one embodiment of the invention.
FIG. 22 is a schematic side elevation view of a detector waveguide in one embodiment of the invention showing the coupling of signal light via an active element of the SBHG array.
FIG. 23 is a schematic plan view of a wave-guiding structure and detector module used in one embodiment of the invention.
FIG. 24 is a cross-sectional view showing a detail of a detector component using a SBG waveguiding structure in one embodiment of the invention.
FIG. 25 is a plan view of the SBG switching electrodes used in one layer of a detector component based a SBG waveguiding structure in one embodiment of the invention.
FIG. 26 is a plan view of the SBG switching electrodes used in one layer of a detector component based a SBG waveguiding structure in one embodiment of the invention.
FIG. 27 is a side elevation view of a contact image sensor in one embodiment of the invention in which the detector and illuminator components are performed by a single waveguide containing a single SBG array.
FIG. 28A is a side elevation view of a contact image sensor in one embodiment of the invention in which external surfaces of the detector waveguide are divided into interspersed grids of strips having different light-modifying characteristics to provide a multiplicity of parallel waveguiding paths.
FIG. 28B is a detail of the embodiment of FIG. 28A showing the interspersed grid of strips on a first external surface.
FIG. 28C is a detail of the embodiment of FIG. 28A showing the interspersed grid of strips on a first external surface.
FIG. 28D is a detail of the embodiment of FIG. 28A showing a cross section of the detector waveguide with beam cross sections.
FIG. 29 is a side elevation view of the detector waveguide in the embodiment of FIG. 28A showing a side view of the SBG array and the interspersed grids of strips applied to the external surface.
FIG. 30 is a front elevation view of the detector waveguide in the embodiment of FIG. 28A showing a cross section of the SBG array.
FIG. 31A shows an alternative configuration of the strips on a first external surface of the detector waveguide of FIG. 28A.
FIG. 31B shows an alternative configuration of the strips on a second external surface of the detector waveguide of FIG. 28A.
FIG. 32 shows alternative of strip configurations that may be used on the external surfaces of the detector waveguide of FIG. 28A.
FIG. 33 is a schematic three dimensional view showing the platen and detector waveguide in one embodiment in which the detector waveguide is coupled to the detector by means of a micro lens array.
FIG. 34 is a schematic three dimensional view showing the platen and detector waveguide in one embodiment in which the detector waveguide is directly coupled to the detector.
FIG. 35 is a flow chart illustrating a method of making a contact image measurement using the apparatus of FIG. 28A.
FIG. 36A is a side elevation view of a contact image sensor in one embodiment of the invention in which the detector comprises a SBG array and a waveguide array and external surfaces of the waveguide array is divided into interspersed grids of strips having different light-modifying characteristics to provide a multiplicity of parallel waveguiding paths.
FIG. 36B is a detail of the embodiment of FIG. 36A showing a plan view of the interspersed grid of strips on the external surface.
FIG. 36C is a cross sectional view of the waveguide array in the embodiment of FIG. 36A.
FIG. 37A is a plan view of a first operational state of a two dimensional SBG array used in the at least one of the detector and illuminator waveguides in one embodiment.
FIG. 37B is a plan view of a second operational state of a two dimensional SBG array used in the at least one of the detector and illuminator waveguides in one embodiment of the invention.
FIG. 38 is a block diagram illustrating the key system modules of a software platform for use with a contact image sensor for finger print sensing in one embodiment of the invention.
DETAILED DESCRIPTION
It will be apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention.
Unless otherwise stated the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories.
Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design.
It should also be noted that in the following description of the invention repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.
In the following description the term “grating” will refer to a Bragg grating. The term “switchable grating” will refer to a Bragg grating that can be electrically switched between an active or diffracting state and an inactive or non-diffractive state. In the embodiments to be described below the preferred switchable grating will be a Switchable Bragg Grating (SBG) recording in a Holographic Polymer Dispersed Liquid Crystal (HPDLC) material. The principles of SBGs will be described in more detail below. For the purposes of the invention a non switchable grating may be based on any material or process currently used for fabricating Bragg gratings. For example the grating may be recorded in a holographic photopolymer material.
An SBG comprises a HPDLC grating layer sandwiched between a pair of transparent substrates to which transparent electrode coatings have been applied. The first and second beam deflectors essentially comprise planar fringe Bragg gratings. Each beam deflector diffracts incident planar light waves through an angle determined by the Bragg equation to provide planar diffracted light waves.
An (SBG) is formed by recording a volume phase grating, or hologram, in a polymer dispersed liquid crystal (PDLC) mixture. Typically, SBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. Techniques for making and filling glass cells are well known in the liquid crystal display industry. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A volume phase grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the HPDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. When an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels resulting in for a “non diffracting” state. Note that the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from near 100% efficiency with no voltage applied to essentially zero efficiency with a sufficiently high voltage applied. U.S. Pat. Nos. 5,942,157 and 5,751,452 describe monomer and liquid crystal material combinations suitable for fabricating SBG devices.
To simplify the description of the invention the electrodes and the circuits and drive electronics required to perform switching of the SBG elements are not illustrated in the Figures. Methods for fabricated patterned electrodes suitable for use in the present invention are disclosed in PCT US2006/043938. Other methods for fabricating electrodes and schemes for switching SBG devices are to be found in the literature. The present invention does not rely on any particular method for fabricating transparent switching electrodes or any particular scheme for switching arrays of SBGs. Although the description makes reference to SBG arrays the invention may be applied using any type of switchable grating.
To clarify certain geometrical of aspects of the invention reference will be made to the orthogonal XYZ coordinate system where appropriate.
A contact image sensor according to the principles of the invention is illustrated in the schematic side elevation view of FIG. 1. The apparatus comprises the following parallel optical layers configured as a stack: an illumination means 1 for providing a collimated beam of first polarized light; a first SBG array device 2 further comprising first and second transparent substrates 21,22 sandwiching an array 20 of selectively switchable SBG column elements, and ITO electrodes 20A,20B applied to opposing faces of the substrates, the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; an air gap 23; a transmission grating 43; a third transparent substrate(low index glue layer 42; a low refractive index SBG cover glass 41; a ITO layer 40B; a second SBG array device 4 comprising an array of selectively switchable SBG column elements; a ITO layer 40B; a barrier film 40C; a waveguiding layer 50 comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer 51 having a generally lower refractive index than the cores(which is also referred to as the bottom buffer); a priming layer 61; and a platen 6. Each core of the waveguide structure is optically couple to an element of a detector array. The details of the waveguide to detector coupling will be discussed later. The apparatus further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the core into an output optical path; and a detector comprising at least one photosensitive element, the photosensitive element being optically coupled to at least one the core. The illumination means may further comprise optical stops to eliminate stray light and scatter. The first polarized light may be either S or P polarized. Since SBGs recorded in the inventors preferred HPDLC material system are P-polarization sensitive that polarization will be assumed for the purposes of describing the invention. The transmission grating 43 is advantageously a conventional transmission Bragg grating recorded in a holographic photopolymer. However, other equivalent means for providing a transmission grating may be used. Desirably, the contact image sensor uses infrared light from at least one laser. In one embodiment of the invention the light wavelength is 785 nanometers. A cross sectional view (in the XZ plane) of the waveguiding structure is shown in FIG. 2 which illustrates the waveguiding structure 40 sandwiched by the barrier film 40C and the clad layer 51 (or bottom buffer). A core 71 and a region of cladding 72 between adjacent cores is indicted in the drawing.
In functional terms the first SBG device 20 comprises an array of strips or columns aligned normal to the light propagation direction of the TIR light. The second SBG array also comprises an array of strips or columns aligned parallel to the strips in the first SBG device. The SBGs in the first and second SBG arrays are recorded as single continuous element in each case. Transparent electrodes are applied to the opposing surfaces of the substrates 21,22 with at least one electrode being patterned to define the SBG elements. As explained above each SBG element in the first and second SBG arrays has a diffracting state when no electric field is present across the ITO electrodes and a non-diffracting state when an electric field is present across the ITO electrodes, the SBG elements diffracting only the first polarization light. Transparent electrodes are applied to the opposing faces of the third transparent substrate and the waveguiding layer with at least one electrode being patterned to define the SBG elements. Typically the first SBG array has a resolution of 1600 elements. The resolution of the second SBG array is lower, typically 512 elements.
The column elements of the first and second SBG arrays have longer dimensions disposed orthogonally to the first TIR beam direction. The elements of the second SBG device which are in a non-diffracting state have a generally lower refractive index than the waveguide cores. The third transparent substrate has a generally lower refractive index than the cores. At any time one element of the first SBG array is in a diffracting state, one element of the second SBG array is in a diffracting state, all other elements of the first and second SBG arrays are in a non-diffracting state.
In the embodiment illustrated in FIG. 1 all of the above described layers (apart from the air gap 23 between the upper substrate 21 of the first SBG and the transmission grating 43) are in contact, forming a laminated structure. It should be noted that the relative dimensions of the various layers are greatly exaggerated in the drawing. In one embodiment of the invention the air gap 23 may be replace by a refracting material layer. The second SBG array 4 acts as the lower cladding layer of the wave guiding structure while the waveguide core 50 and the third transparent substrate 41 act as the containing substrates of the second SBG array device 4. The first and second transparent substrates 21,22 sandwiching the first SBG array together provide a first TIR light guide with the TIR occurring in the plane of the drawing. The second SBG array device 4 is sandwiched by the waveguide core and the third transparent substrate 41 which form a second TIR light guide.
The contact image sensor further comprises a means 11 for coupling light from said illumination means 1 into the first SBG array lightguide. The invention does not assume any particular coupling means. One particular solution discussed later is based on prismatic elements. In one embodiment the coupling means may be based on gratings. The contact image sensor further comprises a means for coupling light out of the wave-guiding structure into an output optical path leading to a detector. The coupling means which schematically represented by the dashed line 52 is advantageously a grating device which will be discussed in more detail later.
The column elements of the first and second SBG arrays are switched sequentially in scrolling fashion, backwards and forwards. In each SBG array the SBG elements are switched sequentially across the SBG array and only one SBG element in each array is in its diffracting state at any time. The effect is to produce a narrow scanning column of light that sweeps backwards and forwards across the platen. The disposition of the SBG elements in the first SBG array is illustrated in FIGS. 3A-3B which provides schematic plan views of the SBG array 20 at two consecutive switching states. In the first state illustrated in FIG. 3A the SBG element indicated by 25 is in its diffracting state and all other SBG elements are in their non diffracting states, allowing TIR light to be transmitted through the arrays without substantial transmission loss or path deviation. In the second state illustrated in FIG. 3B the SBG element 24 is switched to its non-diffracting stated while the adjacent element 25 is switched to its diffracting state.
We next discuss the operation of the device with reference to the schematic side elevation views of FIG. 4-5. By considering the path of P-polarized collimated light through the device in the plane of each drawing. Incident light 200 from the illuminator means 1 is coupled into the first SBG device 2 by a coupling means indicated by 11 which will be discussed below. The light undergoes TIR in the light guide formed by the substrates 21,22 as indicted by the rays 201-203. The active (i.e. diffracting) SBG column element 23 diffracts light 204 out of the light guide The light 204 is now diffracted by the transmission grating into the ray 206 which propagates towards the platen without significant deviation or loss through the intervening optical layers. The symbol P indicates that the light is P-polarized, i.e. it retains the polarization of the input laser light.
During a scan the fingers are placed onto the scanner surface. In the absence of finger contact the light incident on the platen outer surface is totally internally reflected downwards towards the wave guiding structure 50 and then on to the detector. When finger contact is made the finger skin touching the platen surface causes reflection at the outer surface of the platen to be frustrated such that light leaks out of the platen. The parts of the finger skin that touch the platen surface therefore becomes the dark part of the finger print image because light never makes it to the detector array. The X coordinate of the contacting feature is given by the detector array element providing the dark-level or minimum output signal. The latter will be determined by the noise level of the detector. The Y coordinate of the contacting feature is computed from the geometry of the ray path from the last SBG element in the first SBG array that was in a diffracting state just prior to TIR occurring in the platen and a signal from the reflected light being recorded at the detector. The ray path is computed using the diffraction angle and the thicknesses and refractive indices of the optical layers between the SBG element and the platen surface.
In one embodiment of the invention an alternative detection scheme is based on the principle that in the absence of any external pressure art the platen/air interface the incident light is transmitted out of the platen. Now, external pressure from a body 62 of refractive index lower than the platen (which may a feature such as a finger print ridge or some other entity) applied on the outer side of the platen layer causes the light to be totally internally reflected downwards towards the wave guiding structure 50. Hence the X coordinate of the contacting feature is now given by the detector array element providing the peak output signal. The procedure for computing the Y coordinate remains unchanged.
An SBG when in the state designated as “non-diffracting” will, in practice, have a very small refractive index modulation and will therefore diffract a small amount of light. This residual diffraction is negligible in most applications of SBGs. However, in applications such as the present invention any residual refractive modulation will result in a small amount of light being diffracted out of the light guide. For example referring to FIG. 4, SBG elements such as 24 will have a small diffraction efficiency leading to a small portion of TIR light being diffracted upwards into the ray path represented by the dashed lines and the ray directions indicated by 220-223. This light will follow a parallel path to the light from the active SBG element (the signal light) and will be reflected off the platen outer surface towards the waveguides. Coupling of this stray light into the waveguides, where it will contribute a background leakage noise to the output signal, is prevented by switching the second SBG array elements in synchronization with the first array elements such that only the element of the first and second SBGs array lying on the signal ray path are in a diffracting state at any time. The readout of the signal from detector array is in turn synchronized with the switching of the elements of the first and second SBG arrays.
The wave guiding structure 50 and the SBG array 4 together provide the means for coupling light out of the sensor onto a detector array. The SBG provides the lower cladding and the layer 51 provides the upper cladding. The coupling of light into the waveguide relies on the second SBG array which acts as a switchable cladding layer as will be discussed below. The second SBG array is operated in a similar fashion to the first SBG array with column elements being switched sequentially in scrolling fashion, backwards and forwards. Only one SBG element is in a diffracting state at any time. The non active elements perform the function of a clad material. The role of the active SBG element is to steer incident ray into the TIR angle. It should be appreciated that in order that light reflected down from the platen can be diffracted into a TIR path by an active (diffracting) SBG element the refractive index of the SBG in its active state must be lower than the core index. To maintain TIR the refractive index of the SBG elements that are not in their diffracting states must be lower than that of the core. The operation of the waveguiding structure will now be explained more clearly referring to FIG. 5A which shows a detail of the wave guiding structure including the cladding 51, core 50, second SBG array 4 and SBG substrate 41. Note that in FIGS. 5A-5B the layers 40A,40B,40C are not illustrated. For the sake of simplifying the description the refraction of light at the optical interfaces will be ignored. The SBG grating is represented by the single Bragg fringe 44. The ray 207 on entering the active SBG element 43 at an incidence angle w is diffracted into the ray 207A. The deflection of the ray is determined by the Bragg diffraction equation. Since the average index of the SBG medium is higher than that of the substrate layer 41 the diffracted ray 207A undergoes TIR within the SBG medium and the reflected ray 208 propagates into the core at an angle u which is slightly higher than the critical angle of the core/cladding interface. The angle u is determined by the slant angles of the Bragg fringes and the incidence angle w. The ray 208 undergoes TIR to give the downward ray 209 which enters the non diffracting SBG element 45 at the angle u as the ray 210. The ray 210 undergoes TIR at the interface of the SBG element/third substrate and re-enters the core as the ray 211 which from reflection symmetry is at angle u. This process is repeated along the waveguide until the light is coupled out towards the detector. Since all of the remaining SBG elements along the waveguide path are in their non diffracting states TIR between the cladding layer and the SBG lower substrate continues until the light is couple out of the waveguide towards the detector.
The invention also covers the case where the SBG substrate abuts a low index slab 42 which has a lower index than the third substrate. The layer 42 is not essential in all applications of the invention but will in general provide more scope for optimizing the optical performance of the sensor. Referring to FIG. 5B it will be seen that the ray paths are similar to those of FIG. 5A except that the TIR of the diffracted ray 207A now takes place at the interface between the substrate 41 and the low index slab 42. Accordingly, the diffracted ray 207A is transmitted into the substrate 41 as the ray 207B and undergoes TIR into the ray 207C at the low index layer after transmission through the substrate 41 and the SBG array 4 the ray now indicated by 208A propagates into the core at an angle v which is slightly higher than the critical angle of the core/clad interface. The ray 208A undergoes TIR to give the downward ray 209A which enters the non activated SBG element 45 as the ray 210A. The ray 210A undergoes TIR at the low index layer and re-enters the core as the ray 211A which from reflection symmetry is at angle v. This process is repeated along the waveguide until the light is coupled out towards the detector. It should be appreciated that in situations where the collimation of the beam is not very tightly controlled it is possible that TIR may occur at the SBG substrate index for some rays and at the low index slab substrate for other rays.
In one embodiment of the invention the third transparent substrate has a generally lower refractive index than an element of the second SBG array in its diffracting state.
In one embodiment of the invention the third transparent substrate has a generally lower refractive index than the element of the second SBG array in its non-diffracting state.
As indicated in FIGS. 5A-5B the cleared SBG will still have a small residual refractive index modulation which causes a small amount of the incident light to be diffracted. The direction of diffraction will depend on the TIR angle. In some cases the ray may not be at the Bragg angle but may still be sufficiently close to the Bragg angle to be diffracted, but with a lower diffraction efficiency. If not diffracted it may end up in the TIR beam, thereby contributing to the output signal.
Turning back to FIGS. 1-2 we see that the wave-guiding structure 50 which is illustrated in schematic plan view in FIG. 1 and in cross section in FIG. 2 comprises a multiplicity of parallel strip waveguides generally indicated by 70, the waveguide core element of one of the waveguides and the surrounding cladding being indicated by numerals 71,72. The invention does not assume any particular waveguide geometry or material for fabricating the waveguiding layer. It should be apparent to those skilled in the art of integrated optics that a large number of different core/cladding combinations may be used in the invention. Typically, the core will have a refractive index of typically between 1.51 to 1.56 or and the cladding layers will have refractive indices in the range from 1.41 to 1.47. Typically the core may be rectangular with cross sectional dimensions of 25-40 microns in depth×40 microns in width. However, the cores may have much larger or much smaller cross sectional dimensions subject to the specifications for coupling efficiency, waveguide crosstalk and other waveguide parameters set by the application. The wave-guiding structure may use a polymer waveguide core of index typically in the range 1.50 to 1.60 with cladding index typically 1.45 to 1.55. However, the invention does not assume any particular waveguide optical materials. It should be noted by the waveguide cladding in the waveguiding layer 51 and the cladding layer 51 may be fabricated from one material. In some cases it may be advantages to have more than one cladding material in order to provide better control of the guide wave mode structure. The highest refractive index UV curable material suitable for use as either core or cladding in a high transparency waveguiding structure of the type required in the invention is believed to have a refractive index of about 1.56 at 633 nm. The index might be slightly lower at longer wavelength. The problem with index values above about 1.56 is that the materials become either colored or slightly metallic and hence lose their transparency. Higher index transparent materials exist but they are not UV curable, which makes them unsuitable for waveguide fabrication using currently available embossing process.
We next discuss the means for coupling light out of the wave-guiding structure into an output optical path leading to a detector. The coupling scheme which was only indicated schematically by the symbol 52 in FIG. 1 may be based on well-known methods using grating couplers, prismatic elements etc. The invention does not rely on any particular method. FIGS. 6-8 provides schematic plan views of alternative schemes for coupling the wave guiding structure 50 to the detector 8. The detector comprises at least one element. A multiplicity of waveguide cores is generally indicated by 70 with a typical core element 71 and the surrounding cladding 71 being indicated in each case. Each core terminates at a coupler linked to a detector element. In each case the ray paths from the active SBG element 23 to the waveguide termination are indicated by 206,207,213 using the numerals of FIG. 4. In the embodiment of FIG. 6 the detector 8 is a linear array of elements such as 81. A ray path from the waveguide termination to the detector is indicated by 214. Advantageously, the cores are each terminated by a 45 degree facet with directs light upwards or downwards (relative to the drawing surface) towards the detector along direction 214 which should be read as normal to the plane of the drawing. The detector pitch matches the core spacing. In one embodiment of the invention a parallel path waveguide routing element may be provided between the waveguide termination and the detector. In the embodiment of FIG. 7 the output light paths generally indicated by 502 from the waveguides are converged onto a linear detector array that is much smaller than the width of the platen by means convergent path waveguide routing element 84A. In one embodiment of the invention the cores are terminated by a 45 degree facet which directs the light upwards or downwards. In the embodiment of FIG. 8 the output light paths generally indicated by 503 from the waveguides are converged by means of a convergent path waveguide routing element 85 onto a single element detector 83. In one embodiment of the invention the cores are terminated by a 45 degree facet which directs the light upwards or downwards.
Many different schemes for providing the waveguiding routing elements referred to above will be known to those skilled in the art of integrated optical systems. The apparatus may further comprise a micro lens array disposed between the waveguide ends and the detector array where the micro lens elements overlap detector elements. FIG. 9 is a schematic side elevation view of one method of coupling light out of the wave-guiding structure in which there is provided a 45 degree facet 86A terminating each waveguide element in the wave-guiding structure. FIG. 9 may be a cross section of any of the schemes illustrated above. The detector 8 and the waveguide cladding layers 75,76 and core 74 are illustrated. The core 74 may be a continuation of one of the cores 70 or a core of material of similar optical properties optically coupled to one of said cores 70. The cladding layer may be a continuation of the cladding layer 51 in FIG. 1 and FIG. 3 or material of similar refractive index. The cladding layer may be continuation of the HPDLC material of the SBG array 4 or material of similar refractive index to the SBG array in its non-active state. FIG. 10 is a schematic side elevation view of another method of coupling light out of the wave-guiding structure in which a grating device 86B is applied to each waveguide element. FIG. 10 may be a cross section of any of the schemes illustrated in FIGS. 7-9. The grating may be a surface relief structure etched into the waveguide cladding. Alternatively, the grating may be a separate layer in optical contact with one or both of the core or cladding. In one embodiment of the invention the grating may be recorded into a cladding layer as a Bragg grating.
In the above described embodiments of the invention the detector 8 is a linear array. In an alternative embodiment of the invention illustrated in FIG. 11 the detector elements are distributed over two dimensions. This avoids some of the alignment problems of coupling waveguide elements to detector elements with a very high resolution linear array. The waveguides from the wave-guiding structure generally indicated by 87 are fanned out in the waveguide groups 87A,87C. The detectors are generally indicated by 88. The waveguide groups 87A,87C contain waveguide cores such as 87B which overlays the detector 88B in the detector group 88A and waveguide 87D which overlays the detector 88D in the detector group 88C. The waveguide to detector computing may employ 45 degrees core terminations, gratings, prisms or any other methods known to those skilled in the art. From consideration of FIG. 11 it should be apparent that many alternative configurations for coupling the waveguiding structure to a two dimensional detector array are possible.
In practical embodiments of the invention the beams produced by the illumination means will not be perfectly collimated even with small laser die and highly optimized collimating optics. For this reason the interactions of the guided beams with the SBG elements will not occur at the optimum angles for maximum Bragg diffraction efficiency (DE) leading to a small drop in the coupling efficiency into the waveguiding structure. Having coupled light into the waveguiding structures there is the problem that some of the light may get coupled out along the TIR path by the residual gratings present in the non diffracting SBG elements. The reduction in signal to noise ratio (SNR) resulting from the cumulative depletion of the beam by residual gratings along the TIR path in the output waveguide may be an issue in certain applications of the invention. A trade-off may be made between the peak and minimum SBG diffraction efficiencies to reduce such out-coupling. The inventors have found that minimum diffraction efficiencies of 0.02% are readily achievable and efficiencies as low as 0.01% are feasible. To further reduce the risk of light being coupled out of the waveguiding structure, a small amount of diffusion (˜0.1%) can be encoded into the SBG to provide a broader range of angles ensuring that guided light is not all at the Bragg angle. A small amount of diffusion will be provided by scatter within the HPDLC material itself. Further angular dispersion of the beam may also be provided by etching both the ITO and the substrate glass during the laser etching of the ITO switching electrode.
In one embodiment of the invention the refractive index modulation of second SBG array is varied along the length of the array during exposure to provide more uniform coupling along the waveguide length. The required variation may be provided by placing a variable neutral density filter in proximity to the SBG cell during the holographic recording. In any case the power depletion along the waveguide can be calibrated fairly accurately.
Only light diffracted out of the active element of the first SBG array should be coupled into the output waveguide structure at any time. In practice the SBG array comprises a continuous grating with the individual elements being defined by the electrode patterning. The gaps between the elements of the first SBG arrays should therefore be made as small as possible to eliminate stray light which might get coupled into the waveguiding layer reducing the SNR of the output signal. Ideally the gap should be not greater than 2 micron. The noise signal contributed by the gaps is integrated over the area of an active column element of the second SBG array element while the light contributing to the useful signal is integrated over the simultaneously active column element of the first SBG array. An estimate of SNR can be made by assuming a common area for the first and second SBG arrays and making the following assumptions: number of elements in the second SBG array: 512; number of elements in first SBG array: 1600; SBG high diffraction efficiency: 95%; and SBG low diffraction efficiency: 0.2%. The SNR is given by [area of second SBG array element×high diffraction efficiency/[area of SBG element×low diffraction efficiency=[1600×0.95]/[52×0.02]=148. Desirably, the SNR should be higher than 100.
In one embodiment of the invention the transparent electrodes are fabricated from PDOT (poly ethylenedioxythiophene) conductive polymer. This material has the advantage of being capable of being spin-coated onto plastics. PDOT (and CNT) eliminates the requirement for barrier films and low temperature coating when using ITO. A PDOT conductive polymer can achieve a resistivity of 100 Ohm/sq. PDOT can be etched using Reactive Ion Etching (ME) processes.
In one embodiment of the invention the first and second SBG arrays are switched by using a common patterned array of column shaped electrodes. Each element of the second SBG array, which is of lower resolution than the first SBG array uses subgroups of the electrode array.
In one embodiment of the invention the waveguides are fabricated from PDOT. The inventors believe that such a waveguide will exhibit high signal to noise ratio (SNR).
In one embodiment of the invention the waveguides are fabricated from CNT using a lift-off stamping process. An exemplary CNT material and fabrication process is the one provided by OpTIC (Glyndwr Innovations Ltd., St. Asaph, Wales, and United Kingdom).
In one embodiment of the invention the waveguide cores are conductive photopolymer such as PDOT or CNT. Only the portions of the SBG array lying directly under the waveguide cores are switched. This avoids the problems of crosstalk between adjacent waveguide cores thereby improving the SNR at the detector.
In one embodiment of the invention used for finger print detection which uses infrared light of wavelength 785 nm the TIR angle in the platen depends on the refractive indices of the platen glass and the thin layer of water (perspiration) between the subject's skin and the platen. For example, if the platen is made from SF11 glass the refractive index at 785 nm is 1.765643, while the index of water at 785 nm is 1.3283. From Snell's law the arc-sine of the ratio of these two indices (sin−1 (1.3283/1.76564) gives a critical angle of 48.79°. Allowing for the salt content of perspiration we should assume an index of 1.34, which increases the critical angle to 49.37°. Advantageously, the TIR angle at the platen should be further increased to 50° to provide for alignment tolerances, fabrication tolerances, and water variations as well as collimation tolerances too for less than perfect lenses and placements of these parts. Alternatively, other materials may be used for the plate. It is certainly not essential to use a high index to achieve moisture discrimination. One could use an acrylic platen (index 1.49), for example, where the ray angle is in the region of 65°. In practice, however, the choice of platen material will be influenced by the need to provide as large a bend angle as possible at the SBG stage. The reason for this is that higher diffraction efficiencies occur when the bend angle (i.e. the difference between the input angle at the SBG and the diffracted beam angle) is large. Typically bend angles in the region of 20-25° are required.
In one embodiment of the invention the platen may be fabricated from a lower refractive material such as Corning Eagle XG glass which has a refractive index of 1.5099. This material has the benefit of relatively low cost and will allow a sufficiently high TIR angle to enable salty water discrimination. Assuming the above indices for perspiration (salt water) of 1.34 and water of 1.33 the critical angle for salt water is 62.55777° and the critical angle for water of 61.74544°.
In one embodiment of the invention the indices of the SBG substrates and the element 42 are all chosen to be 1.65 and the platen index is chosen to be 1.5099. The material used in the low index layer 42 is equal in index to the SBG substrates, or slightly lower. The TIR angle in the SBG layer is 78 degrees. At this index value the diffracted beam angle with respect to the surface normal within the upper SBG substrate will be 55 degrees. For a TIR angle of 78 degrees in the SBG the effective diffraction bend angle is 23 degrees. The TIR angle in the platen based on the above prescription is 63.5 degrees allowing for typical refractive index tolerances (i.e. a 0.001 refractive index tolerance and 0.3 degree minimum margin for glass tolerances).
The above examples are for illustration only. The invention does not assume any particular optical material. However, the constraints imposed by the need for perspiration discrimination and the bend angles that can be achieved in practical gratings will tend to restrict the range of materials that can be used. Considerations of cost, reliability and suitability for fabrication using standard processes will further restrict the range of materials.
The required refraction angles in any layer of the sensors can be determined from the Snell invariant given by the formula n·sin (U)=constant where n is the refractive index and U is the refraction angle. Typically the constant will be set by the value of the Snell invariant in the platen. For example if the platen index is 1.5099 and the critical angle is 63.5° the Snell invariant is 1.5099×sin (63.5°)=1.351. The only exception to this rule will be the cases where diffraction occurs at elements of the SBG arrays or the transmission grating where the change in angle will defined by the respective grating prescriptions.
In the embodiment of FIG. 1 there is an air gap between the first SBG array 2 and the transmission grating. Other air gaps may be provided between other layers in the sensor architecture subject to the restrictions imposed by the Snell invariant and the diffraction bend angle as discussed above.
The invention requires tight control of refractive index and angle tolerances to maintain beam collimation otherwise cross talk between adjacent waveguides may occur leading to output signal ambiguities. Index variations: of 0.001 may lead to TIR boundaries shifting by around 0.25° for example. Angular tolerances are typically 0.1° in transmission. At reflection interfaces the angular error increases. In the worst case a ray will experience reflections off five different surfaces. Note that the TIR paths used in the sensor can typically undergo up to 18 bounces. The effects of a wedge angle in the substrates will be cumulative. For example, a 30 seconds of arc wedge may lead to a 0.3° error after 18 bounces. Desirably, the cumulative angular errors should allow a margin for TIR of at least 1°. Typical refractive indices and layer thicknesses used in the embodiment of FIG. 1 are provided in the table of FIG. 18.
FIG. 12 illustrates the illumination module of the contact image sensor in one embodiment in more detail. FIG. 12A is a schematic side elevation view showing the illumination means and the SBG device in one embodiment of the invention. FIG. 12B provides a side elevation view of the same embodiment of the invention. The wave guiding structure is not illustrated in FIG. 12A. The illumination means comprises a multiplicity of lasers indicated by 13A-13D providing separate parallel illumination modules, each module comprising a pair of crossed cylindrical lenses such as 16A,16B a light guide 17, transparent slabs 12,19 and transparent substrate 13. The slabs 12,19 abut the first SBG array 2 comprising the transparent substrates 21,22 sandwiching the SBG layer 20. In one embodiment the lenses 16A,16B may be crossed cylindrical lenses such that the first lens 16A collimates the input light 101A to provide a first beam 102A that is collimated in a first plane and the second lens 16B collimates the beam 102A in the orthogonal plane to provide a beam 103A collimated in a second plane orthogonal to the first plane such that the resulting beam in the light guiding element 17 is collimated in both beam planes. Advantageously, the lenses are of rectangular cross section. The beams from the lasers 13A-13D are identical and abut to form a continuous rectangular beam extending over an area substantially the same as the first SBG array in plan view. The lightguide element 17 comprises a transparent slab with a planar input surface orthogonal to the beam direction and a reflecting surface 14 at an angle to the beam direction. The surface 14 reflects the beam 104A into the direction 105A orthogonal to 104A. Although the slab portions 12 and 19 are illustrated as being air separated they may abut. The slab 12 has a tilted reflecting surface 18 for directing light 106A into the SBG array device 2. In one embodiment of the invention the slab 12 has an identical refractive index to the substrates 21,22 sandwiching the SBG array 20. The slab 19 essentially performs the function of a spacer. The slab 13 also acts as spacer. In one embodiment of the invention the slab 13 is coated with a polarization selective coating in the region illuminated by the upward propagating light reflected off the mirror surface 14. The refractive index of the slab 19 is chosen to ensure that rays such as 106A,107A entering the first SBG array device exceed the critical angles for TIR within the light guide formed by the first SBG array device. The reflective surfaces 14,18 essentially provide the coupling means indicated schematically by the symbol 11 in FIG. 1 It should be apparent to those skilled in the art of optical design that in other embodiments of the invention other equivalent optical configurations including diffractive optical surfaces may be used to perform the function of the surfaces 14 and 18. Typically, the SBG array an average refractive index of 1.55 in its non-diffractive state and 1.62 when in a diffracting state. The substrates 21,22 have refractive indices of 1.55. The slab 12 has an index of typically between 1.5 and 1.7 to match the SBG substrates. The slab 19 is advantageously a polymer material of refractive index 1.49. The resulting critical angle in the first TIR light guide formed by the first array SBG device is therefore approximate 74 degrees.
In one embodiment illustrated in the schematic plan view of FIG. 13 the illumination means comprises a single laser 13E and a collimator lens system comprising the crossed cylindrical lenses 46 a,46 b. The said illumination means provides a single collimated beam of rectangular cross section 104E.
A sensor according to the principles of the present application may fabricated using the HPDLC material system and processes disclosed in PCT Application No.: PCT/GB2012/000680 entitled IMPROVEMENTS TO HOLOGRAPHIC POLYMER DISPERSED LIQUID CRYSTAL MATERIALS AND DEVICES which is incorporated by reference herein in its entirety. The SBG substrates may fabricated from polycarbonate, which is favored for its low birefringence. Two other currently available plastic substrates materials are a cyclic olefin copolymer (COC) manufactured by TOPAS Advanced Polymers and sold under the trade name TOPAS. The other was a cyclic olefin polymer (COP) manufactured by ZEON Corporation and sold under the trade names ZEONEX and ZEONOR. These materials combine excellent optical properties (including high transmission and low birefringence) with excellent physical properties (including low specific gravity, low moisture absorption, and relatively high glass transition temperature). The inventors have found that an adequate diffraction efficiency (i.e. ≥70%) can be obtained when using plastic substrates. The diffraction efficiency compares favorably with glass. The switching time of plastic SBG is also found to be sufficient to produce satisfactory devices.
Transparent conductive (ITO) coatings applied to the above plastics have been found to be entirely satisfactory, where satisfactory is defined in terms of resistivity, surface quality, and adhesion. Resistivity values were excellent, typically around 100 Ω/square. Surface quality (i.e., the size, number and distribution of defects) was also excellent. Observable defects are typically smaller than 1 micron in size, relatively few in number, and sparsely distributed. Such imperfections are known to have no impact on overall cell performance. ITO suffers from the problem of its lack of flexibility. Given the rugged conditions under some SBG devices may operate, it is desirable to use a flexible TCC with a plastic substrate. In addition, the growing cost of indium and the expense of the associated deposition process also raise concerns. Carbon nanotubes (CNTs), a relatively new transparent conductive coating, are one possible alternative to ITO. If deposited properly, CNTs are both robust and flexible. They can be applied much faster than ITO coatings, are easier to ablate without damaging the underlying plastic, and exhibit excellent adhesion. At a resistivity of 200 Ω/sq, the ITO coatings on TOPAS 5013S exhibit more than 90% transmission. At a resistivity of 230 Ω/sq, the CNT coatings deposited on the same substrates material exhibited more than 85% transmission. It is anticipated that better performance will results from improvements to the quality and processing of the CNTs
An adhesion layer is required to support the transparent conductive coating. The inventors have found that the adhesion of ITO or CNT directly to plastics such as TOPAS and ZEONEX was poor to marginal. The inventors have found that this problem can be overcome by means of a suitable adhesion layer. One exemplary adhesion layer is Hermetic TEC 2000 Hard Coat from the Noxtat Company. This material has been found to yield a clear, mar-resistant film when applied to a suitably prepared plastic substrate. It can be applied by flow, dip, spin, or spray coating. TEC 2000 Hard Coat is designed to give good adhesion to many thermoplastic substrates that are cast, extruded, molded or blow molded. When applied to TOPAS, ZEONEX or other compatible plastics, the strength and break resistance provided by TEC 2000 is nearly as scratch and abrasion resistant as glass. Hermetic Hard Coat forms a transparent 3-6 micron film on plastic surfaces. The Refractive index of the coating is 1.4902. A sample of TOPAS plastic sheet coated with TEC 2000 Noxtat protective Hard Coat is shown in FIG. 13. The next step in SBG cell production process is applying the TCC (ITO or CNT) to the hard coat. FIG. 14 shows Noxtat Hard Coat samples with additional ITO and CNT coatings. The Hard Coat plays two roles in SBG cell production. One is to increase adhesion of the conductive layer to the plastic and prevent degassing during vacuum coating. The second role is to seal the plastic surface from environmental influence. It was found that TEC 2000 Hard Coat performs very well with TOPAS and ZEONEX materials.
A fundamental feature of SBGs fabricated using current HPDLC material systems is that the grating is present when the device is in its passive state. An electric field must be applied across the HPDLC layer to clear the grating. An alternative HPDLC material system that may be used with the present invention provides a reverse mode SBG in which the grating is clear when in its passive state. A reverse mode SBG will provide lower power consumption. Reverse mode SBG devices are disclosed in PCT Application No.: PCT/GB2012/000680.
A method of a method of making a contact image measurement in one embodiment of the invention in accordance with the basic principles of the invention is shown in the flow diagram in FIG. 14. Referring to the flow diagram, we see that the said method comprises the following steps:
At step 501 providing an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarization light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and ITO electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; an air gap; a transmission grating; a third transparent substrate (low index glue layer); a SBG cover glass; a ITO layer; a second SBG array device comprising array of selectively switchable SBG column elements; a ITO layer; a barrier film; a waveguiding layer comprising a multiplicity of waveguide cores separated by cladding material having a generally lower refractive index than the cores, the cores being disposed parallel to the first beam direction; an upper clad layer having a generally lower refractive index than the cores (also referred to as the bottom buffer); a priming layer; a platen; and further comprising: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the waveguide into an output optical path; and a detector comprising at least one photosensitive element, wherein ITO electrodes are applied to the opposing faces of the substrate and the waveguide core;
At step 502 an external material contacting a point on the external surface of the platen;
At step 502 sequentially switching elements of the first SBG array into a diffracting state, all other elements being in their non-diffracting states;
At step 503 sequentially switching elements of the second SBG array into a diffracting state, all other elements being in their non-diffracting states;
At step 504 each diffracting SBG element of the first SBG array diffracting incident first TIR light upwards into a first optical path,
At step 505 the transmission grating diffracting the first optical path light upwards into a second optical path,
At step 506 a portion of the second optical path light incident at the point on the platen being transmitted out of the platen and light incident on the outer surface of the platen in the absence of said contact with an external material being reflected downwards in a third optical path, said third optical path traversing said cores,
At step 508 an active SBG element of the second SBG array along the third optical path diffracting the third angle light downwards into a fourth optical path,
At step 508 the fourth optical path light being reflected upwards into a fifth optical path at the third substrate, the fifth optical path light exceeding the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array or second SBG array/third substrate interfaces, and proceeding along a TIR path to the detector.
In one embodiment of the invention the first to fifth optical paths in the method of FIG. 14 lie in a plane orthogonal to the first SBG array.
In one embodiment of the invention the method of FIG. 14 further comprises the step of providing a transparent slab of index lower than the third transparent substrate disposed between the third substrate and the transmission grating, such that the fourth optical path light is reflected upwards at the substrate into a fifth optical path and the fifth optical path light exceeds the critical angle set by the core/clad interface and the critical angle set by one of the core/second SBG array, second SBG array/third substrate or third substrate/slab interfaces, providing a TIR path to the detector.
A contact image sensor according to the principles of the invention is illustrated in the schematic side elevation view of FIG. 15. The apparatus is identical to that of FIG. 1 but further comprises a half wave retarder array 3 disposed between the air gap 15 and the transmission grating 43. The half wave retarder array 3 comprises an array of column-shaped elements 30 sandwiched by transparent substrates 31,32. Each retarder element in the half wave retarder array is switchable between a polarization rotating state in which it rotates the polarization of incident light through ninety degrees and a non polarization rotating state.
The column elements of the half wave retarder array have longer dimensions disposed parallel to the Y-axis i.e. orthogonally to the first TIR beam direction. Each half wave retarder array element overlaps at least one strip element of the first SBG array. At any time one element of the first SBG array is in a diffracting state and is overlapped by an element of the half wave retarder array in its non-polarization rotating state, one element of the second SBG array is in a diffracting state, all other elements of the first and second SBG arrays are in a non-diffracting state and all other elements of the half wave retarder array are in their polarization rotating states.
Turning now to FIG. 16 the function of the half wave retarder array is to control stray light such as that indicated by the ray 220 which is diffracted by the residual refractive index modulation of the element 24. The switchable half wave retarder array solves the problem of background leakage noise by converting unwanted light at source into S-polarized light. The active (i.e. diffracting) SBG column element 23 diffracts light 204 out of the light guide through the element 33 of the half wave retarder array 30 array as light 205. Since the element 33 is in its non-polarization rotating state the light 205 remains P-polarized. Note that all other elements of the half wave retarder array are in their polarization rotating states. The diffracted ray 220 is transmitted through the half wave retarder element 34 which is in its polarization rotating state such that the P-polarized light 220 is converted into S-polarized light 221. The ray 221 is next diffracted into the ray 222 by the transmission grating 43. The ray 223 is reflected off the platen/air interface into a downwards path as the ray 223. Since the ray 223 is S-polarized it is not diffracted by the second SBG and is therefore not coupled into the waveguide path to the detector. In one embodiment of the invention the light 223 propagates downwards though the stack of optical layers until it emerges from the bottom of the illuminator means 1 and is absorbed by a light-trapping means which is not illustrated. Typically, the light-trapping means would be an absorber. Other means for disposing of light of the type represented by the ray 223 will be apparent to those skilled in the art of optical design. The invention does not assume any particular means for disposing of such stray light.
In one embodiment of the invention illustrated in FIG. 17 there is provided a means for contact imaging of an object that emits light of a second wavelength when illuminated by light of a first wavelength. The apparatus of FIG. 17 is identical to the sensor FIG. 4 except that in FIG. 15 the rays 237,238,239 which replace the ray 207,208,209 of FIG. 4 now correspond to second wavelength light emitted from the object 63 which is in contact with the platen and illuminated by first wavelength light 206. In one embodiment of the invention the object 63 may be a fluorescent material excited by UV radiation. The ray 243 which replaces the ray 223 of FIG. 4 again represents a stray light path. It should be noted that the embodiment of FIG. 17 will required a more intense light source to compensate for the low coupling efficiency of the second wavelength light into the detector waveguide. The reason for this is that the light emitted from the object 61 will tend to be diffuse and unpolarized (in contrast to the situation in FIG. 4 where the downgrade light from the platen will be collimated and will retain the incident light polarization and collimation).
FIG. 18 is a table of the optical prescriptions of each layer (refractive index at 785 nm. and layer thickness in microns) of a typical implementation of the embodiment of FIG. 1. Each layer is reference by the numerals used in FIG. 1. As should be apparent to those skilled in the art many other combinations of layer materials and thickness may be used.
In the above described embodiments the contact sensor essentially comprises three modules: a scanner a detector and the platen. These components are illustrated in FIGS. 19-20 in which FIG. 19 is essentially FIG. 1 with the components comprising the detector layer 9 (that is the second SBG array 4 and the waveguiding 5) contained in a dashed line box. The platen comprises the illuminator module and the first SBG array device 2. We now consider an embodiment of the invention that combines the functions of the second SBG array 4 and the waveguiding 5 (that is, the detector module as defined above) in a single SBG array device. This alternative detector module is now discussed with reference to FIGS. 21-26.
As already discussed the contact sensor comprises the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarization light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column, and transparent electrodes applied to opposing faces of the SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; and a transmission grating; and a platen, as illustrated in FIG. 1 but not shown in FIGS. 21-26.
The second SBG array device further comprising third and fourth transparent substrates 46A,46B sandwiching the SBG layer which is generally indicated by 48 and will be explained in more detail next. The layer essentially consists of a multiplicity of high index HPDLC regions separated by low index HPDLC regions. Patterned transparent electrodes 47A,47B are applied to opposing faces of the substrates. The high index regions provide waveguiding cores disposed parallel to the first beam direction generally indicated by 250. The low index HPDLC regions provide waveguide cladding. The waveguide structure is shown in plan view in FIG. 23 which shows a waveguide core 77 and adjoining cladding regions 77A,77B. The waveguide structure is shown in cross section in FIG. 24 which also shows electrodes 47A,47B across a cladding region 77A. The adjacent core region is indicated by 77. Anti-phase voltages V1,V2 are applied to the upper and lower electrodes via connections 53A, 53B using the anti-phase voltage generators 54A,54B. The third and fourth substrate layers 46A, 46B have a generally lower refractive index than the cores and will typically match the indices of the cladding regions The patterned electrodes applied to the third substrate comprise column shaped elements such as 55 defining a multiplicity of selectively switchable columns of SBG elements such as the one indicted by 26 which are aligned orthogonally to the waveguiding cores shown in FIG. 26. The patterned electrodes applied to the fourth substrate comprise elongate elements such as 56 overlapping the low index HPDLC regions.
As in the embodiment of FIG. 1 the apparatus further comprises: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector 80 comprising at least one photosensitive element 89 in FIG. 23. The detector comprises an array of photosensitive elements, each photosensitive element being optically coupled to at least one waveguiding core. Each SBG element in the first and second SBG arrays is switchable between a diffracting state and a non-diffracting state with the SBG elements diffracting only first polarization light.
In one embodiment of the invention based on an SBG waveguiding structure the SBGs operate in reverse mode such that the diffracting state exists when an electric field is applied across the SBG element and a non diffracting state exists when no electric field is applied. Alternatively the SBGs may operate in forward mode, that is the diffracting state exists when no electric field is applied across the SBG element and a non diffracting states exists when an electric field is applied. At any time one element of the first SBG array is in a diffracting state, one element of the second SBG array is in a diffracting state, all other elements of the first and second are in a non-diffracting state. An air gap may be provided between first SBG array and the transmission grating. Alternatively a low refractive index material may be used for this purpose.
In one embodiment based on an SBG waveguiding structure discussed above an active SBG element of the first SBG array in a diffracting state diffracts incident first TIR light upwards into a first beam direction. Referring to FIG. 22, light incident on the outer surface of the platen in the absence of external material is reflected downwards in a third optical path 275. The third optical path traverses the cores. An active column 49 of the second SBG array along the third beam direction diffracts the third angle light into a second TIR path 276 down the traversed core towards the detector. The first to third optical paths and the first and second TIR paths are in a common plane.
In one embodiment based on an SBG waveguiding structure the output from detector array element is read out in synchronism with the switching of the elements of the first SBG array.
In one embodiment based on an SBG waveguiding structure there is provided a method of making a contact image measurement comprising the steps of:
i) providing an apparatus comprising the following parallel optical layers configured as a stack: an illumination means for providing a collimated beam of first polarization light; a first SBG array device further comprising first and second transparent substrates sandwiching an array of selectively switchable SBG column elements, and transparent electrodes applied to opposing faces of the substrates and the SBG substrates together providing a first TIR light guide for transmitting light in a first beam direction; a transmission grating; a transparent substrate; a second SBG array device further comprising third and fourth substrates sandwiching a multiplicity of high index HPDLC regions separated by low index HPDLC regions and patterned transparent electrodes applied to opposing faces of the substrates; a platen; and a detector; and further comprising: means for coupling light from the illumination means into the first TIR light guide; means for coupling light out of the second SBG array device into an output optical path; and a detector comprising at least one photosensitive element; the high index regions providing waveguiding cores disposed parallel to the first beam direction and the low index HPDLC regions providing waveguide cladding; the substrates layers having a generally lower refractive index than the cores, the patterned electrodes applied to the third substrate defining a multiplicity of selectively switchable columns orthogonal to the waveguiding cores and the patterned electrodes applied to the fourth substrate overlapping the low index HPDLC regions;
j) an external material contacting a point on the external surface of the platen;
k) sequentially switching elements of the first SBG array into a diffracting state, all other elements being in their non-diffracting states;
l) sequentially switching columns of the second SBG array device into a diffracting state, all other columns being in their non-diffracting states;
m) each diffracting SBG element of the first SBG array diffracting incident first TIR light upwards into a first optical path,
n) the transmission grating diffracting the first optical path light upwards into a second optical path,
o) a portion of the second optical path light incident at the point on the platen contacted by the external material being transmitted out of the platen, while portions of said second optical path light not incident at the point are reflected downwards in a third optical path, the third optical path traversing one core,
p) an active SBG column element of the second SBG array along the third optical path diffracting the third angle light in a second TIR path down the traversed core and proceeding along a TIR path along the core to the detector.
In one embodiment of the invention which is illustrated in the schematic side elevation view of FIG. 27 there is provided a contact image sensor using a single SBG array layer comprising: an illumination means 97 for providing a collimated beam of first polarization light; an SBG array device further comprising first and second transparent substrates 27A,27B sandwiching an array of selectively switchable SBG columns 27, and transparent electrodes (not shown) applied to opposing faces of the substrates, said SBG substrates together providing a first TIR light guide for transmitting light in a first TIR beam direction; a first transmission grating layer 91B overlaying the lower substrate of the SBG array device; a second transmission grating layer 91A overlaying the upper substrates of the SBG array device; a quarter wavelength retarder layer 99 overlaying the second transmission grating layer; a platen 6 overlaying the quarter wavelength retarder layer; and a polarization rotating reflecting layer 98 overlaying the first transmission grating layer. The apparatus further comprises: means 97 for coupling light from said illumination means into said SBG array device; means 96 for coupling light out of the second SBG array device into an output optical path; and a detector (not illustrated) comprising at least one photosensitive element. The light path from the illumination means to the platen via a diffracting SBG column 27C is illustrated by the solid line. The path of the reflected light from the platen to the detector means is shown as a dashed line.
We next discuss a further embodiment of the invention directed at further simplification of the detector component. The new contact sensor architecture which is shown in detail in FIG. 28 retains the key functional elements of scanner detector and platen as already discussed above. As in the case of the SBG waveguide embodiment discussed above aim is to eliminate the design complexity and cost of the polymer waveguide used in the earlier embodiments. In the embodiment of FIG. 28 the waveguides are formed by means of passive surface coatings which confine the collimated light reflected from the platen to parallel waveguide-like paths leading to the detector.
In the embodiment of FIG. 28 a contact image sensor comprises: an illumination means for providing a collimated beam of first polarization light; an illuminator waveguide for propagating light in a first TIR path containing a first array of switchable grating columns; a detector waveguide for propagating light in a second TIR path containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; a detector comprising at least one photosensitive element; and a platen. Each switchable grating element in the first and second switchable grating arrays is switchable between a diffracting state and a non-diffracting state. The switchable grating elements diffract only the first polarization light. Each external surface of the detector waveguide is divided into a first grid of strips interspersed with a second grid of strips. The first and second grids have different light-modifying characteristics. Overlapping strips from the first grid of strips on each external surface are operative to waveguide light. Overlapping strips from the second grid of strips on each external surface are operative to absorb light scattered out of regions of the detector waveguide sandwiched by overlapping strips from the first grid of strips on each external surface. The strips are orthogonal to the switchable grating columns. The first grid of each external waveguide surface is one of clear or scattering and the second grid of at least one external waveguide surface is infrared absorbing. The beam steering means comprises: a first transmission grating layer; a half wavelength retarder layer overlaying the first transmission grating layer; a second transmission grating layer overlaying the half wavelength retarder layer; and a quarter wavelength retarder layer sandwiched by the second transmission grating layer and the platen.
Turning again to FIG. 28 we see that, as in the earlier embodiments, the scanner is an active SBG column array 20 which directs sheets of collimated integrated leaser light upwards the transparent detector layer into the plate by switching the column elements in scrolling fashion. Typically, the scanning grating comprises 1600 48.8 micron wide ITO electrodes etched onto a glass substrate with a 50.8 micron pitch (that is, 500 electrodes per inch). The laser source 35 emits collimated light 280 which is coupled into the scanner waveguide by a grating coupler 36 into to the TIR path represented by rays 281-284. When a potential is applied across one of the transparent electrodes such as 23, light is diffracted out of the scanner waveguide into a direction such as 285 (typically normal the waveguide substrate. When the voltage is removed, diffraction ceases and the light continues to be totally internally reflected between the scanner substrates. Note that the TIR light in the scanner is labelled as a being S-polarized (using S-polarization-sensitive SBGs). In an alternative embodiment the scanner may use conventional P-polarization-sensitive SBGs with a HWF layer being provided adjacent the scanner to rotate the out-coupled P-polarized light to S. As will be explained below S-polarized output light is required to avoid interaction with the SBGs in the detector layer.
As in the earlier embodiments the first and second TIR paths are parallel to each other the switchable grating columns are preferentially orthogonal to the TIR paths. The first and second switchable grating arrays are switched in cyclic fashion with only one the column element in each array being in a diffracting state at any time. The illuminator and detector waveguides each comprise first and second transparent substrates sandwiching an array of switchable grating columns, and transparent electrodes applied to opposing faces of the substrates. The switchable grating is one of a forward mode SBG, a reverse mode SBG, or a stack of thin switchable gratings. For conventional forward mode SBGs the diffracting state exists when no electric field is applied across the switchable grating element and the non diffracting states exists when an electric field is applied. This situation is reversed for reverse mode SBGs. At any time one element of the first switchable grating array is in a diffracting state, one element of the second switchable grating array is in a diffracting state, all other elements of the first and second switchable grating arrays are in a non-diffracting state. The output from detector array element is read out in synchronism with the switching of the elements of the first switchable grating array.
As in the earlier embodiments, the scanned light needs to be directed onto the platen 6 at a preferred angle. This ensures a clear image capture that is tolerant to the enrollee's hand and finger moisture. This is accomplished by passive tilt gratings 64B,64D one (64B) for the upward beam 286 and a reversed version (64D) for the downward reflected light. The tilt gratings are essentially passive transmission grating recorded in holographic polymer film such as the material manufactured by Bayer Inc. A Quarter Wave Film (QWF) 64A which is sandwiched by the upward beam tilt grating and platen converts the upward going S-polarized light 287 into circularly polarized light 287A. On reflection from the platen the sense of the circular polarized light is reversed as indicated by the symbol 287B so that P polarized light 288 is produced after the second pass through the QWF. The tilt grating 64D diffracts this light normal to the detector layer in the direction 289.
During a scan, the user's four fingers are placed onto the platen surface. Wherever the skin touches the platen, it “frustrates” the reflection process, causing light to leak out of the platen. Thus, the parts of the skin that touch the platen surface reflect very little light, forming dark pixels in the fingerprint image. The image is built up line by line into a 500 dpi, FBI-approved industry standard picture ready for comparison checking.
The detector 65 comprises an SBG column array 65A similar to the scanner array sandwiched by substrates 65B, 65C. Electrodes (not illustrated) are applied to the opposing surfaces of the substrate with at least one being pattern with ITO columns overlaying the SBG column elements. An outcoupling grating 38 (or other equivalent optical means such as prism) out couples light 292 from the detector waveguide towards a detector array 37. The TIR path in the waveguide from an active SBG column element 67 to the outcoupling grating 38 is represented by 290.
The detector and scanner waveguides may be air separated. Alternative they may be sandwich a low index material layer which is schematically indicated by the thin layer 68. Since the scanner waveguide is transparent the out coupled light from the detector waveguide may in an alternative embodiment be transmitted through the detector layer onto a detector array which is disposed alongside the laser source. Other implementations that will result in further compression of the sensor form factor should be apparent to those skilled in the art.
As shown in FIG. 28 the illumination traverses the detector waveguide on its way to the platen. In another embodiment of the invention the illuminator waveguide may be disposed between the detector waveguide and the platen (and beam steering gratings) such that light reflection from the platen traverses the illuminator waveguide on its way to the detector waveguide. As illustrated in FIG. 28 the ray directions from the source to the detector lie in a common plane.
Each external surface of the detector waveguide is divided into a first grid of strips interspersed with a second grid of strips. The first and second grids have different light-modifying characteristics. Overlapping strips from the first grid of strips on each external surface are operative to confine light to a waveguide path. Overlapping strips from the second grid of strips on each external surface are operative to absorb light scattered out of regions of the detector waveguide sandwiched by overlapping strips from the first grid of strips on each external surface. The strips are orthogonal to the switchable grating columns. The first grid of each external waveguide surface is one of clear or scattering and the second grid of at least one external waveguide surface is infrared absorbing. Essentially, three types of surface strip are required: clear, scattering and light (infrared) absorbing. Typically the scattering properties will be provided by frosting the surface or applying some computer generated surface relief structure using an etching process. Other methods of providing controlled scatter using diffractive surface structures may also be used. The stripes define parallel propagation channels terminating at the linear detector array. Typically, the channel widths are 40 micron with gaps of 12 micron give a pitch of 52 micron equivalent to 500 dpi.
FIG. 28B and FIG. 28C are plan views of the bottom and top of the detector. The bottom surface 69A of the detector (that is, the one nearest the scanner) has alternating clear regions such as 39A and regions to which a frost etch has been applied such as 39B. The top surface 9B of the detector (that is, the one nearest the platen has alternating clear regions such as 39C and regions to which an infrared absorbing thin film has been applied. The infrared absorbing coating regions of the top surface overlay the clear regions of the bottom surface. FIG. 28D is a cross section of the detector waveguide showing light spots emerging from the waveguiding structure of FIGS. 28B-28C. A cross section of the detector waveguide showing the SBG array, substrates and upper and lower surface coatings are provided in FIGS. 29-30. As indicated in FIG. 30 the SBG array comprises the column elements 66A separated by small gaps 66D. The external faces of the detector waveguide and the illuminator waveguide abut an air space or a low refractive index material layer.
Collimated reflected beams from the platen enter the detector layer in the gaps between the IR absorbing stripes and undergo TIR within up to the detector array as indicated by the rays 293,294. Hence the beam propagation is analogous to that provided by waveguide cavities. Since there will be collimation errors owing to imperfections in the lasers collimation optics and a small amount of scatter from the PDLC material and optical interfaces, there is a risk of cross talk between adjacent detector channels as indicted by the ray 295. The combination of the IR absorbing layers and frosted surfaces overcome this problem. Light scattered out of a give channel is scattered by the frosted layer and absorbed by the IR coating. Any forward scattered light or multiple scatter between near neighboring channels will tend to diminish in intensity with each ray surface interaction and will form a background noise level that can be subtracted from the fingerprint signature by the processing software. In one embodiments shown in FIG. 31 a variation on the above detector design uses alternating clear regions of IR absorber stripes at the top (39A,39B) and bottom (39F,39G) of the waveguide instead of the IR absorber/frost etch arrangement of FIGS. 28B-28C.
As shown in FIG. 32 many different combinations of strips may be used. The strip combinations are illustrated schematically by the 5×2 matrices labelled 38H-39N in which the top row represents the strips applied to the upper surface of the detector waveguide and the bottom row represents the strips applied to the bottom surface of the detector waveguide. The light-modifying strips are labelled by characters A (absorbing), F (frosted). The matrix cells containing no characters indicate clear strips.
It should be noted that in most implementations whether a particular strip pattern is at the top or bottom of the waveguide is not critical. It is of course necessary to ensure that at least one of the strips on the waveguide surface nearest the platen is transparent to allow light reflected from the platen to enter the detector waveguide.
In one embodiment the scanner SBG operates in reverse mode. That is the SBG columns diffract only when an electric field is applied across the ITO electrodes. With normal mode SBGs the noise from diffraction and scatter occurring within the gaps between the electrodes would swamp the optical signal.
The linear array of photo detectors 37B, is connected to the detector layer via an array of micro lenses 37A as shown in the schematic illustration of FIG. 33. Alternatively the detector may marry up directly to the frosted surface of the detector layer as shown in FIG. 34. The illumination of the platen outer surface by a light sheet 300 containing the incident ray 301 which is reflected into the ray path 302 and is coupled into a TIR path 303 incised a waveguide region 39A of the detector waveguide 65 is shown. The TIR light is coupled via a microns array 37A into an element of the detector array 37B by means of an outcoupling grating 38.
The linear detector may be based on any fast, high resolution array technology. One candidate technology would be CCD. An alternative technology that may be used is the Contact Image Sensors (CIS) which is rapidly replacing CCDs in low cost low power and portable applications such as copiers, flatbed scanners as well as barcode readers and optical identification technology. A typical CIS will provide high speed sensing; high speed ADC 12 bit 600 dpi. At the time of writing an exemplary CIS is Mitsubishi Electric WC6R305X. Current CIS will not have as high sensitivity as the best commercially available CCD arrays. With collimated laser illumination a CIS detector can be highly power efficient, allowing scanners to be powered through the minimal line voltage supplied via a USB connection. From the ergonomic perspective, a CIS contact sensor is smaller and lighter than a CCD line sensor, and allows all the necessary optical elements to be included in a compact module, thus helping to simplify the inner structure of the scanner. The CIS greatly simplifies the sensor electronics. Many other detector configurations may be used with the invention. In one embodiment two linear arrays may be combined. However, such embodiments require complicated waveguiding and electronics routing and output signal stitching.
In one embodiment a method of making a contact image measurement using the apparatus of FIG. 28 is provided comprising the steps of:
a) providing an apparatus comprising: an illumination means for providing a collimated beam of first polarization light; an illuminator waveguide for propagating light in a first TIR beam direction containing a first array of switchable grating columns; a detector waveguide for propagating light in a first TIR beam direction containing a second array of switchable grating columns; a beam steering means comprising at least one grating disposed between the platen and the detector waveguide; a first waveguide coupler for coupling light from the illumination means into the illuminator waveguide; a platen; a second waveguide coupler for coupling light out of the detector waveguide into an output optical path; and a detector comprising at least one photosensitive element. The external surfaces of the detector waveguide comprise interspersed multiplicities of strips with different light modifying characteristics. The strips are orthogonal to the switchable grating columns, each light modifying strip overlapping a clear strip;
b) coupling light from the illumination means into the illuminator waveguide;
c) an external material contacting a point on the external surface of the platen;
d) sequentially switching elements of the first switchable grating array into a diffracting state, all other elements being in their non-diffracting states;
e) sequentially switching columns of the second switchable grating array into a diffracting state, all other columns being in their non-diffracting states;
f) each diffracting switchable grating element of the first switchable grating array diffracting incident first TIR light upwards into a first optical path;
g) the beam steering means deflecting the first optical path light into a second optical path;
h) a portion of the second optical path light incident at the point on the platen contacted by the external material being transmitted out of the platen, portions of the second optical path light not incident at the point being reflected into a third optical path;
i) an active switchable grating column element of the second switchable grating array along the third optical path diffracting the third angle light in a second TIR path; and
j) coupling light out of the detector waveguide towards the detector.
A method of making a contact image measurement in one embodiment of the invention (using the apparatus of FIG. 28) in accordance with the basic principles of the invention is shown in the flow diagram in FIG. 35. Referring to the flow diagram, we see that the said method comprises the following steps.
At step 550 provide a light source; a platen; an illuminator waveguide containing a first array of SBG elements; a detector waveguide containing a second array of SBG elements, external surfaces of the detector waveguide being divided into interspersed grids of light-modifying strips, a beam steering grating system; a first coupler for coupling light into the illuminator waveguide; a second coupler for coupling light out of the detector waveguide towards a detector.
At step 551 couple light from light source into TIR path in illuminator waveguide.
At step 552 an external material of lower refractive index than said platen contacts a point on the external surface of said platen.
At step 553 sequentially switch first SBG array elements into diffracting state.
At step 554 sequentially switch elements of second SBG array into a diffracting state, all other elements being in non-diffracting states.
At step 555 each diffracting SBG element of first SBG array diffracts incident light into a first optical path.
At step 556 beam steering grating system diffracts first optical path light into second optical path.
At step 557 second optical path light incident at said point on platen is reflected in a third optical path.
At step 558 active SBG elements of second SBG array along third optical path diffract third angle light into TIR path in detector waveguide.
At step 558 couple light out of detector waveguide towards detector.
FIG. 36 shows a further embodiment of the invention that combines polymer waveguides of the type discussed earlier with the light modifying stripe principle used in the embodiment of FIG. 28. Since the basic principles of the ray propagation and diffraction by elements of the SBG arrays have already been discussed in some detail in relation to the embodiment of FIG. 28 only an outline description is provided here. The platen, beam steering grating layers and illuminator waveguide are identical to the ones illustrated in FIG. 28. However, the detector waveguide comprises a polymer waveguide layer 69C onto which is overlaid a SBG array 65 comprising the SBG array 65A sandwiched by the substrates 65B,65C to which electrodes are applied as discussed above. The upper surface of the substrate 65B which is labelled 69D in the plan view of FIG. 36D has infrared absorbing stripes 39A interspersed with clear stripes 39B. The waveguide layer 70 comprises waveguide cores 71 in cladding material 72. The design issues relating to the design of waveguides for use with the invention have been discussed in detail earlier (see FIGS. 4-11 and the accompanying description). The ray path from the source to the detector 37 is indicated by the rays 280-312.
Although the switchable grating arrays used in the detector and illuminator waveguide components essentially one dimension arrays of column shaped elements (as shown in FIG. 3) it is possible to apply the invention using two dimensional arrays. FIG. 37 shows two operational states of a two dimension switchable grating array 20C (for use in one or both of the detector and illumination SBG arrays) containing addressable pixels 20D. In FIG. 37A a pixel 20E is in a diffracting state while in FIG. 37B a neighboring pixel 20F is in a diffracting state. The pixels could be switched one column at a time. However the real benefit of two dimensional arrays lies in enabling more sophisticated image sensing strategies, for example area-of-interest-based image acquisition. Such applications of the invention will require fast detectors and fast switching of the grating arrays.
FIG. 38 shows a preliminary software architecture for use in a fingerprint scanning implementation of the invention. In a typical mobile application of the invention the preferred software platform would be a ruggedized computer tablet such as, for example, the Panasonic Android Touchpad. It is expected that Microsoft Windows 8 computer tablet technology will stimulate further product development in these areas. Desirably, any platform should provide an integrated GPS module. FIG. 38 illustrates one possible implementation. The system components implemented on the software platform 520 comprise an executive program 521, biometric software 522, hardware control 523, finger print server 524, fingerprint database 525, graphical user interface (GUI) 526 and communication interfaces 527. The biometric software will typically provide 1:1 and 1;N comparisons; noise removal, matching algorithms, image enhancement and options for saving images. The hardware control module includes software for control the electronics for detector channel switching and readout, illuminator component switching, laser control and basic functions such as an on/off switch. Communication interfaces will typically include LAN, WAN and INTERNET. FIG. 38 also shows the biometric scanner 530 comprising 512 element detector array, SBG array driver 532, detector 533, illuminator component 534 and laser module 535. System Development Kits (SDKs) for implementing the functionalities shown in FIG. 39 are currently available. They can be categorized into low and high level tools. While low level tools can provide rapid integration they still require the development of a robust fingerprint reader software matching server and other vital elements for dealing with problems such as exception handling and system optimization, which makes embedding them into applications problematic. When modifications or enhancements are made to either the host application or to the fingerprint SDK the host software must be recompiled with the fingerprint SDK, leading to ongoing support and maintenance problems. High level SDKs free the user from needing to understand the parameters involved with fingerprint comparison, how they work, why they are significant, and how data needs to be extracted from an image as well as data type mapping, database management, data synchronization, exception handling. The ability to perform 1:N comparison for large databases is a highly desirable feature important feature; opening a record set from the database and matching one-by-one will not produce fast results. In general high level SDKs will be better at handling poor image quality, bad image acquisition, and unpredictable user input. Desirably the SDK should support a variety of development environments including: C++, VB, NET, Delphi, PowerBuilder, Java, Clarion, and web applications. High level SDKs avoid the need for development of special DLLs which can consume 6-12 months in development.
In applications such as finger print sensing the illumination light is advantageously in the infrared. In one embodiment of the invention the laser emits light of wavelength 785 nm. However, the invention is not limited to any particular illumination wavelength.
In fingerprint detection applications the invention may be used to perform any type “live scan” or more precisely any scan of any print ridge pattern made by a print scanner. A live scan can include, but is not limited to, a scan of a finger, a finger roll, a flat finger, a slap print of four fingers, a thumb print, a palm print, or a combination of fingers, such as, sets of fingers and/or thumbs from one or more hands or one or more palms disposed on a platen. In a live scan, for example, one or more fingers or palms from either a left hand or a right hand or both hands are placed on a platen of a scanner. Different types of print images are detected depending upon a particular application. A flat print consists of a fingerprint image of a digit (finger or thumb) pressed flat against the platen. A roll print consists of an image of a digit (finger or thumb) made while the digit (finger or thumb) is rolled from one side of the digit to another side of the digit over the surface of the platen. A slap print consists of an image of four flat fingers pressed flat against the platen. A palm print involves pressing all or part of a palm upon the platen.
The present invention essentially provides a solid state analogue of a mechanical scanner. The invention may be used in a portable fingerprint system which has the capability for the wireless transmission of fingerprint images captured in the field to a central facility for identity verification using an automated fingerprint identification system.
It should be emphasized that the drawings are exemplary and that the dimensions have been exaggerated.
It should be understood by those skilled in the art that while the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.

Claims (20)

What is claimed is:
1. A light sensor comprising:
a detector;
a waveguide with first and second total internal reflection surfaces;
a first coupler for directing light reflected off an object into a total internal reflection path in said waveguide;
a second coupler for directing light propagating in said waveguide onto said detector; and
a plurality of diffractive regions for light control supported by at least one of said first and second total internal reflection surfaces, each said diffractive region bordering at least one total internal reflection region;
wherein the total internal reflection regions of said first and second surfaces overlap to form a plurality of waveguiding channels each capable of propagating a light beam without crossing over into an adjacent waveguiding channel.
2. The apparatus of claim 1, wherein said first and second total internal reflection surfaces have overlapping diffractive regions.
3. The apparatus of claim 1, further comprising at least one absorbing region, each overlapping a diffractive region.
4. The apparatus of claim 1, further comprising scattering regions, each overlapping a diffractive region.
5. The apparatus of claim 1, further comprising at least one partially reflecting region, each overlapping a diffractive region.
6. The apparatus of claim 1, wherein a portion of a total internal reflection region supports one of a texture for scattering light or a partially reflecting coating.
7. The apparatus of claim 1, further comprising a source of light wherein said light is at least one selected from the group of: optically coupled to said waveguide, transmitted through said waveguide onto said object, polarized or collimated before being coupled into said waveguide, infrared, or ultraviolet.
8. The apparatus of claim 1, further comprising at least one selected from the group of: a polarization selection layer, a polarization rotation layer, a switching grating, a platen for contact image formation, a transparent substrate, a layer of air, a layer of low refractive index material, or a grating layer disposed along a light path from said object to said detector.
9. The apparatus of claim 1, wherein said first coupler includes a grating layer for coupling light reflected from said object into total internal reflection paths within said waveguide.
10. The apparatus of claim 9, wherein said grating layer is one of a transmission grating or a reflection grating implemented as one of a forward mode switchable Bragg grating, a reverse mode switchable Bragg grating, a stack of thin switchable gratings or a surface relief grating.
11. The apparatus of claim 9, wherein said grating layer at least partially overlaps said waveguiding channels.
12. The apparatus of claim 9, wherein said grating layer is patterned into a multiplicity of elongate grating elements aligned orthogonal to a light propagation direction of said waveguiding channels.
13. The apparatus of claim 9, wherein said optical substrate is divided into a pair of transparent substrates sandwiching said grating layer, and transparent electrodes are applied to a surface of each substrate.
14. The apparatus of claim 9, wherein said grating layer includes a plurality of grating elements switchable between a diffracting state and a non-diffracting state, wherein said grating elements are switched sequentially.
15. The apparatus of claim 1, wherein said diffractive regions and said total internal reflection regions form multiple parallel waveguiding channels.
16. The apparatus of claim 1, wherein external faces of said waveguide abut air or a low refractive index material.
17. The apparatus of claim 1, wherein said first coupler is one of: a grating or a prism and said second coupler is one of: a grating or a prism.
18. The apparatus of claim 1, wherein said waveguide contains waveguiding cores, each said core overlapped by one of said total internal reflection regions.
19. The apparatus of claim 1, wherein said detector comprises at least one photoconductive element optically coupled to a waveguiding channel.
20. The apparatus of claim 1 wherein said detector is a two-dimensional array of photoconductive elements.
US16/577,607 2013-07-31 2019-09-20 Method and apparatus for contact image sensing Expired - Fee Related US10747982B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/577,607 US10747982B2 (en) 2013-07-31 2019-09-20 Method and apparatus for contact image sensing
US16/990,840 US11443547B2 (en) 2013-07-31 2020-08-11 Waveguide device incorporating beam direction selective light absorber

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361958552P 2013-07-31 2013-07-31
PCT/GB2014/000295 WO2015015138A1 (en) 2013-07-31 2014-07-30 Method and apparatus for contact image sensing
US201614910921A 2016-02-08 2016-02-08
US15/670,734 US10089516B2 (en) 2013-07-31 2017-08-07 Method and apparatus for contact image sensing
US16/148,583 US10423813B2 (en) 2013-07-31 2018-10-01 Method and apparatus for contact image sensing
US16/577,607 US10747982B2 (en) 2013-07-31 2019-09-20 Method and apparatus for contact image sensing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/148,583 Continuation US10423813B2 (en) 2013-07-31 2018-10-01 Method and apparatus for contact image sensing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/990,840 Continuation US11443547B2 (en) 2013-07-31 2020-08-11 Waveguide device incorporating beam direction selective light absorber

Publications (2)

Publication Number Publication Date
US20200012839A1 US20200012839A1 (en) 2020-01-09
US10747982B2 true US10747982B2 (en) 2020-08-18

Family

ID=51492360

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/910,921 Active US9727772B2 (en) 2013-07-31 2014-07-30 Method and apparatus for contact image sensing
US15/670,734 Active US10089516B2 (en) 2013-07-31 2017-08-07 Method and apparatus for contact image sensing
US16/148,583 Active US10423813B2 (en) 2013-07-31 2018-10-01 Method and apparatus for contact image sensing
US16/577,607 Expired - Fee Related US10747982B2 (en) 2013-07-31 2019-09-20 Method and apparatus for contact image sensing
US16/990,840 Active US11443547B2 (en) 2013-07-31 2020-08-11 Waveguide device incorporating beam direction selective light absorber

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/910,921 Active US9727772B2 (en) 2013-07-31 2014-07-30 Method and apparatus for contact image sensing
US15/670,734 Active US10089516B2 (en) 2013-07-31 2017-08-07 Method and apparatus for contact image sensing
US16/148,583 Active US10423813B2 (en) 2013-07-31 2018-10-01 Method and apparatus for contact image sensing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/990,840 Active US11443547B2 (en) 2013-07-31 2020-08-11 Waveguide device incorporating beam direction selective light absorber

Country Status (2)

Country Link
US (5) US9727772B2 (en)
WO (1) WO2015015138A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114483B2 (en) * 2018-08-10 2021-09-07 Omnivision Technologies, Inc. Cavityless chip-scale image-sensor package
US11256155B2 (en) 2012-01-06 2022-02-22 Digilens Inc. Contact image sensor using switchable Bragg gratings
US11443547B2 (en) 2013-07-31 2022-09-13 Digilens Inc. Waveguide device incorporating beam direction selective light absorber
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
EP3438880B1 (en) * 2017-07-31 2024-02-21 Samsung Electronics Co., Ltd. Display for recognizing fingerprint and electronic device
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12248150B2 (en) 2017-01-05 2025-03-11 Digilens Inc. Wearable heads up displays
US12271035B2 (en) 2019-06-07 2025-04-08 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US12298513B2 (en) 2016-12-02 2025-05-13 Digilens Inc. Waveguide device with uniform output illumination
US12306585B2 (en) 2023-05-03 2025-05-20 Digilens Inc. Methods for fabricating optical waveguides

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US11204540B2 (en) 2009-10-09 2021-12-21 Digilens Inc. Diffractive waveguide providing a retinal image
WO2011042711A2 (en) 2009-10-09 2011-04-14 Milan Momcilo Popovich Compact edge illuminated diffractive display
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US20140204455A1 (en) 2011-08-24 2014-07-24 Milan Momcilo Popovich Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
CN106125308B (en) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 Device and method for displaying images
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US9383753B1 (en) 2012-09-26 2016-07-05 Google Inc. Wide-view LIDAR with areas of special attention
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
EP3198192A1 (en) 2014-09-26 2017-08-02 Milan Momcilo Popovich Holographic waveguide opticaltracker
EP3245551B1 (en) 2015-01-12 2019-09-18 DigiLens Inc. Waveguide light field displays
WO2016113534A1 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Environmentally isolated waveguide display
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US10591756B2 (en) * 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
EP3398007B1 (en) 2016-02-04 2024-09-11 DigiLens, Inc. Waveguide optical tracker
JP6895451B2 (en) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド Methods and Devices for Providing Polarized Selective Holography Waveguide Devices
CN109154717B (en) 2016-04-11 2022-05-13 迪吉伦斯公司 Holographic Waveguide Devices for Structured Light Projection
CN105869554B (en) * 2016-06-17 2019-01-22 京东方科技集团股份有限公司 Detection circuit, identification method of structural features, and display substrate
RU2627926C1 (en) * 2016-07-18 2017-08-14 Самсунг Электроникс Ко., Лтд. Optical system for bioometric user identification
GB2552823B (en) * 2016-08-11 2020-10-07 Intelligent Fingerprinting Ltd Skinprint analysis method and apparatus
KR102646158B1 (en) * 2016-12-13 2024-03-11 엘지디스플레이 주식회사 Flat Panel Display Embedding Optical Imaging Sensor
CN108241838A (en) * 2016-12-23 2018-07-03 创智能科技股份有限公司 Biometric feature recognition device
CN108241830A (en) * 2016-12-23 2018-07-03 创智能科技股份有限公司 Biometric feature recognition device
US10473938B2 (en) * 2016-12-30 2019-11-12 Luminit Llc Multi-part optical system for light propagation in confined spaces and method of fabrication and use thereof
US11131807B2 (en) 2017-05-31 2021-09-28 Microsoft Technology Licensing, Llc Pupil expander with improved color uniformity
US10175423B2 (en) * 2017-05-31 2019-01-08 Microsoft Technology Licensing, Llc Optical waveguide using overlapping optical elements
EP4421661A3 (en) * 2017-06-09 2024-11-27 Ope LLC Data security apparatus with analog component
CN111386495B (en) 2017-10-16 2022-12-09 迪吉伦斯公司 System and method for multiplying image resolution of a pixelated display
CN107609542B (en) * 2017-10-24 2021-01-26 京东方科技集团股份有限公司 Light sensing device, display device and fingerprint identification method
US10515253B2 (en) 2017-12-27 2019-12-24 Visera Technologies Company Limited Optical fingerprint sensor
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
WO2019135837A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Systems and methods for manufacturing waveguide cells
CN111566571B (en) 2018-01-08 2022-05-13 迪吉伦斯公司 Systems and methods for high-throughput recording of holographic gratings in waveguide cells
EP3765897B1 (en) 2018-03-16 2024-01-17 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
CN108520240A (en) * 2018-04-11 2018-09-11 京东方科技集团股份有限公司 Fingerprint recognition device and display device
US11327330B2 (en) * 2018-06-04 2022-05-10 The Regents Of The University Of Colorado, A Body Corporate 3D diffractive optics
CN108885697B (en) * 2018-06-15 2021-11-05 深圳市汇顶科技股份有限公司 Under-screen biometric identification devices and electronic equipment
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11914148B2 (en) 2018-09-07 2024-02-27 Adeia Semiconductor Inc. Stacked optical waveguides
US10725291B2 (en) * 2018-10-15 2020-07-28 Facebook Technologies, Llc Waveguide including volume Bragg gratings
US11233189B2 (en) 2018-12-11 2022-01-25 Facebook Technologies, Llc Nanovoided tunable birefringence
CN109491169B (en) * 2019-01-02 2021-05-14 京东方科技集团股份有限公司 OLED display device and working method thereof
US11333895B1 (en) 2019-01-11 2022-05-17 Facebook Technologies, Llc Systems and methods for structured light projector operational safety
EP3924759A4 (en) 2019-02-15 2022-12-28 Digilens Inc. METHODS AND APPARATUS FOR MAKING A HOLOGRAPHIC WAVEGUIDE DISPLAY WITH INTEGRATED GRIDINGS
WO2020186113A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic waveguide backlight and related methods of manufacturing
CN110008869B (en) * 2019-03-25 2021-04-30 厦门天马微电子有限公司 Display panel and display device
DE102019204875B3 (en) 2019-04-05 2020-06-18 Audi Ag Flatbed scanner
TWI752511B (en) * 2019-05-31 2022-01-11 台灣積體電路製造股份有限公司 Sensing apparatus, electronic device and method for forming a sensing apparatus
EP4004646A4 (en) 2019-07-29 2023-09-06 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11991900B2 (en) * 2019-09-02 2024-05-21 Benq Materials Corporation Organic light emitting diode display
US11076491B2 (en) 2019-10-16 2021-07-27 Compass Technology Company Limited Integrated electro-optical flexible circuit board
US11460701B2 (en) 2019-10-25 2022-10-04 Meta Platforms Technologies LLC Display waveguide with a high-index portion
US11514724B2 (en) * 2020-07-28 2022-11-29 Electronics And Telecommunications Research Institute Biometric device and biometric system including the same
WO2022071861A1 (en) * 2020-10-01 2022-04-07 Fingerprint Cards Anacatum Ip Ab A biometric imaging arrangement for infrared imaging comprising a waveguide formed on an image sensor
US12222499B2 (en) 2020-12-21 2025-02-11 Digilens Inc. Eye glow suppression in waveguide based displays
JP2024508926A (en) 2021-03-05 2024-02-28 ディジレンズ インコーポレイテッド Vacuum periodic structure and manufacturing method
US12250099B2 (en) * 2021-09-08 2025-03-11 PassiveLogic, Inc. External activation of quiescent device
WO2023041146A1 (en) * 2021-09-14 2023-03-23 SMART Photonics Holding B.V. Electro-optical modulator

Citations (616)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2141884A (en) 1936-11-12 1938-12-27 Zeiss Carl Fa Photographic objective
US3620601A (en) 1969-10-24 1971-11-16 Leonard Cyril Waghorn Head-up display apparatus
US3851303A (en) 1972-11-17 1974-11-26 Sundstrand Data Control Head up display and pitch generator
US3885095A (en) 1973-04-30 1975-05-20 Hughes Aircraft Co Combined head-up multisensor display
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
US4082432A (en) 1975-01-09 1978-04-04 Sundstrand Data Control, Inc. Head-up visual display system using on-axis optics with image window at the focal plane of the collimating mirror
US4099841A (en) 1976-06-30 1978-07-11 Elliott Brothers (London) Limited Head up displays using optical combiner with three or more partially reflective films
US4178074A (en) 1977-03-28 1979-12-11 Elliott Brothers (London) Limited Head-up displays
US4218111A (en) 1978-07-10 1980-08-19 Hughes Aircraft Company Holographic head-up displays
US4232943A (en) 1975-09-13 1980-11-11 Pilkington P. E. Limited Modified Petzval lens
US4309070A (en) 1979-01-19 1982-01-05 Smiths Industries Limited Display apparatus
GB2115178A (en) 1978-12-21 1983-09-01 Redifon Simulation Ltd Projection screen for display apparatus
US4647967A (en) 1986-01-28 1987-03-03 Sundstrand Data Control, Inc. Head-up display independent test site
US4714320A (en) 1980-08-21 1987-12-22 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Display systems
US4743083A (en) 1985-12-30 1988-05-10 Schimpe Robert M Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices
US4749256A (en) 1987-02-13 1988-06-07 Gec Avionics, Inc. Mounting apparatus for head-up display
US4775218A (en) 1987-04-17 1988-10-04 Flight Dynamics, Inc. Combiner alignment detector for head up display system
US4799765A (en) 1986-03-31 1989-01-24 Hughes Aircraft Company Integrated head-up and panel display unit
US4854688A (en) 1988-04-14 1989-08-08 Honeywell Inc. Optical arrangement
US4928301A (en) 1988-12-30 1990-05-22 Bell Communications Research, Inc. Teleconferencing terminal with camera behind display screen
US4946245A (en) 1987-10-01 1990-08-07 British Telecommunications Public Limited Company Optical filters
US5007711A (en) 1988-11-30 1991-04-16 Flight Dynamics, Inc. Compact arrangement for head-up display components
US5035734A (en) 1989-04-13 1991-07-30 Oy Nokia Ab Method of producing optical waveguides
US5076664A (en) 1989-05-23 1991-12-31 Thomson-Csf Optical device enabling the introduction of a collimated image in an observer's field of vision
US5079416A (en) 1987-10-27 1992-01-07 Night Vision General Partnership Compact see-through night vision goggles
US5109465A (en) 1990-01-16 1992-04-28 Summit Technology, Inc. Beam homogenizer
US5117285A (en) 1991-01-15 1992-05-26 Bell Communications Research Eye contact apparatus for video conferencing
US5124821A (en) 1987-03-31 1992-06-23 Thomson Csf Large-field holographic binocular helmet visor
US5151958A (en) 1990-08-23 1992-09-29 Oy Nokia Ab Adaptor device for coupling together optical waveguides produced by k-na ion exchange with optical waveguides produced by ag-na ion exchange
US5153751A (en) 1990-04-27 1992-10-06 Central Glass Company, Limited Holographic display element
US5159445A (en) 1990-12-31 1992-10-27 At&T Bell Laboratories Teleconferencing video display system for improving eye contact
US5160523A (en) 1990-07-10 1992-11-03 Oy Nokia Ab Method of producing optical waveguides by an ion exchange technique on a glass substrate
FR2677463A1 (en) 1991-06-04 1992-12-11 Thomson Csf Collimated display having wide horizontal and vertical fields, in particular for simulators
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
US5187597A (en) 1990-06-29 1993-02-16 Fujitsu Limited Display unit
US5210624A (en) 1989-09-19 1993-05-11 Fujitsu Limited Heads-up display
US5218360A (en) 1991-05-23 1993-06-08 Trw Inc. Millimeter-wave aircraft landing and taxing system
US5243413A (en) 1992-09-02 1993-09-07 At&T Bell Laboratories Color parallax-free camera and display
US5289315A (en) 1991-05-29 1994-02-22 Central Glass Company, Limited Head-up display system including a uniformly reflecting layer and a selectively reflecting layer
US5303085A (en) 1992-02-07 1994-04-12 Rallison Richard D Optically corrected helmet mounted display
US5317405A (en) 1991-03-08 1994-05-31 Nippon Telegraph And Telephone Corporation Display and image capture apparatus which enables eye contact
US5341230A (en) 1992-12-22 1994-08-23 Hughes Aircraft Company Waveguide holographic telltale display
US5351151A (en) 1993-02-01 1994-09-27 Levy George S Optical filter using microlens arrays
US5359362A (en) 1993-03-30 1994-10-25 Nec Usa, Inc. Videoconference system using a virtual camera image
US5363220A (en) 1988-06-03 1994-11-08 Canon Kabushiki Kaisha Diffraction device
US5369511A (en) 1989-08-21 1994-11-29 Amos; Carl R. Methods of and apparatus for manipulating electromagnetic phenomenon
US5400069A (en) 1993-06-16 1995-03-21 Bell Communications Research, Inc. Eye contact video-conferencing system and screen
US5408346A (en) 1993-10-20 1995-04-18 Kaiser Electro-Optics, Inc. Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector
US5418584A (en) 1992-12-31 1995-05-23 Honeywell Inc. Retroreflective array virtual image projection screen
US5438357A (en) 1993-11-23 1995-08-01 Mcnelley; Steve H. Image manipulating teleconferencing system
US5471326A (en) 1993-04-30 1995-11-28 Northrop Grumman Corporation Holographic laser scanner and rangefinder
US5473222A (en) 1994-07-05 1995-12-05 Delco Electronics Corporation Active matrix vacuum fluorescent display with microprocessor integration
US5496621A (en) 1993-04-16 1996-03-05 Central Glass Company, Limited Glass pane with reflectance reducing coating and combiner of head-up display system
US5500671A (en) 1994-10-25 1996-03-19 At&T Corp. Video conference system and method of providing parallax correction and a sense of presence
US5510913A (en) 1992-07-23 1996-04-23 Central Glass Company, Limited Head-up display system where polarized light from a display impinges on a glass plate containing twisted nematic liquid crystal at the plate's Brewsters angle
US5524272A (en) 1993-12-22 1996-06-04 Gte Airfone Incorporated Method and apparatus for distributing program material
US5532736A (en) 1992-07-31 1996-07-02 Nippon Telegraph And Telephone Corporation Display and image capture apparatus
US5537232A (en) 1993-10-05 1996-07-16 In Focus Systems, Inc. Reflection hologram multiple-color filter array formed by sequential exposure to a light source
US5572248A (en) 1994-09-19 1996-11-05 Teleport Corporation Teleconferencing method and system for providing face-to-face, non-animated teleconference environment
US5579026A (en) 1993-05-14 1996-11-26 Olympus Optical Co., Ltd. Image display apparatus of head mounted type
US5583795A (en) 1995-03-17 1996-12-10 The United States Of America As Represented By The Secretary Of The Army Apparatus for measuring eye gaze and fixation duration, and method therefor
US5604611A (en) 1991-10-09 1997-02-18 Nippondenso Co., Ltd. Hologram
US5606433A (en) 1994-08-31 1997-02-25 Hughes Electronics Lamination of multilayer photopolymer holograms
US5612734A (en) 1995-11-13 1997-03-18 Bell Communications Research, Inc. Eye contact apparatus employing a directionally transmissive layer for video conferencing
US5612733A (en) 1994-07-18 1997-03-18 C-Phone Corporation Optics orienting arrangement for videoconferencing system
US5619254A (en) 1995-04-11 1997-04-08 Mcnelley; Steve H. Compact teleconferencing eye contact terminal
US5621529A (en) 1995-04-05 1997-04-15 Intelligent Automation Systems, Inc. Apparatus and method for projecting laser pattern with reduced speckle noise
US5625495A (en) 1994-12-07 1997-04-29 U.S. Precision Lens Inc. Telecentric lens systems for forming an image of an object composed of pixels
US5629259A (en) 1986-04-11 1997-05-13 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
US5631107A (en) 1994-02-18 1997-05-20 Nippondenso Co., Ltd. Method for producing optical member
US5633100A (en) 1991-11-27 1997-05-27 E. I. Du Pont De Nemours And Company Holographic imaging using filters
US5646785A (en) 1993-11-04 1997-07-08 Elbit Ltd. Helmet with wind resistant visor
US5648857A (en) 1994-02-18 1997-07-15 Nippondenso Co., Ltd. Manufacturing method for hologram which can prevent the formation of ghant holograms due to noise light
US5661577A (en) 1990-04-06 1997-08-26 University Of Southern California Incoherent/coherent double angularly multiplexed volume holographic optical elements
US5661603A (en) 1994-09-05 1997-08-26 Olympus Optical Co., Ltd. Image display apparatus including a first and second prism array
US5665494A (en) 1991-04-17 1997-09-09 Nippon Paint Company, Ltd. Photosensitive composition for volume hologram recording
US5668907A (en) 1996-01-11 1997-09-16 Associated Universities, Inc. Thin optical display panel
US5668614A (en) 1995-05-01 1997-09-16 Kent State University Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation
US5677797A (en) 1994-02-04 1997-10-14 U.S. Precision Lens Inc. Method for correcting field curvature
US5680231A (en) 1995-06-06 1997-10-21 Hughes Aircraft Company Holographic lenses with wide angular and spectral bandwidths for use in a color display device
US5682255A (en) 1993-02-26 1997-10-28 Yeda Research & Development Co. Ltd. Holographic optical devices for the transmission of optical signals of a plurality of channels
US5686975A (en) 1993-10-18 1997-11-11 Stereographics Corporation Polarel panel for stereoscopic displays
US5686931A (en) 1994-11-14 1997-11-11 Rolic Ag Device for displaying colors produced by controllable cholesteric color filters
US5691795A (en) 1991-05-02 1997-11-25 Kent State University Polymer stabilized liquid crystalline light modulating device and material
US5694230A (en) 1995-06-07 1997-12-02 Digital Optics Corp. Diffractive optical elements as combiners
US5695682A (en) 1991-05-02 1997-12-09 Kent State University Liquid crystalline light modulating device and material
US5701132A (en) 1996-03-29 1997-12-23 University Of Washington Virtual retinal display with expanded exit pupil
US5706108A (en) 1995-07-20 1998-01-06 Nippondenso Co., Ltd. Hologram display apparatus including a curved surface of constant curvature
US5706136A (en) 1995-02-28 1998-01-06 Canon Kabushiki Kaisha Optical system, and image observing apparatus and image pickup apparatus using it
US5707925A (en) 1986-04-11 1998-01-13 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
US5710645A (en) 1993-01-29 1998-01-20 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
EP0822441A2 (en) 1996-08-01 1998-02-04 Sharp Kabushiki Kaisha Optical device and directional display
US5724463A (en) * 1994-09-09 1998-03-03 Deacon Research Projection display with electrically controlled waveguide-routing
US5724189A (en) 1995-12-15 1998-03-03 Mcdonnell Douglas Corporation Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby
US5727098A (en) 1994-09-07 1998-03-10 Jacobson; Joseph M. Oscillating fiber optic display and imager
US5726782A (en) 1991-10-09 1998-03-10 Nippondenso Co., Ltd. Hologram and method of fabricating
US5729242A (en) 1996-05-08 1998-03-17 Hughes Electronics Dual PDLC-projection head-up display
US5731853A (en) 1995-02-24 1998-03-24 Matsushita Electric Industrial Co., Ltd. Display device
US5731060A (en) 1994-03-31 1998-03-24 Central Glass Company, Limited Holographic laminate
US5742262A (en) 1993-06-23 1998-04-21 Olympus Optical Co., Ltd. Image display apparatus
US5745301A (en) 1994-12-19 1998-04-28 Benopcon, Inc. Variable power lens systems for producing small images
US5745266A (en) 1996-10-02 1998-04-28 Raytheon Company Quarter-wave film for brightness enhancement of holographic thin taillamp
US5748272A (en) 1993-02-22 1998-05-05 Nippon Telegraph And Telephone Corporation Method for making an optical device using a laser beam interference pattern
US5748277A (en) 1995-02-17 1998-05-05 Kent State University Dynamic drive method and apparatus for a bistable liquid crystal display
US5757546A (en) 1993-12-03 1998-05-26 Stereographics Corporation Electronic stereoscopic viewer
US5760931A (en) 1992-12-14 1998-06-02 Nippondenso Co., Ltd. Image display unit
US5764414A (en) 1991-08-19 1998-06-09 Hughes Aircraft Company Biocular display system using binary optics
US5790314A (en) 1997-01-31 1998-08-04 Jds Fitel Inc. Grin lensed optical device
US5790288A (en) 1994-04-15 1998-08-04 Nokia Telecommunications Oy Transport network with high transmission capacity for telecommunications
US5798641A (en) 1997-03-17 1998-08-25 Quantum Design, Inc. Torque magnetometer utilizing integrated piezoresistive levers
US5808804A (en) 1995-09-21 1998-09-15 U.S. Precision Lens Inc. Projection television lens system
US5812608A (en) 1995-05-05 1998-09-22 Nokia Technology Gmbh Method and circuit arrangement for processing received signal
US5822127A (en) 1995-05-15 1998-10-13 Hughes Electronics Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
US5822089A (en) 1993-01-29 1998-10-13 Imedge Technology Inc. Grazing incidence holograms and system and method for producing the same
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US5831700A (en) 1995-05-19 1998-11-03 Kent State University Polymer stabilized four domain twisted nematic liquid crystal display
US5835661A (en) 1994-10-19 1998-11-10 Tai; Ping-Kaung Light expanding system for producing a linear or planar light beam from a point-like light source
US5841587A (en) 1996-04-29 1998-11-24 U.S. Precision Lens Inc. LCD projection lens
US5841507A (en) 1995-06-07 1998-11-24 Barnes; Elwood E. Light intensity reduction apparatus and method
US5847787A (en) 1996-08-05 1998-12-08 Motorola, Inc. Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles
US5857043A (en) 1996-08-12 1999-01-05 Corning Incorporated Variable period amplitude grating mask and method for use
US5856842A (en) 1996-08-26 1999-01-05 Kaiser Optical Systems Corporation Apparatus facilitating eye-contact video communications
US5867238A (en) 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
US5870228A (en) 1996-05-24 1999-02-09 U.S. Precision Lens Inc. Projection lenses having larger back focal length to focal length ratios
US5868951A (en) 1997-05-09 1999-02-09 University Technology Corporation Electro-optical device and method
US5875012A (en) 1997-01-31 1999-02-23 Xerox Corporation Broadband reflective display, and methods of forming the same
US5877826A (en) 1997-02-06 1999-03-02 Kent State University Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US5892599A (en) 1995-07-07 1999-04-06 Advanced Precision Technology, Inc. Miniature fingerprint sensor using a trapezoidal prism and a holographic optical element
US5892598A (en) 1994-07-15 1999-04-06 Matsushita Electric Industrial Co., Ltd. Head up display unit, liquid crystal display panel, and method of fabricating the liquid crystal display panel
US5898511A (en) 1992-09-03 1999-04-27 Nippondenso Co., Ltd. Process for making holograms and holography device
US5900989A (en) 1996-08-16 1999-05-04 U.S. Precision Lens Inc. Mini-zoom projection lenses for use with pixelized panels
US5900987A (en) 1997-02-13 1999-05-04 U.S. Precision Lens Inc Zoom projection lenses for use with pixelized panels
US5903395A (en) 1994-08-31 1999-05-11 I-O Display Systems Llc Personal visual display system
US5903396A (en) 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
US5907436A (en) 1995-09-29 1999-05-25 The Regents Of The University Of California Multilayer dielectric diffraction gratings
US5907416A (en) 1997-01-27 1999-05-25 Raytheon Company Wide FOV simulator heads-up display with selective holographic reflector combined
US5917459A (en) 1996-09-07 1999-06-29 Korea Institute Of Science And Technology Holographic head up display
US5926147A (en) 1995-08-25 1999-07-20 Nokia Telecommunications Oy Planar antenna design
US5929946A (en) 1995-05-23 1999-07-27 Colorlink, Inc. Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization
US5929960A (en) 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US5930433A (en) 1997-07-23 1999-07-27 Hewlett-Packard Company Waveguide array document scanner
US5945893A (en) 1996-03-29 1999-08-31 Nokia Moile Phones Limited Acoustic wave impedance element ladder filter having a reflector integral with a busbar
US5949302A (en) 1994-09-15 1999-09-07 Nokia Telecommunications Oy Method for tuning a summing network of a base station, and a bandpass filter
US5962147A (en) 1996-11-26 1999-10-05 General Latex And Chemical Corporation Method of bonding with a natural rubber latex and laminate produced
WO1999052002A1 (en) 1998-04-02 1999-10-14 Elop Electro-Optics Industries Ltd. Holographic optical devices
US5985422A (en) 1996-08-08 1999-11-16 Pelikan Produktions Ag Thermo-transfer color ribbon for luminescent lettering
US5991087A (en) 1993-11-12 1999-11-23 I-O Display System Llc Non-orthogonal plate in a virtual reality or heads up display
US5999314A (en) 1996-11-20 1999-12-07 Central Glass Company Limited Optical display system having a Brewster's angle regulating film
US6043585A (en) 1996-03-29 2000-03-28 Nokia Mobile Phones Limited Acoustic wave filter
US6042947A (en) 1995-12-25 2000-03-28 Central Glass Company, Limited Laminate including optically functioning film
WO2000023832A1 (en) 1998-10-16 2000-04-27 Digilens Inc. Holographic display system
WO2000028369A2 (en) 1998-11-12 2000-05-18 Digilens, Inc. Head mounted apparatus for viewing an image
US6075626A (en) 1997-06-25 2000-06-13 Denso Corporation Hologram
US6078427A (en) 1998-12-01 2000-06-20 Kaiser Electro-Optics, Inc. Smooth transition device for area of interest head-mounted display
US6107943A (en) 1999-04-16 2000-08-22 Rockwell Collins, Inc. Display symbology indicating aircraft ground motion deceleration
US6118908A (en) * 1994-09-09 2000-09-12 Gemfire Corporation Integrated optical device with phosphor in substrate pit
US6121899A (en) 1999-04-16 2000-09-19 Rockwell Collins, Inc. Impending aircraft tail strike warning display symbology
JP2000261706A (en) 1999-03-10 2000-09-22 Brother Ind Ltd Head mounted camera
US6127066A (en) 1992-11-27 2000-10-03 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US6137630A (en) 1998-07-13 2000-10-24 Industrial Technology Research Institute Thin-film multilayer systems for use in a head-up display
US6167169A (en) * 1994-09-09 2000-12-26 Gemfire Corporation Scanning method and architecture for display
US6176837B1 (en) 1998-04-17 2001-01-23 Massachusetts Institute Of Technology Motion tracking system
US6185016B1 (en) 1999-01-19 2001-02-06 Digilens, Inc. System for generating an image
US6195206B1 (en) 1998-01-13 2001-02-27 Elbit Systems Ltd. Optical system for day and night use
US6222297B1 (en) 1999-09-24 2001-04-24 Litton Systems, Inc. Pressed V-groove pancake slip ring
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6222675B1 (en) 1998-12-01 2001-04-24 Kaiser Electro-Optics, Inc. Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views
US6249386B1 (en) 1998-07-28 2001-06-19 Elbit Systems Ltd. Non-adjustable helmet mounted optical systems
US6259423B1 (en) 1997-08-26 2001-07-10 Kabushiki Kaisha Toyoto Chuo Kenkyusho Display device using organic electroluminescent elements
US6259559B1 (en) 1995-03-28 2001-07-10 Central Glass Company, Limited Glass arrangement including an outside glass plate, a polarization direction changing film and an adhesive layer therebetween, and an inside glass layer
US6285813B1 (en) 1997-10-03 2001-09-04 Georgia Tech Research Corporation Diffractive grating coupler and method
US20010024177A1 (en) 1999-12-07 2001-09-27 Popovich Milan M. Holographic display system
US6317083B1 (en) 1998-05-29 2001-11-13 Nokia Mobile Phones Limited Antenna having a feed and a shorting post connected between reference plane and planar conductor interacting to form a transmission line
US6321069B1 (en) 1997-04-30 2001-11-20 Nokia Telecommunications Oy Arrangement for reducing intermodulation distortion of radio frequency signals
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US6327089B1 (en) 1998-09-30 2001-12-04 Central Glass Company, Limited Laminated transparent structure for reflective display
US6333819B1 (en) 1999-05-26 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Display for head mounting
US20020012064A1 (en) 2000-03-17 2002-01-31 Hiroshi Yamaguchi Photographing device
US20020021461A1 (en) 1999-05-10 2002-02-21 Asahi Glass Company, Limited Holographic display device and method for producing a transmission diffusion hologram suitable for it
US6351333B2 (en) 1997-09-16 2002-02-26 Canon Kabushiki Kaisha Optical element and optical system having the same
US6356674B1 (en) 1994-01-21 2002-03-12 Sharp Kabushiki Kaisha Electrically controllable grating, and optical elements having an electrically controllable grating
US6356172B1 (en) 1999-12-29 2002-03-12 Nokia Networks Oy Resonator structure embedded in mechanical structure
US6359730B2 (en) 1998-10-21 2002-03-19 Nokia Network Oy Amplification of an optical WDM signal
US6359737B1 (en) 2000-07-28 2002-03-19 Generals Motors Corporation Combined head-up display
US6366378B1 (en) 1997-05-26 2002-04-02 Nokia Networks Oy Optical multiplexing and demultiplexing
US6392812B1 (en) 1999-09-29 2002-05-21 Bae Systems Electronics Limited Head up displays
US20020127497A1 (en) 1998-09-10 2002-09-12 Brown Daniel J. W. Large diffraction grating for gas discharge laser
US20020131175A1 (en) 2001-03-14 2002-09-19 Fuji Photo Optical Co., Ltd. Diffraction type optical pickup lens and optical pickup apparatus using the same
US6470132B1 (en) 2000-09-05 2002-10-22 Nokia Mobile Phones Ltd. Optical hinge apparatus
US6473209B1 (en) 1999-08-04 2002-10-29 Digilens, Inc. Apparatus for producing a three-dimensional image
US6486997B1 (en) 1997-10-28 2002-11-26 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter
US6504518B1 (en) 1996-10-09 2003-01-07 Shimadzu Corporation Head-up display
US20030030912A1 (en) 2000-10-20 2003-02-13 Gleckman Philip Landon Compact wide field of view imaging system
US6524771B2 (en) 1992-06-30 2003-02-25 Nippon Sheet Glass Co., Ltd. Optical recording film and process for production thereof
US20030039442A1 (en) 2001-08-24 2003-02-27 Aaron Bond Grating dispersion compensator and method of manufacture
US6534977B1 (en) * 1998-10-21 2003-03-18 Paul Duncan Methods and apparatus for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
US20030063884A1 (en) * 2001-01-04 2003-04-03 Smith Duane D. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
US6552789B1 (en) 2000-11-22 2003-04-22 Rockwell Collins, Inc. Alignment detector
US6550949B1 (en) 1996-06-13 2003-04-22 Gentex Corporation Systems and components for enhancing rear vision from a vehicle
US6557413B2 (en) 2000-10-02 2003-05-06 Nokia Mobile Phones Ltd. Micromechanical structure
US6567014B1 (en) 1998-11-05 2003-05-20 Rockwell Collins, Inc. Aircraft head up display system
US6583873B1 (en) 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
US6587619B1 (en) 1998-08-04 2003-07-01 Kabushiki Kaisha Toshiba Optical functional devices their manufacturing method and optical communication system
US6598987B1 (en) 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
US20030149346A1 (en) 2000-03-03 2003-08-07 Arnone Donald Dominic Imaging apparatus and method
US6608720B1 (en) 1997-06-02 2003-08-19 Robin John Freeman Optical instrument and optical element thereof
US6611253B1 (en) 2000-09-19 2003-08-26 Harel Cohen Virtual input environment
US20030175004A1 (en) 2002-02-19 2003-09-18 Garito Anthony F. Optical polymer nanocomposites
EP1347641A1 (en) 2002-03-19 2003-09-24 Siemens Aktiengesellschaft Free projection display device
US6646810B2 (en) 2001-09-04 2003-11-11 Delphi Technologies, Inc. Display backlighting apparatus
US6661578B2 (en) 2001-03-02 2003-12-09 Innovative Solutions & Support, Inc. Image display generator for a head-up display
US20030228019A1 (en) 2002-06-11 2003-12-11 Elbit Systems Ltd. Method and system for reducing noise
US6674578B2 (en) 2001-05-31 2004-01-06 Yazaki Corporation Display device for motor vehicle
US20040004989A1 (en) * 2000-10-24 2004-01-08 Takashi Shigeoka Temperature measuring method, heat treating device and method, computer program, and radiation thermometer
US6686815B1 (en) 1999-08-11 2004-02-03 Nokia Corporation Microwave filter
US6690516B2 (en) 2000-01-31 2004-02-10 Fujitsu Limited Head mount type display device
US6741189B1 (en) 1999-10-06 2004-05-25 Microsoft Corporation Keypad having optical waveguides
US6744478B1 (en) 1998-12-28 2004-06-01 Central Glass Company, Limited Heads-up display system with optical rotation layers
JP2004157245A (en) 2002-11-05 2004-06-03 Nippon Telegr & Teleph Corp <Ntt> Hologram drawing method and hologram
US6748342B1 (en) 1999-04-20 2004-06-08 Nokia Corporation Method and monitoring device for monitoring the quality of data transmission over analog lines
US6750995B2 (en) 2001-07-09 2004-06-15 Dickson Leroy David Enhanced volume phase grating with high dispersion, high diffraction efficiency and low polarization sensitivity
US6750941B2 (en) 1999-09-27 2004-06-15 Nippon Mitsubishi Oil Corporation Complex diffraction device
US6757105B2 (en) 2002-04-25 2004-06-29 Planop Planar Optics Ltd. Optical device having a wide field-of-view for multicolor images
US20040130797A1 (en) 2001-04-07 2004-07-08 Leigh Travis Adrian Robert Far-field display
US6771403B1 (en) 2003-01-22 2004-08-03 Minolta Co., Ltd. Image display apparatus
US20040156008A1 (en) 2002-01-10 2004-08-12 Yurii Reznikov Material for liquid crystal cell
US6776339B2 (en) 2002-09-27 2004-08-17 Nokia Corporation Wireless communication device providing a contactless interface for a smart card reader
US6781701B1 (en) 2001-04-10 2004-08-24 Intel Corporation Method and apparatus for measuring optical phase and amplitude
US20040174348A1 (en) 2003-02-19 2004-09-09 Yair David Chromatic planar optic display system
US20040188617A1 (en) 2002-11-08 2004-09-30 Devitt John W. Methods and apparatuses for selectively limiting undesired radiation
US20040208466A1 (en) 2000-03-16 2004-10-21 Mossberg Thomas W. Multimode planar waveguide spectral filter
US20040225025A1 (en) 2001-08-03 2004-11-11 Sullivan Michael G. Curable compositions for display devices
WO2004102226A2 (en) 2003-05-09 2004-11-25 Sbg Labs, Inc. Switchable viewfinder display
US6836369B2 (en) 2002-03-08 2004-12-28 Denso Corporation Head-up display
US6844980B2 (en) 2001-04-23 2005-01-18 Reveo, Inc. Image display system and electrically actuatable image combiner therefor
US6847274B2 (en) 2000-06-09 2005-01-25 Nokia Corporation Multilayer coaxial structures and resonator formed therefrom
US6853491B1 (en) 2003-11-26 2005-02-08 Frank Ruhle Collimating optical member for real world simulation
US6864861B2 (en) 1997-12-31 2005-03-08 Brillian Corporation Image generator having a miniature display device
US6864927B1 (en) 1996-12-31 2005-03-08 Micron Technology, Inc. Head up display with adjustable transparency screen
US6873443B1 (en) 1999-07-09 2005-03-29 Thales Secured document, system for manufacturing same and system for reading this document
US6885483B2 (en) 1998-07-07 2005-04-26 Denso Corporation Hologram screen and a method of producing the same
US6903872B2 (en) 2001-05-03 2005-06-07 Nokia Corporation Electrically reconfigurable optical devices
US6909345B1 (en) 1999-07-09 2005-06-21 Nokia Corporation Method for creating waveguides in multilayer ceramic structures and a waveguide having a core bounded by air channels
US20050135747A1 (en) 2000-03-16 2005-06-23 Greiner Christoph M. Multiple distributed optical structures in a single optical element
US20050136260A1 (en) 2003-12-18 2005-06-23 Lintec Corporation Photochromic film material
US6922267B2 (en) 2001-03-21 2005-07-26 Minolta Co., Ltd. Image display apparatus
US6926429B2 (en) 2002-01-30 2005-08-09 Delphi Technologies, Inc. Eye tracking/HUD system
US6940361B1 (en) 2000-10-06 2005-09-06 Nokia Corporation Self-aligned transition between a transmission line and a module
US6950227B2 (en) 2001-05-03 2005-09-27 Nokia Corporation Electrically controlled variable thickness plate
US6951393B2 (en) 2002-07-31 2005-10-04 Canon Kabushiki Kaisha Projection type image display apparatus and image display system
US6952312B2 (en) 2002-12-31 2005-10-04 3M Innovative Properties Company Head-up display with polarized light source and wide-angle p-polarization reflective polarizer
US20050218377A1 (en) 2004-03-31 2005-10-06 Solaris Nanosciences, Inc. Anisotropic nanoparticles and anisotropic nanostructures and pixels, displays and inks using them
US6958662B1 (en) 2000-10-18 2005-10-25 Nokia Corporation Waveguide to stripline transition with via forming an impedance matching fence
US20050259302A9 (en) 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
US20050259944A1 (en) 2001-04-12 2005-11-24 Emilia Anderson High index-contrast fiber waveguides and applications
US6972788B1 (en) 2002-01-28 2005-12-06 Rockwell Collins Projection display for a aircraft cockpit environment
US20050269481A1 (en) 2002-08-05 2005-12-08 Elbit Systems Ltd. Vehicle mounted night vision imaging system and method
US20060013977A1 (en) 2004-07-13 2006-01-19 Duke Leslie P Polymeric ballistic material and method of making
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US7006732B2 (en) 2003-03-21 2006-02-28 Luxtera, Inc. Polarization splitting grating couplers
US7018744B2 (en) 2001-08-27 2006-03-28 Dai Nippon Printing Co, Ltd Volume type hologram recording photosensitive composition, volume type hologram recording medium using the same and method of producing volume type hologram
US7027671B2 (en) 2002-03-18 2006-04-11 Koninklijke Philips Electronics N.V. Polarized-light-emitting waveguide, illumination arrangement and display device comprising such
US7034748B2 (en) 2003-12-17 2006-04-25 Microsoft Corporation Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters
US20060093793A1 (en) 2003-06-19 2006-05-04 Nikon Corporation Optical element
US7046439B2 (en) 2003-05-22 2006-05-16 Eastman Kodak Company Optical element with nanoparticles
US7053991B2 (en) 2000-10-03 2006-05-30 Accent Optical Technologies, Inc. Differential numerical aperture methods
US20060114564A1 (en) 1996-07-12 2006-06-01 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US7058434B2 (en) 2002-12-19 2006-06-06 Nokia Corporation Mobile communication
US20060119916A1 (en) 1996-07-12 2006-06-08 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US20060119837A1 (en) 2004-10-16 2006-06-08 Raguin Daniel H Diffractive imaging system and method for the reading and analysis of skin topology
US20060126179A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US20060132914A1 (en) * 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
US7068898B2 (en) 2002-09-05 2006-06-27 Nanosys, Inc. Nanocomposites
US20060142455A1 (en) 2004-12-23 2006-06-29 Naveen Agarwal Polymer compositions, method of manufacture, and articles formed therefrom
US20060159864A1 (en) 1998-07-29 2006-07-20 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects
US20060164593A1 (en) 2005-01-21 2006-07-27 Nasser Peyghambarian Adaptive electro-active lens with variable focal length
US20060177180A1 (en) 2003-11-28 2006-08-10 Nhk Spring Co., Ltd. Multichannel array waveguide diffraction grating multiplexer/demultiplexer and method of connecting array waveguide and output waveguide
US7095562B1 (en) 2004-09-27 2006-08-22 Rockwell Collins, Inc. Advanced compact head up display
US7101048B2 (en) 2001-09-25 2006-09-05 Cambridge Flat Protection Displays Limited Flat-panel projection display
US7110184B1 (en) 2004-07-19 2006-09-19 Elbit Systems Ltd. Method and apparatus for combining an induced image with a scene image
US20060221448A1 (en) 2005-04-04 2006-10-05 Mirage Innovations Ltd. Multi-plane optical apparatus
US7126583B1 (en) 1999-12-15 2006-10-24 Automotive Technologies International, Inc. Interactive vehicle display system
US7126418B2 (en) 2002-12-18 2006-10-24 Powerwave Technologies, Inc. Delay mismatched feed forward amplifier system using penalties and floors for control
US20060279662A1 (en) 2003-03-16 2006-12-14 Explay Ltd. Projection system and method
US7151246B2 (en) 2001-07-06 2006-12-19 Palantyr Research, Llc Imaging system and methodology
KR20060132474A (en) 2005-06-17 2006-12-21 소니 가부시끼 가이샤 Optical devices and virtual display devices
US7158095B2 (en) 2003-07-17 2007-01-02 Big Buddy Performance, Inc. Visual display system for displaying virtual images onto a field of vision
JP2007011057A (en) 2005-06-30 2007-01-18 Sony Corp Optical device and virtual image display device
US20070012777A1 (en) 1998-03-24 2007-01-18 Tsikos Constantine J Planar laser illumination and imaging (PLIIM) systems with integrated despeckling mechanisms provided therein
US20070019297A1 (en) 2005-07-25 2007-01-25 Stewart Robert J Universal vehicle head display (HUD) device and method for using the same
US7181105B2 (en) 2003-03-25 2007-02-20 Fuji Photo Film Co., Ltd. Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber
US20070045596A1 (en) 2005-08-31 2007-03-01 King Eric M Photochromic article
US20070052929A1 (en) 2005-09-06 2007-03-08 Stuart Allman Light coupling system and method
US7190849B2 (en) 2004-02-03 2007-03-13 Seiko Epson Corporation Display device
US7199934B2 (en) 2004-05-06 2007-04-03 Olympus Corporation Head-mounted display apparatus
US7205964B1 (en) 1998-09-02 2007-04-17 Seiko Epson Corporation Light source and display device
US20070089625A1 (en) 2005-10-20 2007-04-26 Elbit Vision Systems Ltd. Method and system for detecting defects during the fabrication of a printing cylinder
US7212175B1 (en) 2003-09-19 2007-05-01 Rockwell Collins, Inc. Symbol position monitoring for pixelated heads-up display method and apparatus
US20070116409A1 (en) 2001-05-03 2007-05-24 Neophotonics Corporation Integrated gradient index lenses
US7230767B2 (en) 2001-01-16 2007-06-12 Ppg Industries, Inc. Image display system utilizing light emitting material
US20070133920A1 (en) 2005-12-08 2007-06-14 Lee Myung H Optical device having optical waveguide including organic bragg grating sheet
US20070133983A1 (en) 2005-12-14 2007-06-14 Matilda Traff Light-controlling element for a camera
US7242527B2 (en) 2005-03-22 2007-07-10 The Microoptical Corporation Optical system using total internal reflection images
US7248128B2 (en) 2004-02-03 2007-07-24 Nokia Corporation Reference oscillator frequency stabilization
DE102006003785A1 (en) 2006-01-25 2007-07-26 Adc Automotive Distance Control Systems Gmbh Sensor with a controllable dimming device
US20070177007A1 (en) 2006-01-27 2007-08-02 Real D Multiple mode display device
US20070182915A1 (en) 2004-10-19 2007-08-09 Asahi Glass Co., Ltd. Liquid crystal diffraction lens element and optical head device
US20070188837A1 (en) 2006-02-16 2007-08-16 Konica Minolta Holdings, Inc. Beam expanding optical element, beam expansion method, image display apparatus, and head-mounted display
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
CN200944140Y (en) 2006-09-08 2007-09-05 李伯伦 Straight waveguide display panel
US7268946B2 (en) 2003-02-10 2007-09-11 Jian Wang Universal broadband polarizer, devices incorporating same, and method of making same
US20070211164A1 (en) 2004-08-25 2007-09-13 Olsen Richard I Imager module optical focus and assembly method
US7286272B2 (en) 2002-04-25 2007-10-23 Sony Corporation Image display unit
US7285903B2 (en) 2004-07-15 2007-10-23 Honeywell International, Inc. Display with bright backlight
US7289069B2 (en) 2005-01-04 2007-10-30 Nokia Corporation Wireless device antenna
WO2007130130A2 (en) 2006-04-06 2007-11-15 Sbg Labs Inc. Method and apparatus for providing a transparent display
US7313291B2 (en) 2002-04-26 2007-12-25 Nokia Corporation Optical modulator
US20080001909A1 (en) 2006-06-30 2008-01-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of driving the same
US7319573B2 (en) 2003-06-16 2008-01-15 Hitachi Global Storage Technologies Japan, Ltd. Magnetic disk drive having a suspension mounted transmission line including read and write conductors and a lower conductor
US7320534B2 (en) 2004-07-23 2008-01-22 Murakami Corporation Display device
WO2008011066A2 (en) 2006-07-18 2008-01-24 L-1 Identity Solutions Operating Company Methods and apparatus for self check-in of items for transportation
US7323275B2 (en) 2001-02-09 2008-01-29 Dai Nippon Printing Co., Ltd Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
US7336271B2 (en) 2002-09-03 2008-02-26 Optrex Corporation Image display system
US7339742B2 (en) 2003-09-10 2008-03-04 Lumas Ltd. High brightness optical device
US7339737B2 (en) 2004-04-23 2008-03-04 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
US20080089073A1 (en) 2004-11-25 2008-04-17 Koninklijke Philips Electronics, N.V. Dynamic Liquid Crystal Gel Holograms
US7369911B1 (en) 2007-01-10 2008-05-06 International Business Machines Corporation Methods, systems, and computer program products for managing movement of work-in-process materials in an automated manufacturing environment
US7375870B2 (en) 2002-06-13 2008-05-20 Nokia Corporation Enhancement electrode configuration for electrically controlled light modulators
US20080136916A1 (en) 2005-01-26 2008-06-12 Robin Quincey Wolff Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system
US20080136923A1 (en) 2004-11-14 2008-06-12 Elbit Systems, Ltd. System And Method For Stabilizing An Image
US20080151379A1 (en) 2005-02-10 2008-06-26 Lumus Ltd. Substrate-Guide Optical Device Utilizing Polarization Beam Splitters
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
US7397606B1 (en) 2005-08-04 2008-07-08 Rockwell Collins, Inc. Meniscus head up display combiner
US7401920B1 (en) 2003-05-20 2008-07-22 Elbit Systems Ltd. Head mounted eye tracking and display system
US7404644B2 (en) 2004-05-12 2008-07-29 Sharp Kabushiki Kaisha Time-sequential colour projection
US20080186604A1 (en) 2005-02-10 2008-08-07 Lumus Ltd Substrate-Guided Optical Device Particularly for Vision Enhanced Optical Systems
US7411637B2 (en) 2002-02-15 2008-08-12 Elop Electro-Optics Industries Ltd. System and method for varying the reflectance or transmittance of light
US7410286B2 (en) 2001-08-02 2008-08-12 Microsoft Corporation Flat-panel display using tapered waveguide
US7415173B2 (en) 2006-06-13 2008-08-19 Nokia Corporation Position sensor
WO2008100545A2 (en) 2007-02-12 2008-08-21 E. I. Du Pont De Nemours And Company Production of arachidonic acid in oilseed plants
CN101263412A (en) 2005-09-14 2008-09-10 米拉茨创新有限公司 Diffractive optical device and system
US7436568B1 (en) 2004-08-17 2008-10-14 Kuykendall Jr Jacob L Head mountable video display
US7447967B2 (en) 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
US20080278812A1 (en) 2005-11-08 2008-11-13 Lumus Ltd. Polarizing Optical System
US20080285140A1 (en) 2003-09-10 2008-11-20 Lumus Ltd. Substrate-guided optical devices
US20080297807A1 (en) 2005-12-22 2008-12-04 Martin Feldman High Precision Code Plates and Geophones
US7466994B2 (en) 2004-12-31 2008-12-16 Nokia Corporation Sub-display of a mobile device
US20080309586A1 (en) 2007-06-13 2008-12-18 Anthony Vitale Viewing System for Augmented Reality Head Mounted Display
US20090017424A1 (en) 2005-05-30 2009-01-15 Elbit Systems Ltd. Combined head up display
US20090019222A1 (en) 2007-01-11 2009-01-15 International Business Machines Corporation Method and system for placement of logical data stores to minimize request response time
US7480215B2 (en) 2002-11-27 2009-01-20 Nokia Corporation Read write device for optical memory and method therefore
US7482996B2 (en) 2004-06-28 2009-01-27 Honeywell International Inc. Head-up display
US7483604B2 (en) 2002-12-16 2009-01-27 Nokia Corporation Diffractive grating element for balancing diffraction efficiency
WO2009013597A2 (en) 2007-07-26 2009-01-29 Milan Momcilo Popovich Laser illumination device
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
US20090052017A1 (en) 2005-03-15 2009-02-26 Fujifilm Corporation Light transmitting electromagnetic wave shielding film, optical filter and plasma display panel
US20090052046A1 (en) 2002-03-21 2009-02-26 Lumus Ltd. Light guide optical device
US7500104B2 (en) 2001-06-15 2009-03-03 Microsoft Corporation Networked device branding for secure interaction in trust webs on open networks
US20090067774A1 (en) 2004-07-30 2009-03-12 Robert Magnusson Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US7513668B1 (en) 2005-08-04 2009-04-07 Rockwell Collins, Inc. Illumination system for a head up display
US20090097122A1 (en) 2005-09-14 2009-04-16 Mirage Innovations Ltd Diffractive Optical Device and System
US7525448B1 (en) 2006-09-28 2009-04-28 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US7528385B2 (en) 2002-03-15 2009-05-05 Pd-Ld, Inc. Fiber optic devices having volume Bragg grating elements
US20090122413A1 (en) 2007-02-28 2009-05-14 Joe Hoffman Systems and methods for aiding situational awareness
US20090121301A1 (en) 2007-11-09 2009-05-14 Hon Hai Precision Industry Co., Ltd. Image capture module
US20090122414A1 (en) 2005-02-10 2009-05-14 Lumus Ltd. Substrate-Guided Optical Device Utilzing Thin Transparent Layer
US20090128902A1 (en) 2005-11-03 2009-05-21 Yehuda Niv Binocular Optical Relay Device
US20090136246A1 (en) 2007-11-26 2009-05-28 Kabushiki Kaisha Toshiba Image forming apparatus having paper type detection section and paper type confirmation method of the same
US7545429B2 (en) 2000-11-30 2009-06-09 Microsoft Corporation Flat-panel camera
US20090153437A1 (en) 2006-03-08 2009-06-18 Lumus Ltd. Device and method for alignment of binocular personal display
JP2009133999A (en) 2007-11-29 2009-06-18 Sony Corp Image display apparatus
US7567372B2 (en) 2003-08-29 2009-07-28 Nokia Corporation Electrical device utilizing charge recycling within a cell
US7570429B2 (en) 2005-11-10 2009-08-04 Elbit Systems Electro-Optics Elop Ltd. Head up display mechanism
US7572555B2 (en) 2004-09-30 2009-08-11 Fujifilm Corporation Hologram recording material, hologram recording method and optical recording medium
US20090213208A1 (en) 2008-02-21 2009-08-27 Otto Glatt Panoramic camera
US7589900B1 (en) 2008-03-11 2009-09-15 Microvision, Inc. Eyebox shaping through virtual vignetting
US7588863B2 (en) 2003-08-25 2009-09-15 Fujifilm Corporation Hologram recording method and hologram recording material
US7592988B2 (en) 2004-02-03 2009-09-22 Seiko Epson Corporation Display device having optical waveguides and light-emitting units
US7593575B2 (en) 2002-03-15 2009-09-22 Computer Sciences Corporation Systems and methods of capturing information using association of text representations
US7599012B2 (en) 2005-12-08 2009-10-06 Yazaki Corporation Luminous display device
US7597447B2 (en) 2004-07-14 2009-10-06 Honeywell International Inc. Color correcting contrast enhancement of displays
US7600893B2 (en) 2007-05-01 2009-10-13 Exalos Ag Display apparatus, method and light source
US7602552B1 (en) 2005-05-15 2009-10-13 Elbit Systems Electro-Optics Elop Ltd. Head-up display system
US7605719B1 (en) 2007-07-25 2009-10-20 Rockwell Collins, Inc. System and methods for displaying a partial images and non-overlapping, shared-screen partial images acquired from vision systems
US7605774B1 (en) 2004-07-02 2009-10-20 Rockwell Collins, Inc. Enhanced vision system (EVS) processing window tied to flight path
US7616270B2 (en) 2006-02-21 2009-11-10 Seiko Epson Corporation Electro-optical device, and projector and electronic apparatus including the same
US7617022B1 (en) 2004-07-01 2009-11-10 Rockwell Collins, Inc. Dual wavelength enhanced vision system optimized for visual landing light alignment
CN101589326A (en) 2006-12-28 2009-11-25 诺基亚公司 Device for expanding the exit pupil in two dimensions
US20090316246A1 (en) 2006-06-30 2009-12-24 Hoya Corporation Photochromic film, photochromic lens comprising the same, and method of manufacturing photochromic lens
US7656585B1 (en) 2008-08-19 2010-02-02 Microvision, Inc. Embedded relay lens for head-up displays or the like
US7660047B1 (en) 2008-09-03 2010-02-09 Microsoft Corporation Flat panel lens
US20100060551A1 (en) 2007-09-26 2010-03-11 Keiji Sugiyama Beam scanning-type display device, method, program and integrated circuit
US20100060990A1 (en) 2008-08-07 2010-03-11 Elbit Systems Ltd Wide field of view coverage head-up display system
US20100065726A1 (en) 2006-09-01 2010-03-18 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
CN101688977A (en) 2007-06-04 2010-03-31 诺基亚公司 A diffractive beam expander and a virtual display based on a diffractive beam expander
US20100092124A1 (en) 2004-07-30 2010-04-15 University Of Connecticut Resonant Leaky-Mode Photonic Elements and Methods for Spectral and Polarization Control
US20100096562A1 (en) 2006-12-21 2010-04-22 Koninklijke Philips Electronics N.V. Wiregrid waveguide
US7710654B2 (en) 2003-05-12 2010-05-04 Elbit Systems Ltd. Method and system for improving audiovisual communication
US20100135615A1 (en) 2002-08-28 2010-06-03 Seng-Tiong Ho Apparatus for coupling light between input and output waveguides
US20100136319A1 (en) 2008-12-03 2010-06-03 Keio University Method for forming mesoporous silica layer, its porous coating, anti-reflection coating, and optical member
US7733571B1 (en) 2007-07-24 2010-06-08 Rockwell Collins, Inc. Phosphor screen and displays systems
US7733572B1 (en) 2008-06-09 2010-06-08 Rockwell Collins, Inc. Catadioptric system, apparatus, and method for producing images on a universal, head-up display
US20100141555A1 (en) 2005-12-25 2010-06-10 Elbit Systems Ltd. Real-time image scanning and processing
WO2010067117A1 (en) 2008-12-12 2010-06-17 Bae Systems Plc Improvements in or relating to waveguides
US20100165465A1 (en) 2006-06-02 2010-07-01 Tapani Levola Color Distribution in Exit Pupil Expanders
US20100165660A1 (en) 2007-05-20 2010-07-01 Weber Michael F Backlight and display system using same
US20100171680A1 (en) 2007-06-04 2010-07-08 Lumus Ltd. Distributed head-mounted display system
US20100177388A1 (en) 2006-08-23 2010-07-15 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
WO2010078856A1 (en) 2009-01-07 2010-07-15 Magnetic Autocontrol Gmbh Apparatus for a checkpoint
US7778305B2 (en) 2005-12-22 2010-08-17 Université Jean-Monnet Mirror structure and laser device comprising such a mirror structure
US7778508B2 (en) 2004-12-06 2010-08-17 Nikon Corporation Image display optical system, image display unit, illuminating optical system, and liquid crystal display unit
EP2225592A1 (en) 2007-12-18 2010-09-08 Nokia Corporation Exit pupil expanders with wide field-of-view
US20100231693A1 (en) 2006-06-02 2010-09-16 Tapani Levola Stereoscopic Exit Pupil Expander Display
US20100232003A1 (en) 2009-03-13 2010-09-16 Transitions Optical, Inc. Vision enhancing optical articles
US20100231705A1 (en) 2007-07-18 2010-09-16 Elbit Systems Ltd. Aircraft landing assistance
US20100246993A1 (en) 2008-12-12 2010-09-30 Fei Company Method for determining distortions in a particle-optical apparatus
US20100265117A1 (en) 2007-10-24 2010-10-21 Elta Systems Ltd. System and method for imaging objects
WO2010125337A2 (en) 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
US20100277803A1 (en) 2006-12-14 2010-11-04 Nokia Corporation Display Device Having Two Operating Modes
CN101881936A (en) 2010-06-04 2010-11-10 谈顺毅 Holographical wave guide display and generation method of holographical image thereof
US20100299814A1 (en) 2009-06-01 2010-12-02 Wilcox Industries Corp. Helmet Mount for Viewing Device
US7847235B2 (en) 2005-01-20 2010-12-07 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle ranging and display
US20100315719A1 (en) 2007-12-17 2010-12-16 Pasi Saarikko Exit Pupil Expanders with Spherical and Aspheric Substrates
US7865080B2 (en) 2005-01-26 2011-01-04 Nokia Siemens Networks Gmbh & Co. Kg Methods for the optical transmission of polarization multiplex signals
US7864427B2 (en) 2005-08-29 2011-01-04 Panasonic Corporation Diffractive optical element and method for manufacturing the same, and imaging apparatus using the diffractive optical element
US20110001895A1 (en) 2009-07-06 2011-01-06 Dahl Scott R Driving mechanism for liquid crystal based optical device
US20110002143A1 (en) 2006-12-28 2011-01-06 Nokia Corporation Light guide plate and a method of manufacturing thereof
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
US20110013423A1 (en) 2007-12-03 2011-01-20 Selbrede Martin G Light injection system and method for uniform luminosity of waveguide-based displays
US20110019250A1 (en) 2009-07-22 2011-01-27 Sony Corporation Image displaying apparatus and optical Apparatus
US20110026774A1 (en) 2009-02-05 2011-02-03 Elbit Systems Ltd. Controlling an imaging apparatus over a delayed communication link
WO2011012825A1 (en) 2009-07-31 2011-02-03 Horiba Jobin Yvon Sas Planar optical system for wide field-of-view polychromatic imaging
US7887186B2 (en) 2004-09-29 2011-02-15 Brother Kogyo Kabushiki Kaisha Retinal scanning display with exit pupil expanded by optics offset from intermediate image plane
US20110038024A1 (en) 2009-08-13 2011-02-17 Darwin Optical Co., Ltd. Photochromic optical article
US20110050548A1 (en) 2008-03-04 2011-03-03 Elbit Systems Electro Optics Elop Ltd. Head up display utilizing an lcd and a diffuser
US7903921B2 (en) 2005-07-07 2011-03-08 Nokia Corporation Manufacturing of optical waveguides
US7920787B2 (en) 2002-04-12 2011-04-05 Nokia Siemens Networks Gmbh & Co. Kg Method for detecting a check-back signal in an optical transmission system
WO2011042711A2 (en) 2009-10-09 2011-04-14 Milan Momcilo Popovich Compact edge illuminated diffractive display
US7928862B1 (en) 2006-01-30 2011-04-19 Rockwell Collins, Inc. Display of hover and touchdown symbology on head-up display
US20110096401A1 (en) 2006-06-02 2011-04-28 Tapani Levola Split Exit Pupil Expander
US7944428B2 (en) 2003-06-06 2011-05-17 Microsoft Corporation Scanning backlight for flat-panel display
US7961117B1 (en) 2008-09-16 2011-06-14 Rockwell Collins, Inc. System, module, and method for creating a variable FOV image presented on a HUD combiner unit
US7969644B2 (en) 2008-09-02 2011-06-28 Elbit Systems Of America, Llc System and method for despeckling an image illuminated by a coherent light source
US7970246B2 (en) 2009-08-21 2011-06-28 Microsoft Corporation Efficient collimation of light with optical wedge
US20110157707A1 (en) 2009-12-29 2011-06-30 Elbit Systems Of America, Llc System and Method for Adjusting a Projected Image
US20110164221A1 (en) 2010-01-04 2011-07-07 Elbit Systems Of America, Llc System and Method for Efficiently Delivering Rays from a Light Source to Create an Image
US7976208B2 (en) 2005-02-05 2011-07-12 Microsoft Corporation Flat panel lens
US7984884B1 (en) 2008-08-08 2011-07-26 B.I.G. Ideas, LLC Artificial christmas tree stand
US7999982B2 (en) 2007-05-31 2011-08-16 Konica Minolta Holdings, Inc. Hologram optical element, fabrication method thereof, and image display apparatus
US8000491B2 (en) 2006-10-24 2011-08-16 Nokia Corporation Transducer device and assembly
US20110211239A1 (en) 2004-03-29 2011-09-01 Sony Corporation Optical device, and virtual image display device
US8022942B2 (en) 2007-01-25 2011-09-20 Microsoft Corporation Dynamic projected user interface
US20110238399A1 (en) 2008-11-19 2011-09-29 Elbit Systems Ltd. System and a method for mapping a magnetic field
US20110235365A1 (en) 2007-12-03 2011-09-29 Mccollum Timothy A Light injection system and method for uniform luminosity of waveguide-based displays
US20110242349A1 (en) 2010-03-31 2011-10-06 Sony Corporation Solid-state image capturing device and electronic device
EP2381290A1 (en) 2010-04-23 2011-10-26 BAE Systems PLC Optical waveguide and display device
US20110299075A1 (en) 2009-10-01 2011-12-08 Meade Jeffrey T Optical slicer for improving the spectral resolution of a dispersive spectrograph
US8082222B2 (en) 2009-01-14 2011-12-20 Bmc Software, Inc. CMDB federation method and management system
US8079713B2 (en) 2005-09-12 2011-12-20 Elbit Systems Ltd. Near eye display system
US20110310356A1 (en) 2009-02-27 2011-12-22 Epicrystals Oy Image projector and an illuminating unit suitable for use in an image projector
US8086030B2 (en) 2005-07-19 2011-12-27 Elbit Systems Electro-Optics Elop Ltd. Method and system for visually presenting a high dynamic range image
US8089568B1 (en) 2009-10-02 2012-01-03 Rockwell Collins, Inc. Method of and system for providing a head up display (HUD)
CN102314092A (en) 2010-06-09 2012-01-11 Asml荷兰有限公司 Position sensor and lithographic apparatus
US20120007979A1 (en) 2008-04-16 2012-01-12 Elbit Systems Ltd. Advanced Technology Center Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions
US8132976B2 (en) 2007-12-05 2012-03-13 Microsoft Corporation Reduced impact keyboard with cushioned keys
US8137981B2 (en) 2010-02-02 2012-03-20 Nokia Corporation Apparatus and associated methods
US8136690B2 (en) 2009-04-14 2012-03-20 Microsoft Corporation Sensing the amount of liquid in a vessel
US8149086B2 (en) 2004-06-29 2012-04-03 Elbit Systems Ltd. Security systems and methods relating to travelling vehicles
US8152315B2 (en) 2006-10-02 2012-04-10 Microsoft Corporation Flat-panel optical projection apparatus with reduced distortion
US8160409B2 (en) 2006-09-29 2012-04-17 Microsoft Corporation Flat-panel optical projection apparatus
US20120099203A1 (en) 2009-03-05 2012-04-26 Elbit Systems Electro-Optics Elop Ltd. Optical device and method for correcting chromatic aberrations
US20120105634A1 (en) 2009-07-08 2012-05-03 Elbit Systems Ltd. Automatic video surveillance system and method
US8186874B2 (en) 2007-08-08 2012-05-29 Semi-Conductor Devices—An Elbit Systems-Rafael Partnership Thermally based system and method for detecting counterfeit drugs
US8188925B2 (en) 2008-11-07 2012-05-29 Microsoft Corporation Bent monopole antenna with shared segments
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
US8199803B2 (en) 2006-07-14 2012-06-12 Nokia Siemens Neworks GmbH & Co. KG Receiver structure and method for the demodulation of a quadrature-modulated signal
US20120162764A1 (en) 2010-12-24 2012-06-28 Sony Corporation Head-mounted display
US20120176665A1 (en) 2011-01-11 2012-07-12 Hoon Song 3-dimensional image display apparatus
US8253914B2 (en) 2010-06-23 2012-08-28 Microsoft Corporation Liquid crystal display (LCD)
US20120218481A1 (en) 2009-10-27 2012-08-30 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display
US20120224062A1 (en) 2009-08-07 2012-09-06 Light Blue Optics Ltd Head up displays
US8264498B1 (en) 2008-04-01 2012-09-11 Rockwell Collins, Inc. System, apparatus, and method for presenting a monochrome image of terrain on a head-up display unit
US20120235900A1 (en) 2010-02-28 2012-09-20 Osterhout Group, Inc. See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US20120235884A1 (en) 2010-02-28 2012-09-20 Osterhout Group, Inc. Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US20120242661A1 (en) 2008-09-24 2012-09-27 Kabushiki Kaisha Toshiba Stereoscopic image display apparatus
US8295710B2 (en) 2008-07-04 2012-10-23 Nokia Siemens Networks Oy Optical I-Q-modulator
US8301031B2 (en) 2006-06-13 2012-10-30 Nokia Siemens Networks Gmbh & Co. Kg Method and arrangement for switching a Raman pump laser on and/or off
US8306423B2 (en) 2008-12-08 2012-11-06 Nokia Siemens Networks Oy Method and optical network component for signal processing in an optical network and communication system
US8305577B2 (en) 2010-11-04 2012-11-06 Nokia Corporation Method and apparatus for spectrometry
US20120280956A1 (en) 2007-11-21 2012-11-08 Kakuya Yamamoto Display apparatus
US8314819B2 (en) 2007-06-14 2012-11-20 Nokia Corporation Displays with integrated backlighting
US20120294037A1 (en) 2008-01-30 2012-11-22 Qualcomm Mems Technologies, Inc. Illumination device
US8321810B2 (en) 2009-04-30 2012-11-27 Microsoft Corporation Configuring an adaptive input device with selected graphical images
US8354806B2 (en) 2009-08-21 2013-01-15 Microsoft Corporation Scanning collimation of light via flat panel lamp
US20130016362A1 (en) 2011-07-13 2013-01-17 Faro Technologies, Inc. Device and method using a spatial light modulator to find 3d coordinates of an object
US8384730B1 (en) 2008-09-26 2013-02-26 Rockwell Collins, Inc. System, module, and method for generating HUD image data from synthetic vision system image data
US8384694B2 (en) 2009-11-17 2013-02-26 Microsoft Corporation Infrared vision with liquid crystal display device
WO2013033274A1 (en) 2011-08-29 2013-03-07 Vuzix Corporation Controllable waveguide for near-eye display applications
US20130093893A1 (en) 2004-04-15 2013-04-18 Donnelly Corporation Imaging system for vehicle
US8427439B2 (en) 2009-04-13 2013-04-23 Microsoft Corporation Avoiding optical effects of touch on liquid crystal display
US20130101253A1 (en) 2011-10-19 2013-04-25 Milan Momcilo Popovich Compact wearable display
US8432372B2 (en) 2007-11-30 2013-04-30 Microsoft Corporation User input using proximity sensing
US8432363B2 (en) 2007-02-23 2013-04-30 Nokia Corporation Optical actuators in keypads
US8447365B1 (en) 2009-08-11 2013-05-21 Howard M. Imanuel Vehicle communication system
US20130138275A1 (en) 2010-03-03 2013-05-30 Elbit Systems Ltd. System for guiding an aircraft to a reference point in low visibility conditions
US20130141937A1 (en) 2010-08-10 2013-06-06 Sharp Kabushiki Kaisha Light-controlling element, display device and illumination device
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
US8477261B2 (en) 2010-05-26 2013-07-02 Microsoft Corporation Shadow elimination in the backlight for a 3-D display
US20130170031A1 (en) 2012-01-04 2013-07-04 David D. Bohn Eyebox adjustment for interpupillary distance
US20130184904A1 (en) 2012-01-18 2013-07-18 John Gadzinski Vehicle operator display and assistive mechanisms
US8491121B2 (en) 2007-10-09 2013-07-23 Elbit Systems Of America, Llc Pupil scan apparatus
US20130200710A1 (en) 2012-02-04 2013-08-08 Steven Andrew Robbins Solar Power Module with Safety Features and Related Method of Operation
US20130249895A1 (en) 2012-03-23 2013-09-26 Microsoft Corporation Light guide display and field of view
US20130257848A1 (en) 2012-03-28 2013-10-03 Microsoft Corporation Augmented Reality Light Guide Display
US20130258701A1 (en) 2012-03-28 2013-10-03 Microsoft Corporation Mobile Device Light Guide Display
WO2013163347A1 (en) 2012-04-25 2013-10-31 Rockwell Collins, Inc. Holographic wide angle display
US8578038B2 (en) 2009-11-30 2013-11-05 Nokia Corporation Method and apparatus for providing access to social content
US20130305437A1 (en) 2012-05-19 2013-11-21 Skully Helmets Inc. Augmented reality motorcycle helmet
JP2013235256A (en) 2012-04-10 2013-11-21 Panasonic Corp Computer generated hologram type display device
US20130314793A1 (en) 2012-05-22 2013-11-28 Steven John Robbins Waveguide optics focus elements
US20130328948A1 (en) 2012-06-06 2013-12-12 Dolby Laboratories Licensing Corporation Combined Emissive and Reflective Dual Modulation Display System
US8619062B2 (en) 2011-02-03 2013-12-31 Microsoft Corporation Touch-pressure sensing in a display panel
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US8633786B2 (en) 2010-09-27 2014-01-21 Nokia Corporation Apparatus and associated methods
US20140027006A1 (en) 2012-07-26 2014-01-30 Brian Foley Splash-Retarding Fluid Collection System
US8643691B2 (en) 2008-05-12 2014-02-04 Microsoft Corporation Gaze accurate video conferencing
US20140043689A1 (en) 2011-04-18 2014-02-13 Stephen Paul Mason Projection display
US20140064655A1 (en) 2012-08-31 2014-03-06 Ian A. Nguyen Ned polarization system for wavelength pass-through
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
DE102012108424A1 (en) 2012-09-10 2014-03-13 Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover Optical system for endoscopic applications, has image interface that is oriented parallel to object interface with surface geometry and is oriented orthogonally to optical axis of gradient index (GRIN) lens
US8693087B2 (en) 2011-06-30 2014-04-08 Microsoft Corporation Passive matrix quantum dot display
CN103777282A (en) 2014-02-26 2014-05-07 华中科技大学 Optical grating coupler and optical signal coupling method
CN103823267A (en) 2012-11-16 2014-05-28 罗克韦尔柯林斯公司 Transparent waveguide display
US8742952B1 (en) 2012-08-14 2014-06-03 Rockwell Collins, Inc. Traffic awareness systems and methods
US20140152778A1 (en) 2011-07-26 2014-06-05 Magna Electronics Inc. Imaging system for vehicle
US8746008B1 (en) 2009-03-29 2014-06-10 Montana Instruments Corporation Low vibration cryocooled system for low temperature microscopy and spectroscopy applications
US8749886B2 (en) 2012-03-21 2014-06-10 Google Inc. Wide-angle wide band polarizing beam splitter
US8749890B1 (en) 2011-09-30 2014-06-10 Rockwell Collins, Inc. Compact head up display (HUD) for cockpits with constrained space envelopes
US20140168260A1 (en) 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
US20140172296A1 (en) 2012-07-30 2014-06-19 Aleksandr Shtukater Systems and methods for navigation
WO2014090379A1 (en) 2012-12-14 2014-06-19 Merck Patent Gmbh Birefringent rm lens
US20140168055A1 (en) 2012-12-17 2014-06-19 Clinton B. Smith Method and system for the display of virtual image edits
US8767294B2 (en) 2011-07-05 2014-07-01 Microsoft Corporation Optic with extruded conic profile
EP2748670A1 (en) 2011-08-24 2014-07-02 Popovich, Milan Momcilo Wearable data display
US8810600B2 (en) 2012-01-23 2014-08-19 Microsoft Corporation Wearable display device calibration
US8814691B2 (en) 2010-02-28 2014-08-26 Microsoft Corporation System and method for social networking gaming with an augmented reality
US8816578B1 (en) 2012-07-16 2014-08-26 Rockwell Collins, Inc. Display assembly configured for reduced reflection
US8830143B1 (en) 2006-09-28 2014-09-09 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US8830588B1 (en) 2012-03-28 2014-09-09 Rockwell Collins, Inc. Reflector and cover glass for substrate guided HUD
US20140267420A1 (en) 2013-03-15 2014-09-18 Magic Leap, Inc. Display system and method
US20140330159A1 (en) 2011-09-26 2014-11-06 Beth Israel Deaconess Medical Center, Inc. Quantitative methods and systems for neurological assessment
DE102013209436A1 (en) 2013-05-22 2014-11-27 Robert Bosch Gmbh Apparatus and method for generating a lighting pattern
US8913324B2 (en) 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
JP2015053163A (en) 2013-09-06 2015-03-19 セイコーエプソン株式会社 Optical device and image display apparatus
US20150109763A1 (en) 2012-05-09 2015-04-23 Sony Corporation Illumination apparatus and display unit
US20150107671A1 (en) 2012-01-24 2015-04-23 AMI Research & Development, LLC Monolithic broadband energy collector with dichroic filters and mirrors embedded in waveguide
US20150160529A1 (en) 2013-12-11 2015-06-11 Sbg Labs Inc. Holographic Waveguide Display
US20150167868A1 (en) 2013-12-17 2015-06-18 Scott Boncha Maple sap vacuum collection systems with chew proof tubing
US20150177688A1 (en) 2012-06-18 2015-06-25 Milan Momcilo Popovich Apparatus for copying a hologram
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US20150219834A1 (en) 2010-04-16 2015-08-06 Flex Lighting Ii, Llc Display with a film-based lightguide and light redirecting optical element
US20150243068A1 (en) 1990-12-07 2015-08-27 Dennis J. Solomon Integrated 3d-d2 visual effects dispay
JP2015172713A (en) 2014-03-12 2015-10-01 オリンパス株式会社 display device
US20150289762A1 (en) 2012-05-11 2015-10-15 Milan Momcilo Popovich Apparatus for eye tracking
US20150309264A1 (en) 2013-06-11 2015-10-29 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9176324B1 (en) 2013-06-25 2015-11-03 Rockwell Collins, Inc. Enhanced-image presentation system, device, and method
US20150316768A1 (en) 2012-12-10 2015-11-05 Bae Systems Plc Improvements in and relating to displays
US9244275B1 (en) 2009-07-10 2016-01-26 Rockwell Collins, Inc. Visual display system using multiple image sources and heads-up-display system using the same
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9253359B2 (en) 2009-12-28 2016-02-02 Canon Components, Inc. Contact image sensor unit including a detachable light guide supporting member and image reading apparatus using the same
US9274339B1 (en) 2010-02-04 2016-03-01 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
WO2016046514A1 (en) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Holographic waveguide opticaltracker
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9377852B1 (en) 2013-08-29 2016-06-28 Rockwell Collins, Inc. Eye tracking as a method to improve the user interface
US20160209657A1 (en) 2013-05-20 2016-07-21 Digilens, Inc. Holographic waveguide eye tracker
WO2016116733A1 (en) 2015-01-20 2016-07-28 Milan Momcilo Popovich Holographic waveguide lidar
WO2016135434A1 (en) 2015-02-23 2016-09-01 Milan Momcilo Popovich Electrically focus-tunable lens
US9464779B2 (en) 2005-11-11 2016-10-11 Digilens, Inc. Apparatus for condensing light from multiple sources using Bragg gratings
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US9516193B2 (en) 2012-08-10 2016-12-06 Mitsubishi Electric Corporation Contact image sensor, output correction device for contact image sensor, and output correction method for contact image sensor
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US9541763B1 (en) 2015-07-29 2017-01-10 Rockwell Collins, Inc. Active HUD alignment
US20170032166A1 (en) 2015-05-14 2017-02-02 Cross Match Technologies, Inc. Handheld biometric scanner device
US9635352B1 (en) 2014-03-11 2017-04-25 Rockwell Collins, Inc. Systems and methods for indicating improper viewing angles
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US20170160546A1 (en) 2015-12-02 2017-06-08 Rockwell Collins, Inc. Worn display using a peripheral view
US9678345B1 (en) 2014-08-15 2017-06-13 Rockwell Collins, Inc. Dynamic vergence correction in binocular displays
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US20170212295A1 (en) 2011-11-22 2017-07-27 Sergiy Vasylyev Waveguide illumination system
US9733475B1 (en) 2014-09-08 2017-08-15 Rockwell Collins, Inc. Curved waveguide combiner for head-mounted and helmet-mounted displays (HMDS), a collimated virtual window, or a head up display (HUD)
US9754507B1 (en) 2013-07-02 2017-09-05 Rockwell Collins, Inc. Virtual/live hybrid behavior to mitigate range and behavior constraints
US20170255257A1 (en) 2016-03-04 2017-09-07 Rockwell Collins, Inc. Systems and methods for delivering imagery to head-worn display systems
WO2017162999A1 (en) 2016-03-24 2017-09-28 Popovich Milan Momcilo Method and apparatus for providing a polarization selective holographic waveguide device
US9785231B1 (en) 2013-09-26 2017-10-10 Rockwell Collins, Inc. Head worn display integrity monitor system and methods
US9791694B1 (en) 2015-08-07 2017-10-17 Rockwell Collins, Inc. Transparent film display system for vehicles
WO2017178781A1 (en) 2016-04-11 2017-10-19 GRANT, Alastair, John Holographic waveguide apparatus for structured light projection
US20180011324A1 (en) 2015-01-12 2018-01-11 Digilens, Inc. Environmentally isolated waveguide display
US9874931B1 (en) 2016-02-22 2018-01-23 Rockwell Collins, Inc. Head-tracking system and method
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
US20180210198A1 (en) 2017-01-26 2018-07-26 Rockwell Collins, Inc. Head up display with an angled light pipe
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US20190042827A1 (en) 2013-07-31 2019-02-07 Digilens, Inc. Method and Apparatus for Contact Image Sensing
US20190064735A1 (en) 2017-08-30 2019-02-28 Digilens, Inc. Methods and Apparatus for Compensating Image Distortion and Illumination Nonuniformity in a Waveguide
US20190187538A1 (en) 2012-01-06 2019-06-20 Digilens Inc. Contact Image Sensor Using Switchable Bragg Gratings
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing

Family Cites Families (666)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1043938A (en) 1911-08-17 1912-11-12 Friedrich Huttenlocher Safety device for gas-lamps.
US3482498A (en) 1967-05-09 1969-12-09 Trw Inc Ridge pattern recording apparatus
DE2115312C3 (en) 1971-03-30 1975-06-26 Hoechst Ag, 6000 Frankfurt Heatable spinning shaft
US3843231A (en) 1971-04-22 1974-10-22 Commissariat Energie Atomique Liquid crystal diffraction grating
US3965029A (en) 1974-02-04 1976-06-22 Kent State University Liquid crystal materials
US3975711A (en) 1974-08-30 1976-08-17 Sperry Rand Corporation Real time fingerprint recording terminal
US4066334A (en) 1975-01-06 1978-01-03 National Research Development Corporation Liquid crystal light deflector
US4035068A (en) 1975-06-25 1977-07-12 Xerox Corporation Speckle minimization in projection displays by reducing spatial coherence of the image light
US4251137A (en) 1977-09-28 1981-02-17 Rca Corporation Tunable diffractive subtractive filter
US4322163A (en) 1977-10-25 1982-03-30 Fingermatrix Inc. Finger identification
US4248093A (en) 1979-04-13 1981-02-03 The Boeing Company Holographic resolution of complex sound fields
US4389612A (en) 1980-06-17 1983-06-21 S.H.E. Corporation Apparatus for reducing low frequency noise in dc biased SQUIDS
US4403189A (en) 1980-08-25 1983-09-06 S.H.E. Corporation Superconducting quantum interference device having thin film Josephson junctions
US4386361A (en) 1980-09-26 1983-05-31 S.H.E. Corporation Thin film SQUID with low inductance
US4544267A (en) 1980-11-25 1985-10-01 Fingermatrix, Inc. Finger identification
IL62627A (en) 1981-04-10 1984-09-30 Yissum Res Dev Co Eye testing system
US4418993A (en) 1981-05-07 1983-12-06 Stereographics Corp. Stereoscopic zoom lens system for three-dimensional motion pictures and television
US4562463A (en) 1981-05-15 1985-12-31 Stereographics Corp. Stereoscopic television system with field storage for sequential display of right and left images
US4472037A (en) 1981-08-24 1984-09-18 Stereographics Corporation Additive color means for the calibration of stereoscopic projection
US4523226A (en) 1982-01-27 1985-06-11 Stereographics Corporation Stereoscopic television system
US4566758A (en) 1983-05-09 1986-01-28 Tektronix, Inc. Rapid starting, high-speed liquid crystal variable optical retarder
US4884876A (en) 1983-10-30 1989-12-05 Stereographics Corporation Achromatic liquid crystal shutter for stereoscopic and other applications
AU4117585A (en) 1984-03-19 1985-10-11 Kent State University Light modulating material comprising a liquid crystal dispersion in a synthetic resin matrix
US4583117A (en) 1984-07-17 1986-04-15 Stereographics Corporation Stereoscopic video camera
US4729640A (en) 1984-10-03 1988-03-08 Canon Kabushiki Kaisha Liquid crystal light modulation device
US4643515A (en) 1985-04-01 1987-02-17 Environmental Research Institute Of Michigan Method and apparatus for recording and displaying edge-illuminated holograms
US4728547A (en) 1985-06-10 1988-03-01 General Motors Corporation Liquid crystal droplets dispersed in thin films of UV-curable polymers
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
JPS6232425A (en) 1985-08-05 1987-02-12 Brother Ind Ltd optical deflector
US4890902A (en) 1985-09-17 1990-01-02 Kent State University Liquid crystal light modulating materials with selectable viewing angles
US5148302A (en) 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
US4970129A (en) 1986-12-19 1990-11-13 Polaroid Corporation Holograms
US4811414A (en) 1987-02-27 1989-03-07 C.F.A. Technologies, Inc. Methods for digitally noise averaging and illumination equalizing fingerprint images
US4791788A (en) 1987-08-24 1988-12-20 Quantum Design, Inc. Method for obtaining improved temperature regulation when using liquid helium cooling
US4848093A (en) 1987-08-24 1989-07-18 Quantum Design Apparatus and method for regulating temperature in a cryogenic test chamber
US4792850A (en) 1987-11-25 1988-12-20 Sterographics Corporation Method and system employing a push-pull liquid crystal modulator
US4938568A (en) 1988-01-05 1990-07-03 Hughes Aircraft Company Polymer dispersed liquid crystal film devices, and method of forming the same
US5096282A (en) 1988-01-05 1992-03-17 Hughes Aircraft Co. Polymer dispersed liquid crystal film devices
US4933976A (en) 1988-01-25 1990-06-12 C.F.A. Technologies, Inc. System for generating rolled fingerprint images
US4994204A (en) 1988-11-04 1991-02-19 Kent State University Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase
US5240636A (en) 1988-04-11 1993-08-31 Kent State University Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials
US5119454A (en) 1988-05-23 1992-06-02 Polaroid Corporation Bulk optic wavelength division multiplexer
US5150234A (en) 1988-08-08 1992-09-22 Olympus Optical Co., Ltd. Imaging apparatus having electrooptic devices comprising a variable focal length lens
US5004323A (en) 1988-08-30 1991-04-02 Kent State University Extended temperature range polymer dispersed liquid crystal light shutters
US4964701A (en) 1988-10-04 1990-10-23 Raytheon Company Deflector for an optical beam
JPH02186319A (en) 1989-01-13 1990-07-20 Fujitsu Ltd display system
US5033814A (en) 1989-04-10 1991-07-23 Nilford Laboratories, Inc. Line light source
US5009483A (en) 1989-04-12 1991-04-23 Rockwell Iii Marshall A Optical waveguide display system
US5099343A (en) 1989-05-25 1992-03-24 Hughes Aircraft Company Edge-illuminated liquid crystal display devices
US4967268A (en) 1989-07-31 1990-10-30 Stereographics Liquid crystal shutter system for stereoscopic and other applications
US5016953A (en) 1989-08-31 1991-05-21 Hughes Aircraft Company Reduction of noise in computer generated holograms
US4960311A (en) 1989-08-31 1990-10-02 Hughes Aircraft Company Holographic exposure system for computer generated holograms
US4963007A (en) 1989-09-05 1990-10-16 U.S. Precision Lens, Inc. Color corrected projection lens
US4971719A (en) 1989-09-22 1990-11-20 General Motors Corporation Polymer dispersed liquid crystal films formed by electron beam curing
US5198912A (en) 1990-01-12 1993-03-30 Polaroid Corporation Volume phase hologram with liquid crystal in microvoids between fringes
JPH03239384A (en) 1990-02-16 1991-10-24 Fujitsu Ltd Semiconductor laser protection circuit
US5117302A (en) 1990-04-13 1992-05-26 Stereographics Corporation High dynamic range electro-optical shutter for steroscopic and other applications
US5110034A (en) 1990-08-30 1992-05-05 Quantum Magnetics, Inc. Superconducting bonds for thin film devices
US5139192A (en) 1990-08-30 1992-08-18 Quantum Magnetics, Inc. Superconducting bonds for thin film devices
US5053834A (en) 1990-08-31 1991-10-01 Quantum Magnetics, Inc. High symmetry dc SQUID system
DE4028275A1 (en) 1990-09-06 1992-03-12 Kabelmetal Electro Gmbh METHOD FOR THE PRODUCTION OF FIBERGLASS FIBER OPTICS WITH INCREASED STRENGTH
US5142357A (en) 1990-10-11 1992-08-25 Stereographics Corp. Stereoscopic video camera with image sensors having variable effective position
US5063441A (en) 1990-10-11 1991-11-05 Stereographics Corporation Stereoscopic video cameras with image sensors having variable effective position
US5619586A (en) 1990-12-20 1997-04-08 Thorn Emi Plc Method and apparatus for producing a directly viewable image of a fingerprint
US5416514A (en) 1990-12-27 1995-05-16 North American Philips Corporation Single panel color projection video display having control circuitry for synchronizing the color illumination system with reading/writing of the light valve
US5410370A (en) 1990-12-27 1995-04-25 North American Philips Corporation Single panel color projection video display improved scanning
US5481321A (en) 1991-01-29 1996-01-02 Stereographics Corp. Stereoscopic motion picture projection system
US5142644A (en) 1991-03-08 1992-08-25 General Motors Corporation Electrical contacts for polymer dispersed liquid crystal films
US5453863A (en) 1991-05-02 1995-09-26 Kent State University Multistable chiral nematic displays
US6104448A (en) 1991-05-02 2000-08-15 Kent State University Pressure sensitive liquid crystalline light modulating device and material
US5241337A (en) 1991-05-13 1993-08-31 Eastman Kodak Company Real image viewfinder requiring no field lens
US5181133A (en) 1991-05-15 1993-01-19 Stereographics Corporation Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications
US5268792A (en) 1991-05-20 1993-12-07 Eastman Kodak Company Zoom lens
US5299289A (en) 1991-06-11 1994-03-29 Matsushita Electric Industrial Co., Ltd. Polymer dispersed liquid crystal panel with diffraction grating
US5193000A (en) 1991-08-28 1993-03-09 Stereographics Corporation Multiplexing technique for stereoscopic video system
US5416510A (en) 1991-08-28 1995-05-16 Stereographics Corporation Camera controller for stereoscopic video system
WO1993005436A1 (en) 1991-08-29 1993-03-18 Merk Patent Gesellschaft Mit Beschränkter Haftung Electrooptical liquid crystal system
US5200861A (en) 1991-09-27 1993-04-06 U.S. Precision Lens Incorporated Lens systems
US5224198A (en) 1991-09-30 1993-06-29 Motorola, Inc. Waveguide virtual image display
US5315440A (en) 1991-11-04 1994-05-24 Eastman Kodak Company Zoom lens having weak front lens group
US5515184A (en) 1991-11-12 1996-05-07 The University Of Alabama In Huntsville Waveguide hologram illuminators
US5218480A (en) 1991-12-03 1993-06-08 U.S. Precision Lens Incorporated Retrofocus wide angle lens
US5239372A (en) 1991-12-31 1993-08-24 Stereographics Corporation Stereoscopic video projection system
US5264950A (en) 1992-01-06 1993-11-23 Kent State University Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer
US5295208A (en) 1992-02-26 1994-03-15 The University Of Alabama In Huntsville Multimode waveguide holograms capable of using non-coherent light
US5296967A (en) 1992-03-02 1994-03-22 U.S. Precision Lens Incorporated High speed wide angle projection TV lens system
EP0564869A1 (en) 1992-03-31 1993-10-13 MERCK PATENT GmbH Electrooptical liquid crystal systems
US5284499A (en) 1992-05-01 1994-02-08 Corning Incorporated Method and apparatus for drawing optical fibers
US5327269A (en) 1992-05-13 1994-07-05 Standish Industries, Inc. Fast switching 270° twisted nematic liquid crystal device and eyewear incorporating the device
US5251048A (en) 1992-05-18 1993-10-05 Kent State University Method and apparatus for electronic switching of a reflective color display
ES2129463T3 (en) 1992-05-18 1999-06-16 Univ Kent State Ohio LIGHT MODULATION CRYSTALLINE AND LIQUID DEVICE AND MATERIAL.
US5315419A (en) 1992-05-19 1994-05-24 Kent State University Method of producing a homogeneously aligned chiral smectic C liquid crystal having homeotropic alignment layers
US5368770A (en) 1992-06-01 1994-11-29 Kent State University Method of preparing thin liquid crystal films
US5313330A (en) 1992-08-31 1994-05-17 U.S. Precision Lens Incorporated Zoom projection lens systems
US5343147A (en) 1992-09-08 1994-08-30 Quantum Magnetics, Inc. Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements
US6052540A (en) 1992-09-11 2000-04-18 Canon Kabushiki Kaisha Viewfinder device for displaying photographic information relating to operation of a camera
US5455693A (en) 1992-09-24 1995-10-03 Hughes Aircraft Company Display hologram
US5321533A (en) 1992-09-24 1994-06-14 Kent State Universtiy Polymer dispersed ferroelectric smectic liquid crystal
US5315324A (en) 1992-12-09 1994-05-24 Delphax Systems High precision charge imaging cartridge
US6151142A (en) 1993-01-29 2000-11-21 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
US5428480A (en) 1993-02-16 1995-06-27 Eastman Kodak Company Zoom lens having weak plastic element
US5371817A (en) 1993-02-16 1994-12-06 Eastman Kodak Company Multichannel optical waveguide page scanner with individually addressable electro-optic modulators
WO1994019712A1 (en) 1993-02-26 1994-09-01 Yeda Research & Development Co., Ltd. Holographic optical devices
JP2823470B2 (en) 1993-03-09 1998-11-11 シャープ株式会社 Optical scanning device, display device using the same, and image information input / output device
US5371626A (en) 1993-03-09 1994-12-06 Benopcon, Inc. Wide angle binocular system with variable power capability
US5309283A (en) 1993-03-30 1994-05-03 U.S. Precision Lens Incorporated Hybrid, color-corrected, projection TV lens system
JP3202831B2 (en) 1993-04-09 2001-08-27 日本電信電話株式会社 Method for manufacturing reflective color liquid crystal display
CA2160245C (en) 1993-04-28 2005-09-20 R. Douglas Mcpheters Holographic operator interface
WO1994025508A1 (en) 1993-05-03 1994-11-10 Loctite Corporation Polymer dispersed liquid crystals in electron-rich alkene-thiol polymers
US5329363A (en) 1993-06-15 1994-07-12 U. S. Precision Lens Incorporated Projection lens systems having reduced spherochromatism
US5455713A (en) 1993-06-23 1995-10-03 Kreitzer; Melvyn H. High performance, thermally-stabilized projection television lens systems
US5585035A (en) 1993-08-06 1996-12-17 Minnesota Mining And Manufacturing Company Light modulating device having a silicon-containing matrix
JPH0798439A (en) 1993-09-29 1995-04-11 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional stereoscopic display device
US5485313A (en) 1993-10-27 1996-01-16 Polaroid Corporation Zoom lens systems
US5559637A (en) 1994-02-04 1996-09-24 Corning Incorporated Field curvature corrector
US5463428A (en) 1994-02-08 1995-10-31 Stereographics Corporation Wireless active eyewear for stereoscopic applications
US5986746A (en) 1994-02-18 1999-11-16 Imedge Technology Inc. Topographical object detection system
DE69518233D1 (en) 1994-02-18 2000-09-07 Imedge Technology Inc COMPACT DEVICE FOR PRODUCING AN IMAGE OF THE SURFACE TOPOLOGY OF OBJECTS AND METHOD FOR PRODUCING THE DEVICE
CA2187889A1 (en) 1994-04-29 1995-11-09 Bruce A. Nerad Light modulating device having a matrix prepared from acid reactants
US5493430A (en) 1994-08-03 1996-02-20 Kent Display Systems, L.P. Color, reflective liquid crystal displays
US5572250A (en) 1994-10-20 1996-11-05 Stereographics Corporation Universal electronic stereoscopic display
US6154190A (en) 1995-02-17 2000-11-28 Kent State University Dynamic drive methods and apparatus for a bistable liquid crystal display
US6061463A (en) 1995-02-21 2000-05-09 Imedge Technology, Inc. Holographic fingerprint device
US5543950A (en) 1995-05-04 1996-08-06 Kent State University Liquid crystalline electrooptical device
CA2225676A1 (en) 1995-06-23 1997-01-09 Holoplex Multiplexed hologram copying system and method
JPH0990312A (en) 1995-09-27 1997-04-04 Olympus Optical Co Ltd Optical device
US5999282A (en) 1995-11-08 1999-12-07 Victor Company Of Japan, Ltd. Color filter and color image display apparatus employing the filter
EP0785457A3 (en) 1996-01-17 1998-10-14 Nippon Telegraph And Telephone Corporation Optical device and three-dimensional display device
WO1997027519A1 (en) 1996-01-29 1997-07-31 Foster-Miller, Inc. Optical components containing complex diffraction gratings and methods for the fabrication thereof
US5963375A (en) 1996-01-31 1999-10-05 U.S. Precision Lens Inc. Athermal LCD projection lens
AU1935397A (en) 1996-03-15 1997-10-10 Retinal Display Cayman Limited Method of and apparatus for viewing an image
US6166834A (en) 1996-03-15 2000-12-26 Matsushita Electric Industrial Co., Ltd. Display apparatus and method for forming hologram suitable for the display apparatus
WO1997041477A1 (en) 1996-04-29 1997-11-06 U.S. Precision Lens Incorporated Projection television lens system
EP0896679B1 (en) 1996-04-29 2003-08-13 U.S. Precision Lens Inc. Lcd projection lens
US6133975A (en) 1996-05-10 2000-10-17 Kent State University Bistable liquid crystal display device using polymer stabilization
US6061107A (en) 1996-05-10 2000-05-09 Kent State University Bistable polymer dispersed cholesteric liquid crystal displays
US6583838B1 (en) 1996-05-10 2003-06-24 Kent State University Bistable liquid crystal display device using polymer stabilization
US5969874A (en) 1996-05-30 1999-10-19 U.S. Precision Lens Incorporated Long focal length projection lenses
US5942157A (en) 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
US7077984B1 (en) 1996-07-12 2006-07-18 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials
US5936776A (en) 1996-09-27 1999-08-10 U.S. Precision Lens Inc. Focusable front projection lens systems for use with large screen formats
FR2755530B1 (en) 1996-11-05 1999-01-22 Thomson Csf VISUALIZATION DEVICE AND FLAT TELEVISION SCREEN USING THE SAME
US6577411B1 (en) 1996-11-12 2003-06-10 Planop-Planar Optics Ltd. Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
WO1998023988A1 (en) 1996-11-29 1998-06-04 U.S. Precision Lens Incorporated Lenses for electronic imaging systems
US6366281B1 (en) 1996-12-06 2002-04-02 Stereographics Corporation Synthetic panoramagram
US6133971A (en) 1997-01-31 2000-10-17 Xerox Corporation Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same
US5956113A (en) 1997-01-31 1999-09-21 Xerox Corporation Bistable reflective display and methods of forming the same
US6567573B1 (en) 1997-02-12 2003-05-20 Digilens, Inc. Switchable optical components
US5937115A (en) 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
US6034752A (en) 1997-03-22 2000-03-07 Kent Displays Incorporated Display device reflecting visible and infrared radiation
US5999089A (en) 1997-05-13 1999-12-07 Carlson; Lance K. Alarm system
US5973727A (en) 1997-05-13 1999-10-26 New Light Industries, Ltd. Video image viewing device and method
GB2325530A (en) 1997-05-22 1998-11-25 Sharp Kk Liquid crystal device
WO1999003006A1 (en) 1997-07-11 1999-01-21 U.S. Precision Lens Incorporated High performance projection television lens systems
US6417971B1 (en) 1997-08-05 2002-07-09 U.S. Precision Lens Incorporated Zoom projection lens having a lens correction unit
JP2001516062A (en) 1997-08-13 2001-09-25 フォスター−ミラー・インコーポレーテッド Switchable optical components
US6141154A (en) 1997-08-22 2000-10-31 U.S. Precision Lens Inc. Focusable, color corrected, high performance projection lens systems
JP2953444B2 (en) 1997-10-01 1999-09-27 日本電気株式会社 Liquid crystal display device and manufacturing method thereof
EP1031050B1 (en) 1997-11-13 2006-03-01 3M Innovative Properties Company Wide field of view projection lenses for compact projection lens systems employing pixelized panels
JP3331559B2 (en) 1997-11-13 2002-10-07 日本電信電話株式会社 Optical device
DE19751190A1 (en) 1997-11-19 1999-05-20 Bosch Gmbh Robert Laser display device has a polymer-dispersed liquid crystal disk
US6046585A (en) 1997-11-21 2000-04-04 Quantum Design, Inc. Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto
US6437563B1 (en) 1997-11-21 2002-08-20 Quantum Design, Inc. Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes
US5949508A (en) 1997-12-10 1999-09-07 Kent State University Phase separated composite organic film and methods for the manufacture thereof
US6975345B1 (en) 1998-03-27 2005-12-13 Stereographics Corporation Polarizing modulator for an electronic stereoscopic display
US6268839B1 (en) 1998-05-12 2001-07-31 Kent State University Drive schemes for gray scale bistable cholesteric reflective displays
US6204835B1 (en) 1998-05-12 2001-03-20 Kent State University Cumulative two phase drive scheme for bistable cholesteric reflective displays
JPH11326617A (en) 1998-05-13 1999-11-26 Olympus Optical Co Ltd Optical system including diffraction optical element and its design method
US6388797B1 (en) 1998-05-29 2002-05-14 Stereographics Corporation Electrostereoscopic eyewear
US6341118B1 (en) 1998-06-02 2002-01-22 Science Applications International Corporation Multiple channel scanning device using oversampling and image processing to increase throughput
US6445512B1 (en) 1998-06-24 2002-09-03 U.S. Precision Lens Incorporated Projection television lens systems having improved modulation transfer functions
US6411444B1 (en) 1998-06-30 2002-06-25 Corning Precision Lens, Incorporated Lenses for electronic imaging systems having long wavelength filtering properties
US6064354A (en) 1998-07-01 2000-05-16 Deluca; Michael Joseph Stereoscopic user interface method and apparatus
US6618104B1 (en) 1998-07-28 2003-09-09 Nippon Telegraph And Telephone Corporation Optical device having reverse mode holographic PDLC and front light guide
JP2000056259A (en) 1998-08-10 2000-02-25 Fuji Xerox Co Ltd Picture display device
US6169594B1 (en) 1998-08-24 2001-01-02 Physical Optics Corporation Beam deflector and scanner
US6188462B1 (en) 1998-09-02 2001-02-13 Kent State University Diffraction grating with electrically controlled periodicity
US6278429B1 (en) 1998-09-11 2001-08-21 Kent State University Bistable reflective cholesteric liquid crystal displays utilizing super twisted nematic driver chips
US20020126332A1 (en) 1998-09-14 2002-09-12 Popovich Milan M. System and method for modulating light intesity
WO2000016136A1 (en) 1998-09-14 2000-03-23 Digilens, Inc. Holographic illumination system and holographic projection system
US6082862A (en) 1998-10-16 2000-07-04 Digilens, Inc. Image tiling technique based on electrically switchable holograms
WO2000023830A1 (en) 1998-10-16 2000-04-27 Digilens Inc. Autostereoscopic display based on electrically switchable holograms
US6414760B1 (en) 1998-10-29 2002-07-02 Hewlett-Packard Company Image scanner with optical waveguide and enhanced optical sampling rate
US6850210B1 (en) 1998-11-12 2005-02-01 Stereographics Corporation Parallax panoramagram having improved depth and sharpness
JP2002529781A (en) 1998-11-12 2002-09-10 ユーエス プレシジョン レンズ インコーポレイテッド Color corrected projection lens using light diffraction surface
US6191887B1 (en) 1999-01-20 2001-02-20 Tropel Corporation Laser illumination with speckle reduction
US6320563B1 (en) 1999-01-21 2001-11-20 Kent State University Dual frequency cholesteric display and drive scheme
US6301057B1 (en) 1999-02-02 2001-10-09 Corning Precision Lens Long focal length projection lenses
JP2000267042A (en) 1999-03-17 2000-09-29 Fuji Xerox Co Ltd Head-mounted type video display device
US6269203B1 (en) 1999-03-17 2001-07-31 Radiant Photonics Holographic optical devices for transmission of optical signals
JP2000267552A (en) 1999-03-19 2000-09-29 Sony Corp Device and method for image recording and recording medium
US6504629B1 (en) 1999-03-23 2003-01-07 Digilens, Inc. Method and apparatus for illuminating a display
US6909443B1 (en) 1999-04-06 2005-06-21 Microsoft Corporation Method and apparatus for providing a three-dimensional task gallery computer interface
JP4548680B2 (en) 1999-04-12 2010-09-22 大日本印刷株式会社 Color hologram display and method for producing the same
US6195209B1 (en) 1999-05-04 2001-02-27 U.S. Precision Lens Incorporated Projection lenses having reduced lateral color for use with pixelized panels
JP4341108B2 (en) 1999-07-14 2009-10-07 ソニー株式会社 Virtual image observation optical device
US6317228B2 (en) 1999-09-14 2001-11-13 Digilens, Inc. Holographic illumination system
US6646772B1 (en) 1999-09-14 2003-11-11 Digilens, Inc. Holographic illumination system
US6323970B1 (en) 1999-09-29 2001-11-27 Digilents, Inc. Method of producing switchable holograms
US6301056B1 (en) 1999-11-08 2001-10-09 Corning Precision Lens High speed retrofocus projection television lens systems
US20020009299A1 (en) 1999-12-04 2002-01-24 Lenny Lipton System for the display of stereoscopic photographs
WO2001050200A2 (en) 1999-12-22 2001-07-12 Science Applications International Corp. Switchable polymer-dispersed liquid crystal optical elements
US7502003B2 (en) 2000-01-20 2009-03-10 Real D Method for eliminating pi-cell artifacts
US6519088B1 (en) 2000-01-21 2003-02-11 Stereographics Corporation Method and apparatus for maximizing the viewing zone of a lenticular stereogram
JP2001296503A (en) 2000-04-13 2001-10-26 Mitsubishi Heavy Ind Ltd Device for reducing speckle
US6730442B1 (en) 2000-05-24 2004-05-04 Science Applications International Corporation System and method for replicating volume holograms
JP4433355B2 (en) 2000-05-25 2010-03-17 大日本印刷株式会社 Production method of transmission hologram
AU6262501A (en) 2000-05-29 2001-12-11 Vkb Inc. Virtual data entry device and method for input of alphanumeric and other data
AU5664401A (en) 2000-06-05 2001-12-17 Lumus Ltd Substrate-guided optical beam expander
US20010050756A1 (en) 2000-06-07 2001-12-13 Lenny Lipton Software generated color organ for stereoscopic and planar applications
US7671889B2 (en) 2000-06-07 2010-03-02 Real D Autostereoscopic pixel arrangement techniques
WO2001096494A1 (en) 2000-06-09 2001-12-20 Kent Displays, Inc. Chiral additives for cholesteric displays
US20080024598A1 (en) 2000-07-21 2008-01-31 New York University Autostereoscopic display
US7099080B2 (en) 2000-08-30 2006-08-29 Stereo Graphics Corporation Autostereoscopic lenticular screen
JP2002090858A (en) 2000-09-20 2002-03-27 Olympus Optical Co Ltd In-finder display device
DE10051186B4 (en) 2000-10-16 2005-04-07 Fibermark Gessner Gmbh & Co. Ohg Dust filter bag with highly porous carrier material layer
JP2002122906A (en) 2000-10-17 2002-04-26 Olympus Optical Co Ltd Display device within finder
US6738105B1 (en) 2000-11-02 2004-05-18 Intel Corporation Coherent light despeckling
US6791629B2 (en) 2000-11-09 2004-09-14 3M Innovative Properties Company Lens systems for projection televisions
US6822713B1 (en) 2000-11-27 2004-11-23 Kent State University Optical compensation film for liquid crystal display
JP4727034B2 (en) 2000-11-28 2011-07-20 オリンパス株式会社 Observation optical system and imaging optical system
WO2002042832A2 (en) 2000-12-14 2002-05-30 Koninklijke Philips Electronics N.V. Liquid crystal display laminate and method of manufacturing such
US20020093701A1 (en) 2000-12-29 2002-07-18 Xiaoxiao Zhang Holographic multifocal lens
US6563650B2 (en) 2001-01-17 2003-05-13 3M Innovative Properties Company Compact, telecentric projection lenses for use with pixelized panels
US6518747B2 (en) 2001-02-16 2003-02-11 Quantum Design, Inc. Method and apparatus for quantitative determination of accumulations of magnetic particles
US6625381B2 (en) 2001-02-20 2003-09-23 Eastman Kodak Company Speckle suppressed laser projection system with partial beam reflection
US6600590B2 (en) 2001-02-20 2003-07-29 Eastman Kodak Company Speckle suppressed laser projection system using RF injection
US6476974B1 (en) 2001-02-28 2002-11-05 Corning Precision Lens Incorporated Projection lenses for use with reflective pixelized panels
US7184002B2 (en) 2001-03-29 2007-02-27 Stereographics Corporation Above-and-below stereoscopic format with signifier
FI20010778L (en) 2001-04-12 2002-10-13 Nokia Corp Optical switching arrangement
US6731434B1 (en) 2001-05-23 2004-05-04 University Of Central Florida Compact lens assembly for the teleportal augmented reality system
US6999239B1 (en) 2001-05-23 2006-02-14 Research Foundation Of The University Of Central Florida, Inc Head-mounted display by integration of phase-conjugate material
US6963454B1 (en) 2002-03-01 2005-11-08 Research Foundation Of The University Of Central Florida Head-mounted display by integration of phase-conjugate material
US7009773B2 (en) 2001-05-23 2006-03-07 Research Foundation Of The University Of Central Florida, Inc. Compact microlenslet arrays imager
US7002618B2 (en) 2001-06-01 2006-02-21 Stereographics Corporation Plano-stereoscopic DVD movie
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6940084B2 (en) * 2001-07-04 2005-09-06 Fuji Photo Film Co., Ltd. Solid state radiation detector
JP2003114347A (en) 2001-07-30 2003-04-18 Furukawa Electric Co Ltd:The Single mode optical fiber, method and device for manufacturing the same
US6791739B2 (en) 2001-08-08 2004-09-14 Eastman Kodak Company Electro-optic despeckling modulator and method of use
US6927694B1 (en) 2001-08-20 2005-08-09 Research Foundation Of The University Of Central Florida Algorithm for monitoring head/eye motion for driver alertness with one camera
JP2003066428A (en) 2001-08-23 2003-03-05 Toppan Printing Co Ltd Projector using holographic polymer dispersed liquid crystal
US6594090B2 (en) 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
US6833955B2 (en) 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
KR100416548B1 (en) 2001-10-10 2004-02-05 삼성전자주식회사 Three dimensional image displaying apparatus
JP2003139958A (en) 2001-10-31 2003-05-14 Sony Corp Transmission type laminated hologram optical element, image display element and image display device
US6806982B2 (en) 2001-11-30 2004-10-19 Zebra Imaging, Inc. Pulsed-laser systems and methods for producing holographic stereograms
US6816309B2 (en) 2001-11-30 2004-11-09 Colorlink, Inc. Compensated color management systems and methods
US6773114B2 (en) 2001-12-07 2004-08-10 Nokia Corporation Portable multimode display device
JP2005512142A (en) 2001-12-13 2005-04-28 ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of forming composite material
US6577429B1 (en) 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
US6952435B2 (en) 2002-02-11 2005-10-04 Ming Lai Speckle free laser probe beam
JP2003270419A (en) 2002-03-18 2003-09-25 Sony Corp Diffractive optical element and image display device
DE10312405B4 (en) 2002-04-16 2011-12-01 Merck Patent Gmbh Liquid crystalline medium with high birefringence and light stability and its use
KR20030088217A (en) 2002-05-13 2003-11-19 삼성전자주식회사 Wearable display system enabling adjustment of magnfication
US7804995B2 (en) 2002-07-02 2010-09-28 Reald Inc. Stereoscopic format converter
ITTO20020625A1 (en) 2002-07-17 2004-01-19 Fiat Ricerche LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES
JP3867634B2 (en) 2002-07-26 2007-01-10 株式会社ニコン Image combiner and image display device
US7619739B1 (en) 2002-08-29 2009-11-17 Science Applications International Corporation Detection and identification of biological agents using Bragg filters
FI114945B (en) 2002-09-19 2005-01-31 Nokia Corp Electrically adjustable diffractive gate element
AU2003278747A1 (en) 2002-09-25 2004-04-19 Xponent Photonics Inc Optical assemblies for free-space optical propagation between waveguide(s) and/or fiber(s)
US6805490B2 (en) 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
ATE412223T1 (en) 2002-10-24 2008-11-15 L 1 Identity Solutions Ag CHECKING IMAGE RECORDS OF PERSONS
US8786923B2 (en) 2002-11-22 2014-07-22 Akonia Holographics, Llc Methods and systems for recording to holographic storage media
US20040263969A1 (en) 2002-11-25 2004-12-30 Lenny Lipton Lenticular antireflection display
US7018563B1 (en) 2002-11-26 2006-03-28 Science Applications International Corporation Tailoring material composition for optimization of application-specific switchable holograms
US20040112862A1 (en) 2002-12-12 2004-06-17 Molecular Imprints, Inc. Planarization composition and method of patterning a substrate using the same
US7046888B2 (en) 2002-12-18 2006-05-16 The Regents Of The University Of Michigan Enhancing fiber-optic sensing technique using a dual-core fiber
US6853493B2 (en) 2003-01-07 2005-02-08 3M Innovative Properties Company Folded, telecentric projection lenses for use with pixelized panels
US7088515B2 (en) 2003-02-12 2006-08-08 Stereographics Corporation Autostereoscopic lens sheet with planar areas
US20040263971A1 (en) 2003-02-12 2004-12-30 Lenny Lipton Dual mode autosteroscopic lens sheet
US7119965B1 (en) 2003-02-24 2006-10-10 University Of Central Florida Research Foundation, Inc. Head mounted projection display with a wide field of view
US8230359B2 (en) 2003-02-25 2012-07-24 Microsoft Corporation System and method that facilitates computer desktop use via scaling of displayed objects with shifts to the periphery
EP1599754A1 (en) 2003-03-05 2005-11-30 3M Innovative Properties Company Diffractive lens
US7092133B2 (en) 2003-03-10 2006-08-15 Inphase Technologies, Inc. Polytopic multiplex holography
US20040179764A1 (en) 2003-03-14 2004-09-16 Noureddine Melikechi Interferometric analog optical modulator for single mode fibers
US7539330B2 (en) * 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US7460696B2 (en) * 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US6950173B1 (en) 2003-04-08 2005-09-27 Science Applications International Corporation Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements
AU2003901797A0 (en) 2003-04-14 2003-05-01 Agresearch Limited Manipulation of condensed tannin biosynthesis
US6985296B2 (en) 2003-04-15 2006-01-10 Stereographics Corporation Neutralizing device for autostereoscopic lens sheet
FI115169B (en) 2003-05-13 2005-03-15 Nokia Corp Method and optical system for coupling light to a waveguide
WO2005001753A1 (en) 2003-06-21 2005-01-06 Aprilis, Inc. Acquisition of high resolution boimetric images
EP1649309A4 (en) 2003-07-03 2011-03-09 Holo Touch Inc Holographic human-machine interfaces
ITTO20030530A1 (en) 2003-07-09 2005-01-10 Infm Istituto Naz Per La Fisi Ca Della Mater HOLOGRAPHIC DISTRIBUTION NETWORK, PROCEDURE FOR THE
WO2005015298A1 (en) 2003-08-08 2005-02-17 Merck Patent Gmbh Alignment layer with reactive mesogens for aligning liquid crystal molecules
GB2405519A (en) 2003-08-30 2005-03-02 Sharp Kk A multiple-view directional display
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
US7088457B1 (en) 2003-10-01 2006-08-08 University Of Central Florida Research Foundation, Inc. Iterative least-squares wavefront estimation for general pupil shapes
US7616228B2 (en) 2003-10-02 2009-11-10 Real D Hardware based interdigitation
US7616227B2 (en) 2003-10-02 2009-11-10 Real D Hardware based interdigitation
JP4266770B2 (en) 2003-10-22 2009-05-20 アルプス電気株式会社 Optical image reader
US7277640B2 (en) 2003-11-18 2007-10-02 Avago Technologies Fiber Ip (Singapore) Pte Ltd Optical add/drop multiplexing systems
US7333685B2 (en) 2003-11-24 2008-02-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Variable optical attenuator systems
IL165376A0 (en) 2003-12-02 2006-01-15 Electro Optics Ind Ltd Vehicle display system
US20080225361A1 (en) 2004-01-29 2008-09-18 Matsushita Electric Industrial Co., Ltd. Light Source Device, and Two-Dimensional Image Display Device
US7317449B2 (en) 2004-03-02 2008-01-08 Microsoft Corporation Key-based advanced navigation techniques
US6958868B1 (en) 2004-03-29 2005-10-25 John George Pender Motion-free tracking solar concentrator
US20050232530A1 (en) 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
JP3952034B2 (en) 2004-04-14 2007-08-01 富士ゼロックス株式会社 Hologram recording method, hologram recording apparatus, hologram reproducing method, hologram reproducing apparatus, and information holding body
US7375886B2 (en) 2004-04-19 2008-05-20 Stereographics Corporation Method and apparatus for optimizing the viewing distance of a lenticular stereogram
US6992830B1 (en) 2004-04-22 2006-01-31 Raytheon Company Projection display having an angle-selective coating for enhanced image contrast, and method for enhancing image contrast
ATE520046T1 (en) 2004-04-23 2011-08-15 Olivier M Parriaux HIGHLY EFFICIENT OPTICAL DIFFRACTION DEVICE
WO2005111669A1 (en) 2004-05-17 2005-11-24 Nikon Corporation Optical element, combiner optical system, and image display unit
US7301601B2 (en) 2004-05-20 2007-11-27 Alps Electric (Usa) Inc. Optical switching device using holographic polymer dispersed liquid crystals
US7639208B1 (en) 2004-05-21 2009-12-29 University Of Central Florida Research Foundation, Inc. Compact optical see-through head-mounted display with occlusion support
US8229185B2 (en) * 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US7002753B2 (en) 2004-06-02 2006-02-21 3M Innovative Properties Company Color-corrected projection lenses for use with pixelized panels
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Substrate-guided optical device with very wide aperture
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
EP1612596A1 (en) 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
JP2006018864A (en) 2004-06-30 2006-01-19 Sony Corp Hologram duplication method
US7230770B2 (en) 2004-08-04 2007-06-12 3M Innovative Properties Company Projection lenses having color-correcting rear lens units
US7145729B2 (en) 2004-08-04 2006-12-05 3M Innovative Properties Company Foldable projection lenses
IL163361A (en) 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
EP1784988A1 (en) 2004-08-06 2007-05-16 University of Washington Variable fixation viewing distance scanned light displays
US7233446B2 (en) 2004-08-19 2007-06-19 3Dtl, Inc. Transformable, applicable material and methods for using same for optical effects
US7075273B2 (en) 2004-08-24 2006-07-11 Motorola, Inc. Automotive electrical system configuration using a two bus structure
JP2006318515A (en) 2004-09-10 2006-11-24 Ricoh Co Ltd Hologram element, production method thereof and optical header
DE602005018801D1 (en) 2004-10-08 2010-02-25 Pioneer Corp OPTICAL BREAKING ELEMENT, OBJECTIVE LENS MODULE, OPTICAL BUYER, AND OPTICAL INFORMAITON RECORDING / PLAYING DEVICE
WO2006041278A1 (en) 2004-10-15 2006-04-20 Stichting Dutch Polymer Institute Waveguide comprising an anisotropic diffracting layer
JP4995732B2 (en) 2004-12-13 2012-08-08 ノキア コーポレイション System and method for near-focus ray expansion in a display device
EP1828832B1 (en) 2004-12-13 2013-05-22 Nokia Corporation General diffractive optics method for expanding an exit pupil
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
US7325928B2 (en) 2005-02-14 2008-02-05 Intel Corporation Resolution multiplication technique for projection display systems
GB2423517A (en) 2005-02-28 2006-08-30 Weatherford Lamb Apparatus for drawing and annealing an optical fibre
WO2006102073A2 (en) 2005-03-18 2006-09-28 Sbg Labs, Inc. Spatial light modulator
JP4612853B2 (en) 2005-03-29 2011-01-12 キヤノン株式会社 Pointed position recognition device and information input device having the same
WO2006110646A2 (en) 2005-04-08 2006-10-19 Real D Autostereoscopic display with planar pass-through
US7123421B1 (en) 2005-04-22 2006-10-17 Panavision International, L.P. Compact high performance zoom lens system
EP1883835A4 (en) 2005-05-26 2011-04-13 Real D Ghost-compensation for improved stereoscopic projection
WO2006132614A1 (en) 2005-06-03 2006-12-14 Nokia Corporation General diffractive optics method for expanding and exit pupil
US8049962B2 (en) 2005-06-07 2011-11-01 Reald Inc. Controlling the angular extent of autostereoscopic viewing zones
WO2007002301A2 (en) 2005-06-24 2007-01-04 Real D Autostereoscopic display with increased sharpness for non-primary viewing zones
WO2007015141A2 (en) 2005-08-04 2007-02-08 Milan Momcilo Popovich Laser illuminator
TWI362213B (en) 2005-08-09 2012-04-11 Contact image sensor module
EP1922579B1 (en) 2005-09-07 2015-08-19 BAE Systems PLC A projection display with two plate-like, co-planar waveguides including gratings
EP1922580B1 (en) 2005-09-07 2009-11-04 BAE Systems PLC A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
GB0518912D0 (en) 2005-09-16 2005-10-26 Light Blue Optics Ltd Methods and apparatus for displaying images using holograms
JP2007086145A (en) 2005-09-20 2007-04-05 Sony Corp Three-dimensional display
JP4810949B2 (en) 2005-09-29 2011-11-09 ソニー株式会社 Optical device and image display device
US8018579B1 (en) 2005-10-21 2011-09-13 Apple Inc. Three-dimensional imaging and display system
KR101335172B1 (en) 2005-10-27 2013-12-05 리얼디 인크. Temperature compensation for the differential expansion of an autostereoscopic lenticular array and display screen
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
EP1946179B1 (en) 2005-11-10 2012-12-05 BAE Systems PLC Method of modifying a display apparatus
WO2007059054A2 (en) 2005-11-14 2007-05-24 Real D Monitor with integral interdigitation
US7477206B2 (en) 2005-12-06 2009-01-13 Real D Enhanced ZScreen modulator techniques
US7583437B2 (en) 2005-12-08 2009-09-01 Real D Projection screen with virtual compound curvature
US7522344B1 (en) 2005-12-14 2009-04-21 University Of Central Florida Research Foundation, Inc. Projection-based head-mounted display with eye-tracking capabilities
US7953308B2 (en) 2005-12-30 2011-05-31 General Electric Company System and method for fiber optic bundle-based illumination for imaging system
US8384504B2 (en) 2006-01-06 2013-02-26 Quantum Design International, Inc. Superconducting quick switch
US20070160325A1 (en) 2006-01-11 2007-07-12 Hyungbin Son Angle-tunable transmissive grating
US8360578B2 (en) 2006-01-26 2013-01-29 Nokia Corporation Eye tracker device
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
ES2559412T3 (en) 2006-02-27 2016-02-12 Nokia Technologies Oy Diffraction gratings with adjustable efficiency
US7499217B2 (en) 2006-03-03 2009-03-03 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
US20070206155A1 (en) 2006-03-03 2007-09-06 Real D Steady state surface mode device for stereoscopic projection
US7679641B2 (en) 2006-04-07 2010-03-16 Real D Vertical surround parallax correction
US7733557B2 (en) 2006-04-24 2010-06-08 Micron Technology, Inc. Spatial light modulators with changeable phase masks for use in holographic data storage
US7843642B2 (en) 2006-05-04 2010-11-30 University Of Central Florida Research Foundation Systems and methods for providing compact illumination in head mounted displays
US7524053B2 (en) 2006-05-12 2009-04-28 Real D 3-D eyewear
US7740387B2 (en) 2006-05-24 2010-06-22 3M Innovative Properties Company Backlight wedge with side mounted light source
US7517081B2 (en) 2006-07-20 2009-04-14 Real D Low-cost circular polarizing eyewear
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Substrate- guided optical device
US8736672B2 (en) 2006-08-24 2014-05-27 Reald Inc. Algorithmic interaxial reduction
US8493433B2 (en) 2006-09-12 2013-07-23 Reald Inc. Shuttering eyewear for use with stereoscopic liquid crystal display
DE102006046555B4 (en) 2006-09-28 2010-12-16 Grintech Gmbh Miniaturized optical imaging system with high lateral and axial resolution
WO2008038058A1 (en) 2006-09-28 2008-04-03 Nokia Corporation Beam expansion with three-dimensional diffractive elements
GB0620014D0 (en) 2006-10-10 2006-11-22 Cambridge Flat Projection Prismatic film backlight
US7857455B2 (en) 2006-10-18 2010-12-28 Reald Inc. Combining P and S rays for bright stereoscopic projection
US7670004B2 (en) 2006-10-18 2010-03-02 Real D Dual ZScreen® projection
US8155489B2 (en) 2006-11-02 2012-04-10 Nokia Corporation Method for coupling light into a thin planar waveguide
US20080106779A1 (en) 2006-11-02 2008-05-08 Infocus Corporation Laser Despeckle Device
US20080155426A1 (en) 2006-12-21 2008-06-26 Microsoft Corporation Visualization and navigation of search results
US7775387B2 (en) 2006-12-21 2010-08-17 Reald Inc. Eyewear receptacle
US20080151370A1 (en) 2006-12-21 2008-06-26 Real D Method of recycling eyewear
JP5303928B2 (en) 2006-12-26 2013-10-02 東レ株式会社 Reflective polarizing plate, method for producing the same, and liquid crystal display device using the same
US8134434B2 (en) 2007-01-05 2012-03-13 Quantum Design, Inc. Superconducting quick switch
US7808708B2 (en) 2007-02-01 2010-10-05 Reald Inc. Aperture correction for lenticular screens
US7508589B2 (en) 2007-02-01 2009-03-24 Real D Soft aperture correction for lenticular screens
US20080273081A1 (en) 2007-03-13 2008-11-06 Lenny Lipton Business system for two and three dimensional snapshots
US20080226281A1 (en) 2007-03-13 2008-09-18 Real D Business system for three-dimensional snapshots
JP4880746B2 (en) 2007-03-19 2012-02-22 パナソニック株式会社 Laser illumination device and image display device
US8014050B2 (en) 2007-04-02 2011-09-06 Vuzix Corporation Agile holographic optical phased array device and applications
US20080239067A1 (en) 2007-04-02 2008-10-02 Real D Optical concatenation for field sequential stereoscpoic displays
US20080239068A1 (en) 2007-04-02 2008-10-02 Real D Color and polarization timeplexed stereoscopic display apparatus
EP2142953B1 (en) 2007-04-22 2019-06-05 Lumus Ltd A collimating optical device and system
DE102007021036A1 (en) 2007-05-04 2008-11-06 Carl Zeiss Ag Display device and display method for binocular display of a multicolor image
US8493630B2 (en) 2007-05-10 2013-07-23 L-I Indentity Solutions, Inc. Identification reader
US20080297731A1 (en) 2007-06-01 2008-12-04 Microvision, Inc. Apparent speckle reduction apparatus and method for mems laser projection system
US8373744B2 (en) 2007-06-07 2013-02-12 Reald Inc. Stereoplexing for video and film applications
US8487982B2 (en) 2007-06-07 2013-07-16 Reald Inc. Stereoplexing for film and video applications
US20080316303A1 (en) 2007-06-08 2008-12-25 Joseph Chiu Display Device
BRPI0721736B1 (en) 2007-06-11 2023-05-16 Moog Limited TRANSFORMER, MOTOR CONTROLLER AND ENGINE
US7633666B2 (en) 2007-06-20 2009-12-15 Real D ZScreen® modulator with wire grid polarizer for stereoscopic projection
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
JP5092609B2 (en) 2007-08-01 2012-12-05 ソニー株式会社 Image display apparatus and driving method thereof
TWI457821B (en) 2007-08-01 2014-10-21 Silverbrook Res Pty Ltd Interactive platform scanner
US7672549B2 (en) 2007-09-10 2010-03-02 Banyan Energy, Inc. Solar energy concentrator
WO2009034694A1 (en) 2007-09-14 2009-03-19 Panasonic Corporation Projector
WO2009050504A1 (en) 2007-10-18 2009-04-23 Bae Systems Plc Improvements in or relating to head mounted display systems
US7969657B2 (en) 2007-10-25 2011-06-28 University Of Central Florida Research Foundation, Inc. Imaging systems for eyeglass-based display devices
WO2009055070A2 (en) 2007-10-26 2009-04-30 Corporation For Laser Optics Research Laser illuminated backlight for flat panel displays
US20090128495A1 (en) 2007-11-20 2009-05-21 Microsoft Corporation Optical input device
JP4450058B2 (en) 2007-11-29 2010-04-14 ソニー株式会社 Image display device
WO2009077774A1 (en) 2007-12-18 2009-06-25 Bae Systems Plc Improvements in or relating to projection displays
AU2008337292A1 (en) 2007-12-18 2009-06-25 Bae Systems Plc Improvemements in or relating to display projectors
DE102008005817A1 (en) 2008-01-24 2009-07-30 Carl Zeiss Ag Optical display device
US8494229B2 (en) 2008-02-14 2013-07-23 Nokia Corporation Device and method for determining gaze direction
US7884593B2 (en) 2008-03-26 2011-02-08 Quantum Design, Inc. Differential and symmetrical current source
US20090242021A1 (en) 2008-03-31 2009-10-01 Noribachi Llc Solar cell with colorization layer
US20100149073A1 (en) 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
JP5752592B2 (en) 2008-04-11 2015-07-22 シアトル ジェネティックス, インコーポレイテッド Detection and treatment of pancreatic cancer, ovarian cancer, and other cancers
WO2009127849A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Improvements in or relating to waveguides
EP2110701A1 (en) 2008-04-14 2009-10-21 BAE Systems PLC Improvements in or relating to waveguides
WO2009127856A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Lamination of optical substrates
US8382293B2 (en) 2008-05-05 2013-02-26 3M Innovative Properties Company Light source module
JP4518193B2 (en) 2008-06-10 2010-08-04 ソニー株式会社 Optical device and virtual image display device
US8087698B2 (en) 2008-06-18 2012-01-03 L-1 Secure Credentialing, Inc. Personalizing ID document images
US8167173B1 (en) 2008-07-21 2012-05-01 3Habto, Llc Multi-stream draught beer dispensing system
JP4706737B2 (en) 2008-08-18 2011-06-22 ソニー株式会社 Image display device
JP4858512B2 (en) 2008-08-21 2012-01-18 ソニー株式会社 Head-mounted display
WO2010023444A1 (en) 2008-08-27 2010-03-04 Milan Momcilo Popovich Laser display incorporating speckle reduction
US8441731B2 (en) 2008-09-04 2013-05-14 Innovega, Inc. System and apparatus for pixel matrix see-through display panels
US8482858B2 (en) 2008-09-04 2013-07-09 Innovega Inc. System and apparatus for deflection optics
US8142016B2 (en) 2008-09-04 2012-03-27 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
US8520309B2 (en) 2008-09-04 2013-08-27 Innovega Inc. Method and apparatus to process display and non-display information
EP2329302B1 (en) 2008-09-16 2019-11-06 BAE Systems PLC Improvements in or relating to waveguides
US20100079865A1 (en) 2008-09-26 2010-04-01 Nokia Corporation Near-to-eye scanning display with exit-pupil expansion
FR2936613B1 (en) 2008-09-30 2011-03-18 Commissariat Energie Atomique LIGHT COUPLER BETWEEN AN OPTICAL FIBER AND A WAVEGUIDE MADE ON A SOIL SUBSTRATE.
US8132948B2 (en) 2008-10-17 2012-03-13 Microsoft Corporation Method and apparatus for directing light around an obstacle using an optical waveguide for uniform lighting of a cylindrical cavity
JP4636164B2 (en) 2008-10-23 2011-02-23 ソニー株式会社 Head-mounted display
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
WO2010057219A1 (en) 2008-11-17 2010-05-20 Luminit Llc Holographic substrate-guided wave-based see-through display
EP2373924B2 (en) 2008-12-12 2022-01-05 BAE Systems PLC Improvements in or relating to waveguides
WO2010067116A1 (en) 2008-12-12 2010-06-17 Bae Systems Plc Improvements in or relating to waveguides
JP4674634B2 (en) 2008-12-19 2011-04-20 ソニー株式会社 Head-mounted display
EP2219073B1 (en) 2009-02-17 2020-06-03 Covestro Deutschland AG Holographic media and photopolymer compositions
KR20100102774A (en) 2009-03-12 2010-09-27 삼성전자주식회사 Touch sensing system and display apparatus employing the same
US20100231498A1 (en) 2009-03-13 2010-09-16 Microsoft Corporation Image display via multiple light guide sections
US8611014B2 (en) 2009-04-14 2013-12-17 Bae Systems Plc Optical waveguide and display device
EP2244114A1 (en) 2009-04-20 2010-10-27 BAE Systems PLC Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
AU2010240706B2 (en) 2009-04-20 2013-07-25 Snap Inc. Improvements in optical waveguides
WO2010122330A1 (en) 2009-04-20 2010-10-28 Bae Systems Plc Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
US8323854B2 (en) 2009-04-23 2012-12-04 Akonia Holographics, Llc Photopolymer media with enhanced dynamic range
WO2010125378A1 (en) 2009-04-29 2010-11-04 Bae Systems Plc Head mounted display
US20100322555A1 (en) 2009-06-22 2010-12-23 Imec Grating Structures for Simultaneous Coupling to TE and TM Waveguide Modes
US8194325B2 (en) 2009-06-30 2012-06-05 Nokia Corporation Optical apparatus and method
US8184363B2 (en) 2009-08-07 2012-05-22 Northrop Grumman Systems Corporation All-fiber integrated high power coherent beam combination
US8354640B2 (en) 2009-09-11 2013-01-15 Identix Incorporated Optically based planar scanner
US8120548B1 (en) 2009-09-29 2012-02-21 Rockwell Collins, Inc. System, module, and method for illuminating a target on an aircraft windshield
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US9075184B2 (en) 2012-04-17 2015-07-07 Milan Momcilo Popovich Compact edge illuminated diffractive display
EP2497081B1 (en) 2009-11-03 2013-10-16 Bayer Intellectual Property GmbH Method for producing holographic media
WO2011055109A2 (en) 2009-11-03 2011-05-12 Milan Momcilo Popovich Apparatus for reducing laser speckle
RU2542984C2 (en) 2009-11-03 2015-02-27 Байер Матириальсайенс Аг Method of making holographic film
US8698705B2 (en) 2009-12-04 2014-04-15 Vuzix Corporation Compact near eye display with scanned image generation
WO2011073673A1 (en) 2009-12-17 2011-06-23 Bae Systems Plc Projector lens assembly
WO2011085233A1 (en) 2010-01-07 2011-07-14 Holotouch, Inc. Compact holographic human-machine interface
EP2529268A1 (en) 2010-01-25 2012-12-05 BAE Systems Plc Projection display
US8872435B2 (en) 2010-02-16 2014-10-28 Midmark Corporation LED light for examinations and procedures
US8488246B2 (en) 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US8964298B2 (en) 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US8472120B2 (en) 2010-02-28 2013-06-25 Osterhout Group, Inc. See-through near-eye display glasses with a small scale image source
US20120194420A1 (en) * 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with event triggered user action control of ar eyepiece facility
US20120249797A1 (en) * 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US20140063055A1 (en) * 2010-02-28 2014-03-06 Osterhout Group, Inc. Ar glasses specific user interface and control interface based on a connected external device type
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US9753297B2 (en) 2010-03-04 2017-09-05 Nokia Corporation Optical apparatus and method for expanding an exit pupil
EP2365654B1 (en) 2010-03-10 2019-05-29 Ofs Fitel Llc, A Delaware Limited Liability Company Multicore fiber transmission systems and methods
WO2011110821A1 (en) 2010-03-12 2011-09-15 Milan Momcilo Popovich Biometric sensor
EP2372454A1 (en) 2010-03-29 2011-10-05 Bayer MaterialScience AG Photopolymer formulation for producing visible holograms
US8697346B2 (en) 2010-04-01 2014-04-15 The Regents Of The University Of Colorado Diffraction unlimited photolithography
ES2738499T5 (en) 2010-04-23 2023-02-16 Bae Systems Plc Optical waveguide and display device
US8631333B2 (en) 2010-06-07 2014-01-14 Microsoft Corporation Feature set differentiation by tenant and user
JP5488226B2 (en) 2010-06-10 2014-05-14 富士通オプティカルコンポーネンツ株式会社 Mach-Zehnder type optical modulator
US8391656B2 (en) 2010-07-29 2013-03-05 Hewlett-Packard Development Company, L.P. Grating coupled converter
CN103262210B (en) 2010-09-10 2017-09-08 维尔雷思科技有限公司 The device that the method for electrooptical device is manufactured using the layer separated with semiconductor donor and is made up of this method
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US8582206B2 (en) 2010-09-15 2013-11-12 Microsoft Corporation Laser-scanning virtual image display
TWI435391B (en) * 2010-09-16 2014-04-21 Dainippon Screen Mfg Flash lamp annealer
US8376548B2 (en) 2010-09-22 2013-02-19 Vuzix Corporation Near-eye display with on-axis symmetry
US20150015946A1 (en) 2010-10-08 2015-01-15 SoliDDD Corp. Perceived Image Depth for Autostereoscopic Displays
US9507149B2 (en) 2010-10-19 2016-11-29 Bae Systems Plc Image combiner
EP2635610A1 (en) 2010-11-04 2013-09-11 The Regents of the University of Colorado, A Body Corporate Dual-cure polymer systems
EP2450387A1 (en) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer formulation for producing holographic media
EP2450893A1 (en) 2010-11-08 2012-05-09 Bayer MaterialScience AG Photopolymer formula for producing of holographic media with highly networked matrix polymers
US20130021586A1 (en) 2010-12-07 2013-01-24 Laser Light Engines Frequency Control of Despeckling
WO2012088478A1 (en) 2010-12-24 2012-06-28 Chunyu Gao An ergonomic head mounted display device and optical system
JP5741901B2 (en) 2010-12-27 2015-07-01 Dic株式会社 Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device
BRPI1100786A2 (en) 2011-01-19 2015-08-18 André Jacobovitz Photopolymer for volume hologram engraving and process to produce it
US8859412B2 (en) 2011-04-06 2014-10-14 VerLASE TECHNOLOGIES LLC Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same
US9274349B2 (en) 2011-04-07 2016-03-01 Digilens Inc. Laser despeckler based on angular diversity
CN103635891B (en) 2011-05-06 2017-10-27 奇跃公司 The world is presented in a large amount of digital remotes simultaneously
KR20140046419A (en) 2011-05-16 2014-04-18 베르라세 테크놀러지스 엘엘씨 Resonator-enhanced optoelectronic devices and methods of making same
WO2012158950A1 (en) 2011-05-17 2012-11-22 Cross Match Technologies, Inc. Fingerprint sensors
WO2012172295A1 (en) 2011-06-16 2012-12-20 Milan Momcilo Popovich Holographic beam deflector for autostereoscopic displays
US8672486B2 (en) 2011-07-11 2014-03-18 Microsoft Corporation Wide field-of-view projector
US8988474B2 (en) 2011-07-18 2015-03-24 Microsoft Technology Licensing, Llc Wide field-of-view virtual image projector
US8754831B2 (en) 2011-08-02 2014-06-17 Microsoft Corporation Changing between display device viewing modes
US9983361B2 (en) 2011-08-08 2018-05-29 Greg S. Laughlin GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
GB201114149D0 (en) 2011-08-17 2011-10-05 Bae Systems Plc Projection display
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013027006A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Improvements to holographic polymer dispersed liquid crystal materials and devices
GB201114771D0 (en) 2011-08-26 2011-10-12 Bae Systems Plc A display
WO2013034879A1 (en) 2011-09-07 2013-03-14 Milan Momcilo Popovich Method and apparatus for switching electro optical arrays
US20150148728A1 (en) 2011-09-08 2015-05-28 Children's Medical Center Corporation Isolated orthosis for thumb actuation
WO2013039897A2 (en) 2011-09-14 2013-03-21 VerLASE TECHNOLOGIES LLC Phosphors for use with leds and other optoelectronic devices
US8998414B2 (en) 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
GB201117029D0 (en) 2011-10-04 2011-11-16 Bae Systems Plc Optical waveguide and display device
US9215293B2 (en) 2011-10-28 2015-12-15 Magic Leap, Inc. System and method for augmented and virtual reality
CA3024054C (en) 2011-11-23 2020-12-29 Magic Leap, Inc. Three dimensional virtual and augmented reality display system
US8651678B2 (en) 2011-11-29 2014-02-18 Massachusetts Institute Of Technology Polarization fields for dynamic light field display
WO2013096781A1 (en) 2011-12-23 2013-06-27 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including liquid crystal elements
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US9001030B2 (en) 2012-02-15 2015-04-07 Google Inc. Heads up display
US8985803B2 (en) 2012-03-21 2015-03-24 Microsoft Technology Licensing, Llc Freeform-prism eyepiece with illumination waveguide
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
KR102095330B1 (en) 2012-04-05 2020-03-31 매직 립, 인코포레이티드 Wide-field of view (fov) imaging devices with active foveation capability
JP6001320B2 (en) 2012-04-23 2016-10-05 株式会社ダイセル Photosensitive composition for volume hologram recording, volume hologram recording medium using the same, method for producing the same, and hologram recording method
US9389415B2 (en) 2012-04-27 2016-07-12 Leia Inc. Directional pixel for use in a display screen
CN104395814B (en) 2012-04-27 2018-04-27 镭亚股份有限公司 Directional beam for display screen
US20130312811A1 (en) 2012-05-02 2013-11-28 Prism Solar Technologies Incorporated Non-latitude and vertically mounted solar energy concentrators
WO2013175225A1 (en) 2012-05-25 2013-11-28 Cambridge Enterprise Limited Printing of liquid crystal droplet laser resonators on a wet polymer solution and product made therewith
EP2856244B1 (en) 2012-05-31 2021-01-27 LEIA Inc. Directional backlight
US9459461B2 (en) 2012-05-31 2016-10-04 Leia Inc. Directional backlight
US9201270B2 (en) 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
EP2859402B1 (en) 2012-06-01 2017-11-22 LEIA Inc. Directional backlight with a modulation layer
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
WO2013188464A1 (en) 2012-06-11 2013-12-19 Magic Leap, Inc. Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9098111B2 (en) 2012-06-22 2015-08-04 Microsoft Technology Licensing, Llc Focus guidance within a three-dimensional interface
US9841537B2 (en) 2012-07-02 2017-12-12 Nvidia Corporation Near-eye microlens array displays
US9367036B2 (en) 2012-07-03 2016-06-14 Samsung Electronics Co., Ltd. High speed hologram recording apparatus
KR20150084784A (en) 2012-09-04 2015-07-22 솔리디디디 코포레이션 Switchable lenticular array for autostereoscopic video displays
US8731350B1 (en) 2012-09-11 2014-05-20 The United States Of America As Represented By The Secretary Of The Navy Planar-waveguide Bragg gratings in curved waveguides
US10025089B2 (en) 2012-10-05 2018-07-17 Microsoft Technology Licensing, Llc Backlight for viewing three-dimensional images from a display from variable viewing angles
GB201219126D0 (en) 2012-10-24 2012-12-05 Oxford Energy Technologies Ltd Low refractive index particles
JP2014089294A (en) 2012-10-30 2014-05-15 Toshiba Corp Liquid crystal lens device and method for driving the same
WO2014080155A1 (en) 2012-11-20 2014-05-30 Milan Momcilo Popovich Waveguide device for homogenizing illumination light
WO2014085029A1 (en) 2012-11-28 2014-06-05 VerLASE TECHNOLOGIES LLC Optically surface-pumped edge-emitting devices and systems and methods of making same
US20140146394A1 (en) 2012-11-28 2014-05-29 Nigel David Tout Peripheral display for a near-eye display device
WO2014091200A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US9664824B2 (en) 2012-12-10 2017-05-30 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
GB2508661A (en) 2012-12-10 2014-06-11 Bae Systems Plc Improved display
US8937771B2 (en) 2012-12-12 2015-01-20 Microsoft Corporation Three piece prism eye-piece
US10146053B2 (en) 2012-12-19 2018-12-04 Microsoft Technology Licensing, Llc Multiplexed hologram tiling in a waveguide display
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
GB2509536A (en) 2013-01-08 2014-07-09 Bae Systems Plc Diffraction grating
EP2943823B1 (en) 2013-01-08 2025-05-07 Snap Inc. Diffraction gratings and the manufacture thereof
US9842562B2 (en) 2013-01-13 2017-12-12 Qualcomm Incorporated Dynamic zone plate augmented vision eyeglasses
WO2014113506A1 (en) 2013-01-15 2014-07-24 Magic Leap, Inc. Ultra-high resolution scanning fiber display
US20140204437A1 (en) 2013-01-23 2014-07-24 Akonia Holographics Llc Dynamic aperture holographic multiplexing
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
US9298168B2 (en) 2013-01-31 2016-03-29 Leia Inc. Multiview 3D wrist watch
PT2951649T (en) 2013-01-31 2019-12-05 Leia Inc Multiview 3d wrist watch
US20140240842A1 (en) 2013-02-22 2014-08-28 Ian Nguyen Alignment-insensitive image input coupling
IL308285B2 (en) 2013-03-11 2024-11-01 Magic Leap Inc System and method for augmented and virtual reality
US20160054563A9 (en) 2013-03-14 2016-02-25 Honda Motor Co., Ltd. 3-dimensional (3-d) navigation
US20140268277A1 (en) 2013-03-14 2014-09-18 Andreas Georgiou Image correction using reconfigurable phase mask
BR112015022695B1 (en) 2013-03-15 2021-02-02 Station 4 Llc device and method for flexing a tab
GB2512077B (en) 2013-03-19 2019-10-23 Univ Erasmus Med Ct Rotterdam Intravascular optical imaging system
US9946069B2 (en) 2013-03-28 2018-04-17 Bae Systems Plc Displays
GB201305691D0 (en) 2013-03-28 2013-05-15 Bae Systems Plc Improvements in and relating to displays
WO2014176695A1 (en) 2013-04-30 2014-11-06 Lensvector Inc. Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor
US9488836B2 (en) 2013-05-02 2016-11-08 Microsoft Technology Licensing, Llc Spherical interface for binocular display
USD701206S1 (en) 2013-06-04 2014-03-18 Oculus VR, Inc. Virtual reality headset
US9639985B2 (en) 2013-06-24 2017-05-02 Microsoft Technology Licensing, Llc Active binocular alignment for near eye displays
US10228561B2 (en) 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US20140375542A1 (en) 2013-06-25 2014-12-25 Steve Robbins Adjusting a near-eye display device
US9625723B2 (en) 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
ITTO20130541A1 (en) 2013-06-28 2014-12-29 St Microelectronics Srl SEMICONDUCTOR DEVICE INTEGRATING A RESISTIVE PARTNER AND PROCESS OF MANUFACTURING A SEMICONDUCTOR DEVICE
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
US10295338B2 (en) 2013-07-12 2019-05-21 Magic Leap, Inc. Method and system for generating map data from an image
PT2938919T (en) 2013-07-30 2019-01-21 Leia Inc Multibeam diffraction grating-based backlighting
US10345903B2 (en) 2013-07-30 2019-07-09 Microsoft Technology Licensing, Llc Feedback for optic positioning in display devices
US9164290B2 (en) 2013-11-06 2015-10-20 Microsoft Corporation Grating configurations for a tiled waveguide display
DE102013223964B3 (en) 2013-11-22 2015-05-13 Carl Zeiss Ag Imaging optics and display device with such imaging optics
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
CN107329260B (en) 2013-11-27 2021-07-16 奇跃公司 Virtual and Augmented Reality Systems and Methods
US9874667B2 (en) 2013-12-19 2018-01-23 Bae Systems Plc Waveguides
CN106030376B (en) 2013-12-19 2019-06-07 Bae系统公共有限公司 In waveguide and relevant improvement
US9459451B2 (en) 2013-12-26 2016-10-04 Microsoft Technology Licensing, Llc Eye tracking apparatus, method and system
WO2015114743A1 (en) 2014-01-29 2015-08-06 日立コンシューマエレクトロニクス株式会社 Optical information device and optical information processing method
WO2015117039A1 (en) 2014-01-31 2015-08-06 Magic Leap, Inc. Multi-focal display system and method
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
JP6201836B2 (en) 2014-03-14 2017-09-27 ソニー株式会社 Optical device and method for assembling the same, hologram diffraction grating, display device and alignment device
WO2015145119A1 (en) 2014-03-24 2015-10-01 Wave Optics Ltd Display system
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
NZ764905A (en) 2014-05-30 2022-05-27 Magic Leap Inc Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
TWI540401B (en) 2014-06-26 2016-07-01 雷亞有限公司 Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch
WO2016010289A1 (en) 2014-07-15 2016-01-21 Samsung Electronics Co., Ltd. Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
ES2856011T3 (en) 2014-07-30 2021-09-27 Leia Inc Multi-beam diffraction grating-based color backlighting
GB2529003B (en) 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US9377623B2 (en) 2014-08-11 2016-06-28 Microsoft Technology Licensing, Llc Waveguide eye tracking employing volume Bragg grating
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
JP6863896B2 (en) 2014-09-29 2021-04-21 マジック リープ,インコーポレイティド Structure and method to output light of different wavelengths from the waveguide
JP2016085430A (en) 2014-10-29 2016-05-19 セイコーエプソン株式会社 Virtual image display device
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for fabricating substrate-guided optical device
EP3243093B1 (en) 2015-01-10 2025-05-07 LEIA Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
ES2959422T3 (en) 2015-01-10 2024-02-26 Leia Inc Network coupled light guide
JP6567058B2 (en) 2015-01-10 2019-08-28 レイア、インコーポレイテッドLeia Inc. 2D / 3D (2D / 3D) switchable display backlight and electronic display
ES2912883T3 (en) 2015-01-10 2022-05-30 Leia Inc Multi-beam grid-based backlighting and an electronic display method of operation
CN107209415B (en) 2015-01-19 2021-06-01 镭亚股份有限公司 Unidirectional grating-based backlight using reflective islands
KR102243288B1 (en) 2015-01-28 2021-04-22 레이아 인코포레이티드 Three-dimensional (3d) electronic display
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US10088689B2 (en) 2015-03-13 2018-10-02 Microsoft Technology Licensing, Llc Light engine with lenticular microlenslet arrays
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US20160274362A1 (en) 2015-03-20 2016-09-22 Magic Leap, Inc. Light combiner for augmented reality display systems
EP3295668A1 (en) 2015-05-08 2018-03-21 BAE Systems PLC Improvements in and relating to displays
EP3792682B1 (en) 2015-06-15 2023-08-09 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
WO2017015302A1 (en) 2015-07-20 2017-01-26 Magic Leap, Inc. Collimating fiber scanner design with inward pointing angles in virtual/augmented reality system
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10180520B2 (en) 2015-08-24 2019-01-15 Akonia Holographics, Llc Skew mirrors, methods of use, and methods of manufacture
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10067346B2 (en) 2015-10-23 2018-09-04 Microsoft Technology Licensing, Llc Holographic display
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US9791696B2 (en) 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
US9915825B2 (en) 2015-11-10 2018-03-13 Microsoft Technology Licensing, Llc Waveguides with embedded components to improve intensity distributions
WO2017094129A1 (en) 2015-12-02 2017-06-08 株式会社日立製作所 Holographic optical information reproducing device
US9800607B2 (en) 2015-12-21 2017-10-24 Bank Of America Corporation System for determining effectiveness and allocation of information security technologies
US10038710B2 (en) 2015-12-22 2018-07-31 Sap Se Efficient identification of log events in enterprise threat detection
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
US10025093B2 (en) 2016-04-13 2018-07-17 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander
KR102315190B1 (en) 2016-04-21 2021-10-19 배 시스템즈 피엘시 Display with meta-material coated waveguide
GB201609027D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
GB201609026D0 (en) 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
GB2550958B (en) 2016-06-03 2022-02-23 Bae Systems Plc Waveguide structure
GB2556938B (en) 2016-11-28 2022-09-07 Bae Systems Plc Multiple waveguide structure for colour displays
CN110383117A (en) 2017-01-26 2019-10-25 迪吉伦斯公司 Plumbing with uniform output illumination
WO2018150163A1 (en) 2017-02-14 2018-08-23 Bae Systems Plc Waveguide structure
CN111386495B (en) 2017-10-16 2022-12-09 迪吉伦斯公司 System and method for multiplying image resolution of a pixelated display
US11262581B2 (en) 2017-10-19 2022-03-01 Bae Systems Plc Axially asymmetric image source for head-up displays
KR102662955B1 (en) 2017-12-21 2024-05-02 스냅 아이엔씨 wearable devices
EP3710894A4 (en) 2018-01-08 2021-10-27 Digilens Inc. METHOD FOR MANUFACTURING LIGHT WAVE GUIDES
US20190212596A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Holographic Material Systems and Waveguides Incorporating Low Functionality Monomers
CN111566571B (en) 2018-01-08 2022-05-13 迪吉伦斯公司 Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US20190212597A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Low Haze Liquid Crystal Materials
US20190212589A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Liquid Crystal Materials and Formulations
WO2019135837A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Systems and methods for manufacturing waveguide cells
WO2019171038A1 (en) 2018-03-07 2019-09-12 Bae Systems Plc Waveguide structure for head up displays
US12222503B2 (en) 2019-04-18 2025-02-11 Snap Inc. Optical arrangement for a display
WO2021032983A1 (en) 2019-08-21 2021-02-25 Bae Systems Plc Manufacture of surface relief structures
BR112022003104A2 (en) 2019-08-21 2022-05-17 Bae Systems Plc optical waveguide
BR112022004171A2 (en) 2019-09-06 2022-05-31 Bae Systems Plc Waveguide and method for making a waveguide master grid tool

Patent Citations (719)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545778B2 (en) 1909-05-10 2003-04-08 Asahi Glass Company, Limited Holographic display device and method for producing a transmission diffusion hologram suitable for it
US2141884A (en) 1936-11-12 1938-12-27 Zeiss Carl Fa Photographic objective
US3620601A (en) 1969-10-24 1971-11-16 Leonard Cyril Waghorn Head-up display apparatus
US3851303A (en) 1972-11-17 1974-11-26 Sundstrand Data Control Head up display and pitch generator
US3885095A (en) 1973-04-30 1975-05-20 Hughes Aircraft Co Combined head-up multisensor display
US4082432A (en) 1975-01-09 1978-04-04 Sundstrand Data Control, Inc. Head-up visual display system using on-axis optics with image window at the focal plane of the collimating mirror
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
US4232943A (en) 1975-09-13 1980-11-11 Pilkington P. E. Limited Modified Petzval lens
US4099841A (en) 1976-06-30 1978-07-11 Elliott Brothers (London) Limited Head up displays using optical combiner with three or more partially reflective films
US4178074A (en) 1977-03-28 1979-12-11 Elliott Brothers (London) Limited Head-up displays
US4218111A (en) 1978-07-10 1980-08-19 Hughes Aircraft Company Holographic head-up displays
GB2115178A (en) 1978-12-21 1983-09-01 Redifon Simulation Ltd Projection screen for display apparatus
US4309070A (en) 1979-01-19 1982-01-05 Smiths Industries Limited Display apparatus
US4714320A (en) 1980-08-21 1987-12-22 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Display systems
US4743083A (en) 1985-12-30 1988-05-10 Schimpe Robert M Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices
US4647967A (en) 1986-01-28 1987-03-03 Sundstrand Data Control, Inc. Head-up display independent test site
US4799765A (en) 1986-03-31 1989-01-24 Hughes Aircraft Company Integrated head-up and panel display unit
US5629259A (en) 1986-04-11 1997-05-13 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
US6917375B2 (en) 1986-04-11 2005-07-12 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
US5707925A (en) 1986-04-11 1998-01-13 Dai Nippon Insatsu Kabushiki Kaisha Image formation on objective bodies
US4749256A (en) 1987-02-13 1988-06-07 Gec Avionics, Inc. Mounting apparatus for head-up display
US5124821A (en) 1987-03-31 1992-06-23 Thomson Csf Large-field holographic binocular helmet visor
US4775218A (en) 1987-04-17 1988-10-04 Flight Dynamics, Inc. Combiner alignment detector for head up display system
US20050259302A9 (en) 1987-09-11 2005-11-24 Metz Michael H Holographic light panels and flat panel display systems and method and apparatus for making same
US4946245A (en) 1987-10-01 1990-08-07 British Telecommunications Public Limited Company Optical filters
US5079416A (en) 1987-10-27 1992-01-07 Night Vision General Partnership Compact see-through night vision goggles
US4854688A (en) 1988-04-14 1989-08-08 Honeywell Inc. Optical arrangement
US5363220A (en) 1988-06-03 1994-11-08 Canon Kabushiki Kaisha Diffraction device
US5007711A (en) 1988-11-30 1991-04-16 Flight Dynamics, Inc. Compact arrangement for head-up display components
US4928301A (en) 1988-12-30 1990-05-22 Bell Communications Research, Inc. Teleconferencing terminal with camera behind display screen
US5035734A (en) 1989-04-13 1991-07-30 Oy Nokia Ab Method of producing optical waveguides
US5183545A (en) 1989-04-28 1993-02-02 Branca Phillip A Electrolytic cell with composite, porous diaphragm
US5076664A (en) 1989-05-23 1991-12-31 Thomson-Csf Optical device enabling the introduction of a collimated image in an observer's field of vision
US5369511A (en) 1989-08-21 1994-11-29 Amos; Carl R. Methods of and apparatus for manipulating electromagnetic phenomenon
US5210624A (en) 1989-09-19 1993-05-11 Fujitsu Limited Heads-up display
US5109465A (en) 1990-01-16 1992-04-28 Summit Technology, Inc. Beam homogenizer
US5661577A (en) 1990-04-06 1997-08-26 University Of Southern California Incoherent/coherent double angularly multiplexed volume holographic optical elements
US5153751A (en) 1990-04-27 1992-10-06 Central Glass Company, Limited Holographic display element
US5187597B1 (en) 1990-06-29 1996-05-14 Fujitsu Ltd Display unit
US5187597A (en) 1990-06-29 1993-02-16 Fujitsu Limited Display unit
US5160523A (en) 1990-07-10 1992-11-03 Oy Nokia Ab Method of producing optical waveguides by an ion exchange technique on a glass substrate
US5151958A (en) 1990-08-23 1992-09-29 Oy Nokia Ab Adaptor device for coupling together optical waveguides produced by k-na ion exchange with optical waveguides produced by ag-na ion exchange
US20150243068A1 (en) 1990-12-07 2015-08-27 Dennis J. Solomon Integrated 3d-d2 visual effects dispay
US5159445A (en) 1990-12-31 1992-10-27 At&T Bell Laboratories Teleconferencing video display system for improving eye contact
US5867238A (en) 1991-01-11 1999-02-02 Minnesota Mining And Manufacturing Company Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same
US5117285A (en) 1991-01-15 1992-05-26 Bell Communications Research Eye contact apparatus for video conferencing
US5317405A (en) 1991-03-08 1994-05-31 Nippon Telegraph And Telephone Corporation Display and image capture apparatus which enables eye contact
US5665494A (en) 1991-04-17 1997-09-09 Nippon Paint Company, Ltd. Photosensitive composition for volume hologram recording
US5691795A (en) 1991-05-02 1997-11-25 Kent State University Polymer stabilized liquid crystalline light modulating device and material
US5695682A (en) 1991-05-02 1997-12-09 Kent State University Liquid crystalline light modulating device and material
US5218360A (en) 1991-05-23 1993-06-08 Trw Inc. Millimeter-wave aircraft landing and taxing system
US5289315A (en) 1991-05-29 1994-02-22 Central Glass Company, Limited Head-up display system including a uniformly reflecting layer and a selectively reflecting layer
FR2677463A1 (en) 1991-06-04 1992-12-11 Thomson Csf Collimated display having wide horizontal and vertical fields, in particular for simulators
US5764414A (en) 1991-08-19 1998-06-09 Hughes Aircraft Company Biocular display system using binary optics
US5604611A (en) 1991-10-09 1997-02-18 Nippondenso Co., Ltd. Hologram
US5726782A (en) 1991-10-09 1998-03-10 Nippondenso Co., Ltd. Hologram and method of fabricating
US5633100A (en) 1991-11-27 1997-05-27 E. I. Du Pont De Nemours And Company Holographic imaging using filters
US5303085A (en) 1992-02-07 1994-04-12 Rallison Richard D Optically corrected helmet mounted display
US6524771B2 (en) 1992-06-30 2003-02-25 Nippon Sheet Glass Co., Ltd. Optical recording film and process for production thereof
US5510913A (en) 1992-07-23 1996-04-23 Central Glass Company, Limited Head-up display system where polarized light from a display impinges on a glass plate containing twisted nematic liquid crystal at the plate's Brewsters angle
US5532736A (en) 1992-07-31 1996-07-02 Nippon Telegraph And Telephone Corporation Display and image capture apparatus
US5243413A (en) 1992-09-02 1993-09-07 At&T Bell Laboratories Color parallax-free camera and display
US5898511A (en) 1992-09-03 1999-04-27 Nippondenso Co., Ltd. Process for making holograms and holography device
US7579119B2 (en) 1992-11-27 2009-08-25 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US7479354B2 (en) 1992-11-27 2009-01-20 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US7618750B2 (en) 1992-11-27 2009-11-17 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US6127066A (en) 1992-11-27 2000-10-03 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US6340540B1 (en) 1992-11-27 2002-01-22 Dai Nippon Printing Co., Ltd. Hologram recording sheet holographic optical element using said sheet and its production process
US7132200B1 (en) 1992-11-27 2006-11-07 Dai Nippon Printing Co., Ltd. Hologram recording sheet, holographic optical element using said sheet, and its production process
US5760931A (en) 1992-12-14 1998-06-02 Nippondenso Co., Ltd. Image display unit
US5341230A (en) 1992-12-22 1994-08-23 Hughes Aircraft Company Waveguide holographic telltale display
US5418584A (en) 1992-12-31 1995-05-23 Honeywell Inc. Retroreflective array virtual image projection screen
US5710645A (en) 1993-01-29 1998-01-20 Imedge Technology, Inc. Grazing incidence holograms and system and method for producing the same
US5822089A (en) 1993-01-29 1998-10-13 Imedge Technology Inc. Grazing incidence holograms and system and method for producing the same
US5351151A (en) 1993-02-01 1994-09-27 Levy George S Optical filter using microlens arrays
US5748272A (en) 1993-02-22 1998-05-05 Nippon Telegraph And Telephone Corporation Method for making an optical device using a laser beam interference pattern
US5682255A (en) 1993-02-26 1997-10-28 Yeda Research & Development Co. Ltd. Holographic optical devices for the transmission of optical signals of a plurality of channels
US5359362A (en) 1993-03-30 1994-10-25 Nec Usa, Inc. Videoconference system using a virtual camera image
US5496621A (en) 1993-04-16 1996-03-05 Central Glass Company, Limited Glass pane with reflectance reducing coating and combiner of head-up display system
US5471326A (en) 1993-04-30 1995-11-28 Northrop Grumman Corporation Holographic laser scanner and rangefinder
US5579026A (en) 1993-05-14 1996-11-26 Olympus Optical Co., Ltd. Image display apparatus of head mounted type
US5400069A (en) 1993-06-16 1995-03-21 Bell Communications Research, Inc. Eye contact video-conferencing system and screen
US5742262A (en) 1993-06-23 1998-04-21 Olympus Optical Co., Ltd. Image display apparatus
US5537232A (en) 1993-10-05 1996-07-16 In Focus Systems, Inc. Reflection hologram multiple-color filter array formed by sequential exposure to a light source
US5686975A (en) 1993-10-18 1997-11-11 Stereographics Corporation Polarel panel for stereoscopic displays
US5408346A (en) 1993-10-20 1995-04-18 Kaiser Electro-Optics, Inc. Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector
US5646785A (en) 1993-11-04 1997-07-08 Elbit Ltd. Helmet with wind resistant visor
US5991087A (en) 1993-11-12 1999-11-23 I-O Display System Llc Non-orthogonal plate in a virtual reality or heads up display
US5438357A (en) 1993-11-23 1995-08-01 Mcnelley; Steve H. Image manipulating teleconferencing system
US5757546A (en) 1993-12-03 1998-05-26 Stereographics Corporation Electronic stereoscopic viewer
US5524272A (en) 1993-12-22 1996-06-04 Gte Airfone Incorporated Method and apparatus for distributing program material
US6356674B1 (en) 1994-01-21 2002-03-12 Sharp Kabushiki Kaisha Electrically controllable grating, and optical elements having an electrically controllable grating
US5677797A (en) 1994-02-04 1997-10-14 U.S. Precision Lens Inc. Method for correcting field curvature
US5648857A (en) 1994-02-18 1997-07-15 Nippondenso Co., Ltd. Manufacturing method for hologram which can prevent the formation of ghant holograms due to noise light
US5631107A (en) 1994-02-18 1997-05-20 Nippondenso Co., Ltd. Method for producing optical member
US5731060A (en) 1994-03-31 1998-03-24 Central Glass Company, Limited Holographic laminate
US5790288A (en) 1994-04-15 1998-08-04 Nokia Telecommunications Oy Transport network with high transmission capacity for telecommunications
US5473222A (en) 1994-07-05 1995-12-05 Delco Electronics Corporation Active matrix vacuum fluorescent display with microprocessor integration
US5892598A (en) 1994-07-15 1999-04-06 Matsushita Electric Industrial Co., Ltd. Head up display unit, liquid crystal display panel, and method of fabricating the liquid crystal display panel
US5612733A (en) 1994-07-18 1997-03-18 C-Phone Corporation Optics orienting arrangement for videoconferencing system
US5606433A (en) 1994-08-31 1997-02-25 Hughes Electronics Lamination of multilayer photopolymer holograms
US5903395A (en) 1994-08-31 1999-05-11 I-O Display Systems Llc Personal visual display system
US5661603A (en) 1994-09-05 1997-08-26 Olympus Optical Co., Ltd. Image display apparatus including a first and second prism array
US5727098A (en) 1994-09-07 1998-03-10 Jacobson; Joseph M. Oscillating fiber optic display and imager
US6522794B1 (en) * 1994-09-09 2003-02-18 Gemfire Corporation Display panel with electrically-controlled waveguide-routing
US6167169A (en) * 1994-09-09 2000-12-26 Gemfire Corporation Scanning method and architecture for display
US5724463A (en) * 1994-09-09 1998-03-03 Deacon Research Projection display with electrically controlled waveguide-routing
US6118908A (en) * 1994-09-09 2000-09-12 Gemfire Corporation Integrated optical device with phosphor in substrate pit
US5949302A (en) 1994-09-15 1999-09-07 Nokia Telecommunications Oy Method for tuning a summing network of a base station, and a bandpass filter
US5572248A (en) 1994-09-19 1996-11-05 Teleport Corporation Teleconferencing method and system for providing face-to-face, non-animated teleconference environment
US5835661A (en) 1994-10-19 1998-11-10 Tai; Ping-Kaung Light expanding system for producing a linear or planar light beam from a point-like light source
US5500671A (en) 1994-10-25 1996-03-19 At&T Corp. Video conference system and method of providing parallax correction and a sense of presence
US5686931A (en) 1994-11-14 1997-11-11 Rolic Ag Device for displaying colors produced by controllable cholesteric color filters
US5625495A (en) 1994-12-07 1997-04-29 U.S. Precision Lens Inc. Telecentric lens systems for forming an image of an object composed of pixels
US5745301A (en) 1994-12-19 1998-04-28 Benopcon, Inc. Variable power lens systems for producing small images
US5748277A (en) 1995-02-17 1998-05-05 Kent State University Dynamic drive method and apparatus for a bistable liquid crystal display
US5731853A (en) 1995-02-24 1998-03-24 Matsushita Electric Industrial Co., Ltd. Display device
US5706136A (en) 1995-02-28 1998-01-06 Canon Kabushiki Kaisha Optical system, and image observing apparatus and image pickup apparatus using it
US5583795A (en) 1995-03-17 1996-12-10 The United States Of America As Represented By The Secretary Of The Army Apparatus for measuring eye gaze and fixation duration, and method therefor
US6259559B1 (en) 1995-03-28 2001-07-10 Central Glass Company, Limited Glass arrangement including an outside glass plate, a polarization direction changing film and an adhesive layer therebetween, and an inside glass layer
US5621529A (en) 1995-04-05 1997-04-15 Intelligent Automation Systems, Inc. Apparatus and method for projecting laser pattern with reduced speckle noise
US5619254A (en) 1995-04-11 1997-04-08 Mcnelley; Steve H. Compact teleconferencing eye contact terminal
US5668614A (en) 1995-05-01 1997-09-16 Kent State University Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation
US5812608A (en) 1995-05-05 1998-09-22 Nokia Technology Gmbh Method and circuit arrangement for processing received signal
US5822127A (en) 1995-05-15 1998-10-13 Hughes Electronics Low-cost light-weight head-mounted virtual-image projection display with low moments of inertia and low center of gravity
US5831700A (en) 1995-05-19 1998-11-03 Kent State University Polymer stabilized four domain twisted nematic liquid crystal display
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US5929946A (en) 1995-05-23 1999-07-27 Colorlink, Inc. Retarder stack for preconditioning light for a modulator having modulation and isotropic states of polarization
US5680231A (en) 1995-06-06 1997-10-21 Hughes Aircraft Company Holographic lenses with wide angular and spectral bandwidths for use in a color display device
US5694230A (en) 1995-06-07 1997-12-02 Digital Optics Corp. Diffractive optical elements as combiners
US5841507A (en) 1995-06-07 1998-11-24 Barnes; Elwood E. Light intensity reduction apparatus and method
US5892599A (en) 1995-07-07 1999-04-06 Advanced Precision Technology, Inc. Miniature fingerprint sensor using a trapezoidal prism and a holographic optical element
US5706108A (en) 1995-07-20 1998-01-06 Nippondenso Co., Ltd. Hologram display apparatus including a curved surface of constant curvature
US5926147A (en) 1995-08-25 1999-07-20 Nokia Telecommunications Oy Planar antenna design
US5808804A (en) 1995-09-21 1998-09-15 U.S. Precision Lens Inc. Projection television lens system
US5907436A (en) 1995-09-29 1999-05-25 The Regents Of The University Of California Multilayer dielectric diffraction gratings
US5612734A (en) 1995-11-13 1997-03-18 Bell Communications Research, Inc. Eye contact apparatus employing a directionally transmissive layer for video conferencing
US5724189A (en) 1995-12-15 1998-03-03 Mcdonnell Douglas Corporation Methods and apparatus for creating an aspheric optical element and the aspheric optical elements formed thereby
US6042947A (en) 1995-12-25 2000-03-28 Central Glass Company, Limited Laminate including optically functioning film
US5668907A (en) 1996-01-11 1997-09-16 Associated Universities, Inc. Thin optical display panel
US5701132A (en) 1996-03-29 1997-12-23 University Of Washington Virtual retinal display with expanded exit pupil
US5945893A (en) 1996-03-29 1999-08-31 Nokia Moile Phones Limited Acoustic wave impedance element ladder filter having a reflector integral with a busbar
US6043585A (en) 1996-03-29 2000-03-28 Nokia Mobile Phones Limited Acoustic wave filter
US5841587A (en) 1996-04-29 1998-11-24 U.S. Precision Lens Inc. LCD projection lens
US5729242A (en) 1996-05-08 1998-03-17 Hughes Electronics Dual PDLC-projection head-up display
US5870228A (en) 1996-05-24 1999-02-09 U.S. Precision Lens Inc. Projection lenses having larger back focal length to focal length ratios
US6550949B1 (en) 1996-06-13 2003-04-22 Gentex Corporation Systems and components for enhancing rear vision from a vehicle
US20060114564A1 (en) 1996-07-12 2006-06-01 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US20060119916A1 (en) 1996-07-12 2006-06-08 Science Applications International Corporation Switchable polymer-dispersed liquid crystal optical elements
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
EP0822441A2 (en) 1996-08-01 1998-02-04 Sharp Kabushiki Kaisha Optical device and directional display
US5847787A (en) 1996-08-05 1998-12-08 Motorola, Inc. Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles
US5985422A (en) 1996-08-08 1999-11-16 Pelikan Produktions Ag Thermo-transfer color ribbon for luminescent lettering
US5857043A (en) 1996-08-12 1999-01-05 Corning Incorporated Variable period amplitude grating mask and method for use
US5900989A (en) 1996-08-16 1999-05-04 U.S. Precision Lens Inc. Mini-zoom projection lenses for use with pixelized panels
US5856842A (en) 1996-08-26 1999-01-05 Kaiser Optical Systems Corporation Apparatus facilitating eye-contact video communications
US5917459A (en) 1996-09-07 1999-06-29 Korea Institute Of Science And Technology Holographic head up display
US5745266A (en) 1996-10-02 1998-04-28 Raytheon Company Quarter-wave film for brightness enhancement of holographic thin taillamp
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
JP2000511306A (en) 1996-10-08 2000-08-29 ザ マイクロオプティカル コーポレイション Image combining system for eyeglasses and face mask
US6504518B1 (en) 1996-10-09 2003-01-07 Shimadzu Corporation Head-up display
US5999314A (en) 1996-11-20 1999-12-07 Central Glass Company Limited Optical display system having a Brewster's angle regulating film
US5962147A (en) 1996-11-26 1999-10-05 General Latex And Chemical Corporation Method of bonding with a natural rubber latex and laminate produced
US6864927B1 (en) 1996-12-31 2005-03-08 Micron Technology, Inc. Head up display with adjustable transparency screen
US5907416A (en) 1997-01-27 1999-05-25 Raytheon Company Wide FOV simulator heads-up display with selective holographic reflector combined
US5790314A (en) 1997-01-31 1998-08-04 Jds Fitel Inc. Grin lensed optical device
US5875012A (en) 1997-01-31 1999-02-23 Xerox Corporation Broadband reflective display, and methods of forming the same
US5877826A (en) 1997-02-06 1999-03-02 Kent State University Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform
US5900987A (en) 1997-02-13 1999-05-04 U.S. Precision Lens Inc Zoom projection lenses for use with pixelized panels
US5798641A (en) 1997-03-17 1998-08-25 Quantum Design, Inc. Torque magnetometer utilizing integrated piezoresistive levers
US6321069B1 (en) 1997-04-30 2001-11-20 Nokia Telecommunications Oy Arrangement for reducing intermodulation distortion of radio frequency signals
US5868951A (en) 1997-05-09 1999-02-09 University Technology Corporation Electro-optical device and method
US6366378B1 (en) 1997-05-26 2002-04-02 Nokia Networks Oy Optical multiplexing and demultiplexing
US6608720B1 (en) 1997-06-02 2003-08-19 Robin John Freeman Optical instrument and optical element thereof
US6317227B1 (en) 1997-06-25 2001-11-13 Denso Corporation Hologram
US6075626A (en) 1997-06-25 2000-06-13 Denso Corporation Hologram
US5930433A (en) 1997-07-23 1999-07-27 Hewlett-Packard Company Waveguide array document scanner
US6259423B1 (en) 1997-08-26 2001-07-10 Kabushiki Kaisha Toyoto Chuo Kenkyusho Display device using organic electroluminescent elements
US6351333B2 (en) 1997-09-16 2002-02-26 Canon Kabushiki Kaisha Optical element and optical system having the same
US6285813B1 (en) 1997-10-03 2001-09-04 Georgia Tech Research Corporation Diffractive grating coupler and method
US5903396A (en) 1997-10-17 1999-05-11 I/O Display Systems, Llc Intensified visual display
US5929960A (en) 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US6486997B1 (en) 1997-10-28 2002-11-26 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter
US6721096B2 (en) 1997-10-28 2004-04-13 3M Innovative Properties Company Polarizing beam splitter
US6864861B2 (en) 1997-12-31 2005-03-08 Brillian Corporation Image generator having a miniature display device
US6195206B1 (en) 1998-01-13 2001-02-27 Elbit Systems Ltd. Optical system for day and night use
US20070012777A1 (en) 1998-03-24 2007-01-18 Tsikos Constantine J Planar laser illumination and imaging (PLIIM) systems with integrated despeckling mechanisms provided therein
WO1999052002A1 (en) 1998-04-02 1999-10-14 Elop Electro-Optics Industries Ltd. Holographic optical devices
US6176837B1 (en) 1998-04-17 2001-01-23 Massachusetts Institute Of Technology Motion tracking system
US6409687B1 (en) 1998-04-17 2002-06-25 Massachusetts Institute Of Technology Motion tracking system
US7395181B2 (en) 1998-04-17 2008-07-01 Massachusetts Institute Of Technology Motion tracking system
US6317083B1 (en) 1998-05-29 2001-11-13 Nokia Mobile Phones Limited Antenna having a feed and a shorting post connected between reference plane and planar conductor interacting to form a transmission line
US6885483B2 (en) 1998-07-07 2005-04-26 Denso Corporation Hologram screen and a method of producing the same
US6137630A (en) 1998-07-13 2000-10-24 Industrial Technology Research Institute Thin-film multilayer systems for use in a head-up display
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6249386B1 (en) 1998-07-28 2001-06-19 Elbit Systems Ltd. Non-adjustable helmet mounted optical systems
US20060159864A1 (en) 1998-07-29 2006-07-20 Science Applications International Corporation Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects
US6587619B1 (en) 1998-08-04 2003-07-01 Kabushiki Kaisha Toshiba Optical functional devices their manufacturing method and optical communication system
US7205964B1 (en) 1998-09-02 2007-04-17 Seiko Epson Corporation Light source and display device
US20020127497A1 (en) 1998-09-10 2002-09-12 Brown Daniel J. W. Large diffraction grating for gas discharge laser
US6327089B1 (en) 1998-09-30 2001-12-04 Central Glass Company, Limited Laminated transparent structure for reflective display
WO2000023832A1 (en) 1998-10-16 2000-04-27 Digilens Inc. Holographic display system
US6359730B2 (en) 1998-10-21 2002-03-19 Nokia Network Oy Amplification of an optical WDM signal
US6534977B1 (en) * 1998-10-21 2003-03-18 Paul Duncan Methods and apparatus for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets
US6567014B1 (en) 1998-11-05 2003-05-20 Rockwell Collins, Inc. Aircraft head up display system
JP2002529790A (en) 1998-11-12 2002-09-10 デジレンズ・インコーポレイテッド Head-mounted display device for viewing images
WO2000028369A2 (en) 1998-11-12 2000-05-18 Digilens, Inc. Head mounted apparatus for viewing an image
US6222675B1 (en) 1998-12-01 2001-04-24 Kaiser Electro-Optics, Inc. Area of interest head-mounted display using low resolution, wide angle; high resolution, narrow angle; and see-through views
US6078427A (en) 1998-12-01 2000-06-20 Kaiser Electro-Optics, Inc. Smooth transition device for area of interest head-mounted display
US6744478B1 (en) 1998-12-28 2004-06-01 Central Glass Company, Limited Heads-up display system with optical rotation layers
US6185016B1 (en) 1999-01-19 2001-02-06 Digilens, Inc. System for generating an image
JP2000261706A (en) 1999-03-10 2000-09-22 Brother Ind Ltd Head mounted camera
US6121899A (en) 1999-04-16 2000-09-19 Rockwell Collins, Inc. Impending aircraft tail strike warning display symbology
US6107943A (en) 1999-04-16 2000-08-22 Rockwell Collins, Inc. Display symbology indicating aircraft ground motion deceleration
US6748342B1 (en) 1999-04-20 2004-06-08 Nokia Corporation Method and monitoring device for monitoring the quality of data transmission over analog lines
US20020021461A1 (en) 1999-05-10 2002-02-21 Asahi Glass Company, Limited Holographic display device and method for producing a transmission diffusion hologram suitable for it
US6333819B1 (en) 1999-05-26 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Display for head mounting
US6873443B1 (en) 1999-07-09 2005-03-29 Thales Secured document, system for manufacturing same and system for reading this document
US6909345B1 (en) 1999-07-09 2005-06-21 Nokia Corporation Method for creating waveguides in multilayer ceramic structures and a waveguide having a core bounded by air channels
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
US6473209B1 (en) 1999-08-04 2002-10-29 Digilens, Inc. Apparatus for producing a three-dimensional image
US6686815B1 (en) 1999-08-11 2004-02-03 Nokia Corporation Microwave filter
US6222297B1 (en) 1999-09-24 2001-04-24 Litton Systems, Inc. Pressed V-groove pancake slip ring
US6750941B2 (en) 1999-09-27 2004-06-15 Nippon Mitsubishi Oil Corporation Complex diffraction device
US6392812B1 (en) 1999-09-29 2002-05-21 Bae Systems Electronics Limited Head up displays
US6741189B1 (en) 1999-10-06 2004-05-25 Microsoft Corporation Keypad having optical waveguides
US20010024177A1 (en) 1999-12-07 2001-09-27 Popovich Milan M. Holographic display system
US7126583B1 (en) 1999-12-15 2006-10-24 Automotive Technologies International, Inc. Interactive vehicle display system
US6356172B1 (en) 1999-12-29 2002-03-12 Nokia Networks Oy Resonator structure embedded in mechanical structure
US6690516B2 (en) 2000-01-31 2004-02-10 Fujitsu Limited Head mount type display device
US20030149346A1 (en) 2000-03-03 2003-08-07 Arnone Donald Dominic Imaging apparatus and method
US20040208466A1 (en) 2000-03-16 2004-10-21 Mossberg Thomas W. Multimode planar waveguide spectral filter
US20050135747A1 (en) 2000-03-16 2005-06-23 Greiner Christoph M. Multiple distributed optical structures in a single optical element
US20020012064A1 (en) 2000-03-17 2002-01-31 Hiroshi Yamaguchi Photographing device
US7053735B2 (en) 2000-06-09 2006-05-30 Nokia Corporation Waveguide in multilayer structures and resonator formed therefrom
US6847274B2 (en) 2000-06-09 2005-01-25 Nokia Corporation Multilayer coaxial structures and resonator formed therefrom
US6598987B1 (en) 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
US6359737B1 (en) 2000-07-28 2002-03-19 Generals Motors Corporation Combined head-up display
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6470132B1 (en) 2000-09-05 2002-10-22 Nokia Mobile Phones Ltd. Optical hinge apparatus
US6611253B1 (en) 2000-09-19 2003-08-26 Harel Cohen Virtual input environment
US6583873B1 (en) 2000-09-25 2003-06-24 The Carnegie Institution Of Washington Optical devices having a wavelength-tunable dispersion assembly that has a volume dispersive diffraction grating
US6557413B2 (en) 2000-10-02 2003-05-06 Nokia Mobile Phones Ltd. Micromechanical structure
US7053991B2 (en) 2000-10-03 2006-05-30 Accent Optical Technologies, Inc. Differential numerical aperture methods
US6940361B1 (en) 2000-10-06 2005-09-06 Nokia Corporation Self-aligned transition between a transmission line and a module
US6958662B1 (en) 2000-10-18 2005-10-25 Nokia Corporation Waveguide to stripline transition with via forming an impedance matching fence
US20030030912A1 (en) 2000-10-20 2003-02-13 Gleckman Philip Landon Compact wide field of view imaging system
US20040004989A1 (en) * 2000-10-24 2004-01-08 Takashi Shigeoka Temperature measuring method, heat treating device and method, computer program, and radiation thermometer
US6552789B1 (en) 2000-11-22 2003-04-22 Rockwell Collins, Inc. Alignment detector
US7545429B2 (en) 2000-11-30 2009-06-09 Microsoft Corporation Flat-panel camera
US20030063884A1 (en) * 2001-01-04 2003-04-03 Smith Duane D. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
US7230767B2 (en) 2001-01-16 2007-06-12 Ppg Industries, Inc. Image display system utilizing light emitting material
US7323275B2 (en) 2001-02-09 2008-01-29 Dai Nippon Printing Co., Ltd Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
US7550234B2 (en) 2001-02-09 2009-06-23 Dai Nippon Printing Co., Ltd. Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
US7629086B2 (en) 2001-02-09 2009-12-08 Dai Nippon Printing Co., Ltd. Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording
US6661578B2 (en) 2001-03-02 2003-12-09 Innovative Solutions & Support, Inc. Image display generator for a head-up display
US20020131175A1 (en) 2001-03-14 2002-09-19 Fuji Photo Optical Co., Ltd. Diffraction type optical pickup lens and optical pickup apparatus using the same
US6922267B2 (en) 2001-03-21 2005-07-26 Minolta Co., Ltd. Image display apparatus
US20040130797A1 (en) 2001-04-07 2004-07-08 Leigh Travis Adrian Robert Far-field display
US6781701B1 (en) 2001-04-10 2004-08-24 Intel Corporation Method and apparatus for measuring optical phase and amplitude
US20050259944A1 (en) 2001-04-12 2005-11-24 Emilia Anderson High index-contrast fiber waveguides and applications
US6844980B2 (en) 2001-04-23 2005-01-18 Reveo, Inc. Image display system and electrically actuatable image combiner therefor
US6950227B2 (en) 2001-05-03 2005-09-27 Nokia Corporation Electrically controlled variable thickness plate
US6903872B2 (en) 2001-05-03 2005-06-07 Nokia Corporation Electrically reconfigurable optical devices
US20070116409A1 (en) 2001-05-03 2007-05-24 Neophotonics Corporation Integrated gradient index lenses
US6674578B2 (en) 2001-05-31 2004-01-06 Yazaki Corporation Display device for motor vehicle
US7500104B2 (en) 2001-06-15 2009-03-03 Microsoft Corporation Networked device branding for secure interaction in trust webs on open networks
US7151246B2 (en) 2001-07-06 2006-12-19 Palantyr Research, Llc Imaging system and methodology
US6750995B2 (en) 2001-07-09 2004-06-15 Dickson Leroy David Enhanced volume phase grating with high dispersion, high diffraction efficiency and low polarization sensitivity
US7410286B2 (en) 2001-08-02 2008-08-12 Microsoft Corporation Flat-panel display using tapered waveguide
US20040225025A1 (en) 2001-08-03 2004-11-11 Sullivan Michael G. Curable compositions for display devices
US6987908B2 (en) 2001-08-24 2006-01-17 T-Networks, Inc. Grating dispersion compensator and method of manufacture
US20040208446A1 (en) 2001-08-24 2004-10-21 Aaron Bond Grating dispersion compensator and method of manufacture
US20030039442A1 (en) 2001-08-24 2003-02-27 Aaron Bond Grating dispersion compensator and method of manufacture
US6844212B2 (en) 2001-08-24 2005-01-18 T-Networks, Inc. Grating dispersion compensator and method of manufacture
US7018744B2 (en) 2001-08-27 2006-03-28 Dai Nippon Printing Co, Ltd Volume type hologram recording photosensitive composition, volume type hologram recording medium using the same and method of producing volume type hologram
US6646810B2 (en) 2001-09-04 2003-11-11 Delphi Technologies, Inc. Display backlighting apparatus
US7447967B2 (en) 2001-09-13 2008-11-04 Texas Instruments Incorporated MIMO hybrid-ARQ using basis hopping
US7101048B2 (en) 2001-09-25 2006-09-05 Cambridge Flat Protection Displays Limited Flat-panel projection display
US20040156008A1 (en) 2002-01-10 2004-08-12 Yurii Reznikov Material for liquid crystal cell
US6972788B1 (en) 2002-01-28 2005-12-06 Rockwell Collins Projection display for a aircraft cockpit environment
US6926429B2 (en) 2002-01-30 2005-08-09 Delphi Technologies, Inc. Eye tracking/HUD system
US7411637B2 (en) 2002-02-15 2008-08-12 Elop Electro-Optics Industries Ltd. System and method for varying the reflectance or transmittance of light
US20030175004A1 (en) 2002-02-19 2003-09-18 Garito Anthony F. Optical polymer nanocomposites
US6836369B2 (en) 2002-03-08 2004-12-28 Denso Corporation Head-up display
US7593575B2 (en) 2002-03-15 2009-09-22 Computer Sciences Corporation Systems and methods of capturing information using association of text representations
US7528385B2 (en) 2002-03-15 2009-05-05 Pd-Ld, Inc. Fiber optic devices having volume Bragg grating elements
US7027671B2 (en) 2002-03-18 2006-04-11 Koninklijke Philips Electronics N.V. Polarized-light-emitting waveguide, illumination arrangement and display device comprising such
EP1347641A1 (en) 2002-03-19 2003-09-24 Siemens Aktiengesellschaft Free projection display device
US20090097127A1 (en) 2002-03-21 2009-04-16 Lumus Ltd. Light guide optical device
US7576916B2 (en) 2002-03-21 2009-08-18 Lumus Ltd. Light guide optical device
US7724441B2 (en) 2002-03-21 2010-05-25 Lumus Ltd. Light guide optical device
US20090052046A1 (en) 2002-03-21 2009-02-26 Lumus Ltd. Light guide optical device
US8004765B2 (en) 2002-03-21 2011-08-23 Lumus Ltd. Light guide optical device
US7920787B2 (en) 2002-04-12 2011-04-05 Nokia Siemens Networks Gmbh & Co. Kg Method for detecting a check-back signal in an optical transmission system
US6757105B2 (en) 2002-04-25 2004-06-29 Planop Planar Optics Ltd. Optical device having a wide field-of-view for multicolor images
US7286272B2 (en) 2002-04-25 2007-10-23 Sony Corporation Image display unit
US7313291B2 (en) 2002-04-26 2007-12-25 Nokia Corporation Optical modulator
US20030228019A1 (en) 2002-06-11 2003-12-11 Elbit Systems Ltd. Method and system for reducing noise
US7375870B2 (en) 2002-06-13 2008-05-20 Nokia Corporation Enhancement electrode configuration for electrically controlled light modulators
US6951393B2 (en) 2002-07-31 2005-10-04 Canon Kabushiki Kaisha Projection type image display apparatus and image display system
US20050269481A1 (en) 2002-08-05 2005-12-08 Elbit Systems Ltd. Vehicle mounted night vision imaging system and method
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
US20100135615A1 (en) 2002-08-28 2010-06-03 Seng-Tiong Ho Apparatus for coupling light between input and output waveguides
US7433116B1 (en) 2002-09-03 2008-10-07 Cheetah Omni, Llc Infra-red light source including a raman shifter
US7259906B1 (en) 2002-09-03 2007-08-21 Cheetah Omni, Llc System and method for voice control of medical devices
US7336271B2 (en) 2002-09-03 2008-02-26 Optrex Corporation Image display system
US7068898B2 (en) 2002-09-05 2006-06-27 Nanosys, Inc. Nanocomposites
US6776339B2 (en) 2002-09-27 2004-08-17 Nokia Corporation Wireless communication device providing a contactless interface for a smart card reader
US7299983B2 (en) 2002-09-27 2007-11-27 Nokia Corporation Wireless communication device providing a contactless interface for a smart card reader
JP2004157245A (en) 2002-11-05 2004-06-03 Nippon Telegr & Teleph Corp <Ntt> Hologram drawing method and hologram
US20040188617A1 (en) 2002-11-08 2004-09-30 Devitt John W. Methods and apparatuses for selectively limiting undesired radiation
US7480215B2 (en) 2002-11-27 2009-01-20 Nokia Corporation Read write device for optical memory and method therefore
US7483604B2 (en) 2002-12-16 2009-01-27 Nokia Corporation Diffractive grating element for balancing diffraction efficiency
US7126418B2 (en) 2002-12-18 2006-10-24 Powerwave Technologies, Inc. Delay mismatched feed forward amplifier system using penalties and floors for control
US7058434B2 (en) 2002-12-19 2006-06-06 Nokia Corporation Mobile communication
US6952312B2 (en) 2002-12-31 2005-10-04 3M Innovative Properties Company Head-up display with polarized light source and wide-angle p-polarization reflective polarizer
US7123418B2 (en) 2002-12-31 2006-10-17 3M Innovative Properties Company Head-up display with narrow band reflective polarizer
US6771403B1 (en) 2003-01-22 2004-08-03 Minolta Co., Ltd. Image display apparatus
US7268946B2 (en) 2003-02-10 2007-09-11 Jian Wang Universal broadband polarizer, devices incorporating same, and method of making same
USRE42992E1 (en) 2003-02-19 2011-12-06 Mirage Innovations Ltd. Chromatic planar optic display system
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
US20040174348A1 (en) 2003-02-19 2004-09-09 Yair David Chromatic planar optic display system
US20060279662A1 (en) 2003-03-16 2006-12-14 Explay Ltd. Projection system and method
US7006732B2 (en) 2003-03-21 2006-02-28 Luxtera, Inc. Polarization splitting grating couplers
US7181105B2 (en) 2003-03-25 2007-02-20 Fuji Photo Film Co., Ltd. Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber
WO2004102226A2 (en) 2003-05-09 2004-11-25 Sbg Labs, Inc. Switchable viewfinder display
US7710654B2 (en) 2003-05-12 2010-05-04 Elbit Systems Ltd. Method and system for improving audiovisual communication
US7401920B1 (en) 2003-05-20 2008-07-22 Elbit Systems Ltd. Head mounted eye tracking and display system
US7046439B2 (en) 2003-05-22 2006-05-16 Eastman Kodak Company Optical element with nanoparticles
US8581831B2 (en) 2003-06-06 2013-11-12 Microsoft Corporation Scanning backlight for flat-panel display
US7944428B2 (en) 2003-06-06 2011-05-17 Microsoft Corporation Scanning backlight for flat-panel display
US20060132914A1 (en) * 2003-06-10 2006-06-22 Victor Weiss Method and system for displaying an informative image against a background image
US7319573B2 (en) 2003-06-16 2008-01-15 Hitachi Global Storage Technologies Japan, Ltd. Magnetic disk drive having a suspension mounted transmission line including read and write conductors and a lower conductor
US20060093793A1 (en) 2003-06-19 2006-05-04 Nikon Corporation Optical element
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
US7158095B2 (en) 2003-07-17 2007-01-02 Big Buddy Performance, Inc. Visual display system for displaying virtual images onto a field of vision
US7588863B2 (en) 2003-08-25 2009-09-15 Fujifilm Corporation Hologram recording method and hologram recording material
US7567372B2 (en) 2003-08-29 2009-07-28 Nokia Corporation Electrical device utilizing charge recycling within a cell
US20080285140A1 (en) 2003-09-10 2008-11-20 Lumus Ltd. Substrate-guided optical devices
US7339742B2 (en) 2003-09-10 2008-03-04 Lumas Ltd. High brightness optical device
US7724442B2 (en) 2003-09-10 2010-05-25 Lumus Ltd. Substrate-guided optical devices
US20090237804A1 (en) 2003-09-10 2009-09-24 Lumus Ltd. High brightness optical device
US7212175B1 (en) 2003-09-19 2007-05-01 Rockwell Collins, Inc. Symbol position monitoring for pixelated heads-up display method and apparatus
US6853491B1 (en) 2003-11-26 2005-02-08 Frank Ruhle Collimating optical member for real world simulation
US20060177180A1 (en) 2003-11-28 2006-08-10 Nhk Spring Co., Ltd. Multichannel array waveguide diffraction grating multiplexer/demultiplexer and method of connecting array waveguide and output waveguide
US7034748B2 (en) 2003-12-17 2006-04-25 Microsoft Corporation Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters
US20050136260A1 (en) 2003-12-18 2005-06-23 Lintec Corporation Photochromic film material
US7496293B2 (en) 2004-01-14 2009-02-24 Elbit Systems Ltd. Versatile camera for various visibility conditions
US7190849B2 (en) 2004-02-03 2007-03-13 Seiko Epson Corporation Display device
US7592988B2 (en) 2004-02-03 2009-09-22 Seiko Epson Corporation Display device having optical waveguides and light-emitting units
US7248128B2 (en) 2004-02-03 2007-07-24 Nokia Corporation Reference oscillator frequency stabilization
US20110211239A1 (en) 2004-03-29 2011-09-01 Sony Corporation Optical device, and virtual image display device
US20050218377A1 (en) 2004-03-31 2005-10-06 Solaris Nanosciences, Inc. Anisotropic nanoparticles and anisotropic nanostructures and pixels, displays and inks using them
US20130093893A1 (en) 2004-04-15 2013-04-18 Donnelly Corporation Imaging system for vehicle
US7339737B2 (en) 2004-04-23 2008-03-04 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
US7199934B2 (en) 2004-05-06 2007-04-03 Olympus Corporation Head-mounted display apparatus
US7404644B2 (en) 2004-05-12 2008-07-29 Sharp Kabushiki Kaisha Time-sequential colour projection
US7482996B2 (en) 2004-06-28 2009-01-27 Honeywell International Inc. Head-up display
US8149086B2 (en) 2004-06-29 2012-04-03 Elbit Systems Ltd. Security systems and methods relating to travelling vehicles
US7617022B1 (en) 2004-07-01 2009-11-10 Rockwell Collins, Inc. Dual wavelength enhanced vision system optimized for visual landing light alignment
US7605774B1 (en) 2004-07-02 2009-10-20 Rockwell Collins, Inc. Enhanced vision system (EVS) processing window tied to flight path
US20060013977A1 (en) 2004-07-13 2006-01-19 Duke Leslie P Polymeric ballistic material and method of making
US7597447B2 (en) 2004-07-14 2009-10-06 Honeywell International Inc. Color correcting contrast enhancement of displays
US7285903B2 (en) 2004-07-15 2007-10-23 Honeywell International, Inc. Display with bright backlight
US7110184B1 (en) 2004-07-19 2006-09-19 Elbit Systems Ltd. Method and apparatus for combining an induced image with a scene image
US7320534B2 (en) 2004-07-23 2008-01-22 Murakami Corporation Display device
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
US8938141B2 (en) 2004-07-30 2015-01-20 University Of Connecticut Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US20100092124A1 (en) 2004-07-30 2010-04-15 University Of Connecticut Resonant Leaky-Mode Photonic Elements and Methods for Spectral and Polarization Control
US20090067774A1 (en) 2004-07-30 2009-03-12 Robert Magnusson Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US7436568B1 (en) 2004-08-17 2008-10-14 Kuykendall Jr Jacob L Head mountable video display
US20070211164A1 (en) 2004-08-25 2007-09-13 Olsen Richard I Imager module optical focus and assembly method
US7619825B1 (en) 2004-09-27 2009-11-17 Rockwell Collins, Inc. Compact head up display with wide viewing angle
US7095562B1 (en) 2004-09-27 2006-08-22 Rockwell Collins, Inc. Advanced compact head up display
US7887186B2 (en) 2004-09-29 2011-02-15 Brother Kogyo Kabushiki Kaisha Retinal scanning display with exit pupil expanded by optics offset from intermediate image plane
US7572555B2 (en) 2004-09-30 2009-08-11 Fujifilm Corporation Hologram recording material, hologram recording method and optical recording medium
US20060119837A1 (en) 2004-10-16 2006-06-08 Raguin Daniel H Diffractive imaging system and method for the reading and analysis of skin topology
US20070182915A1 (en) 2004-10-19 2007-08-09 Asahi Glass Co., Ltd. Liquid crystal diffraction lens element and optical head device
US20080136923A1 (en) 2004-11-14 2008-06-12 Elbit Systems, Ltd. System And Method For Stabilizing An Image
US20080089073A1 (en) 2004-11-25 2008-04-17 Koninklijke Philips Electronics, N.V. Dynamic Liquid Crystal Gel Holograms
US7778508B2 (en) 2004-12-06 2010-08-17 Nikon Corporation Image display optical system, image display unit, illuminating optical system, and liquid crystal display unit
US20060126179A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US20060142455A1 (en) 2004-12-23 2006-06-29 Naveen Agarwal Polymer compositions, method of manufacture, and articles formed therefrom
US7466994B2 (en) 2004-12-31 2008-12-16 Nokia Corporation Sub-display of a mobile device
US7289069B2 (en) 2005-01-04 2007-10-30 Nokia Corporation Wireless device antenna
US7847235B2 (en) 2005-01-20 2010-12-07 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle ranging and display
US20060164593A1 (en) 2005-01-21 2006-07-27 Nasser Peyghambarian Adaptive electro-active lens with variable focal length
US20080136916A1 (en) 2005-01-26 2008-06-12 Robin Quincey Wolff Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system
US7865080B2 (en) 2005-01-26 2011-01-04 Nokia Siemens Networks Gmbh & Co. Kg Methods for the optical transmission of polarization multiplex signals
US7976208B2 (en) 2005-02-05 2011-07-12 Microsoft Corporation Flat panel lens
US20080186604A1 (en) 2005-02-10 2008-08-07 Lumus Ltd Substrate-Guided Optical Device Particularly for Vision Enhanced Optical Systems
US20080151379A1 (en) 2005-02-10 2008-06-26 Lumus Ltd. Substrate-Guide Optical Device Utilizing Polarization Beam Splitters
US20090122414A1 (en) 2005-02-10 2009-05-14 Lumus Ltd. Substrate-Guided Optical Device Utilzing Thin Transparent Layer
US20090052017A1 (en) 2005-03-15 2009-02-26 Fujifilm Corporation Light transmitting electromagnetic wave shielding film, optical filter and plasma display panel
US7242527B2 (en) 2005-03-22 2007-07-10 The Microoptical Corporation Optical system using total internal reflection images
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
CN101151562A (en) 2005-04-04 2008-03-26 米拉茨创新有限公司 Multi-plane optical apparatus
US20060221448A1 (en) 2005-04-04 2006-10-05 Mirage Innovations Ltd. Multi-plane optical apparatus
US7602552B1 (en) 2005-05-15 2009-10-13 Elbit Systems Electro-Optics Elop Ltd. Head-up display system
US20090017424A1 (en) 2005-05-30 2009-01-15 Elbit Systems Ltd. Combined head up display
KR20060132474A (en) 2005-06-17 2006-12-21 소니 가부시끼 가이샤 Optical devices and virtual display devices
US20060291021A1 (en) 2005-06-17 2006-12-28 Hiroshi Mukawa Optical device, and virtual image display
JP2006350129A (en) 2005-06-17 2006-12-28 Sony Corp Optical apparatus and virtual image display apparatus
JP2007011057A (en) 2005-06-30 2007-01-18 Sony Corp Optical device and virtual image display device
US7903921B2 (en) 2005-07-07 2011-03-08 Nokia Corporation Manufacturing of optical waveguides
US8086030B2 (en) 2005-07-19 2011-12-27 Elbit Systems Electro-Optics Elop Ltd. Method and system for visually presenting a high dynamic range image
US20070019297A1 (en) 2005-07-25 2007-01-25 Stewart Robert J Universal vehicle head display (HUD) device and method for using the same
US7513668B1 (en) 2005-08-04 2009-04-07 Rockwell Collins, Inc. Illumination system for a head up display
US7397606B1 (en) 2005-08-04 2008-07-08 Rockwell Collins, Inc. Meniscus head up display combiner
US7864427B2 (en) 2005-08-29 2011-01-04 Panasonic Corporation Diffractive optical element and method for manufacturing the same, and imaging apparatus using the diffractive optical element
US20070045596A1 (en) 2005-08-31 2007-03-01 King Eric M Photochromic article
US20070052929A1 (en) 2005-09-06 2007-03-08 Stuart Allman Light coupling system and method
US8079713B2 (en) 2005-09-12 2011-12-20 Elbit Systems Ltd. Near eye display system
CN101263412A (en) 2005-09-14 2008-09-10 米拉茨创新有限公司 Diffractive optical device and system
US20090097122A1 (en) 2005-09-14 2009-04-16 Mirage Innovations Ltd Diffractive Optical Device and System
US20070089625A1 (en) 2005-10-20 2007-04-26 Elbit Vision Systems Ltd. Method and system for detecting defects during the fabrication of a printing cylinder
US20090128902A1 (en) 2005-11-03 2009-05-21 Yehuda Niv Binocular Optical Relay Device
US20080278812A1 (en) 2005-11-08 2008-11-13 Lumus Ltd. Polarizing Optical System
US7570429B2 (en) 2005-11-10 2009-08-04 Elbit Systems Electro-Optics Elop Ltd. Head up display mechanism
US9464779B2 (en) 2005-11-11 2016-10-11 Digilens, Inc. Apparatus for condensing light from multiple sources using Bragg gratings
US20070133920A1 (en) 2005-12-08 2007-06-14 Lee Myung H Optical device having optical waveguide including organic bragg grating sheet
US7599012B2 (en) 2005-12-08 2009-10-06 Yazaki Corporation Luminous display device
US7639911B2 (en) 2005-12-08 2009-12-29 Electronics And Telecommunications Research Institute Optical device having optical waveguide including organic Bragg grating sheet
US20070133983A1 (en) 2005-12-14 2007-06-14 Matilda Traff Light-controlling element for a camera
US20080297807A1 (en) 2005-12-22 2008-12-04 Martin Feldman High Precision Code Plates and Geophones
US7778305B2 (en) 2005-12-22 2010-08-17 Université Jean-Monnet Mirror structure and laser device comprising such a mirror structure
US20100141555A1 (en) 2005-12-25 2010-06-10 Elbit Systems Ltd. Real-time image scanning and processing
DE102006003785A1 (en) 2006-01-25 2007-07-26 Adc Automotive Distance Control Systems Gmbh Sensor with a controllable dimming device
US20070177007A1 (en) 2006-01-27 2007-08-02 Real D Multiple mode display device
US7928862B1 (en) 2006-01-30 2011-04-19 Rockwell Collins, Inc. Display of hover and touchdown symbology on head-up display
US20070188837A1 (en) 2006-02-16 2007-08-16 Konica Minolta Holdings, Inc. Beam expanding optical element, beam expansion method, image display apparatus, and head-mounted display
JP2007219106A (en) 2006-02-16 2007-08-30 Konica Minolta Holdings Inc Optical device for expanding diameter of luminous flux, video display device and head mount display
US7616270B2 (en) 2006-02-21 2009-11-10 Seiko Epson Corporation Electro-optical device, and projector and electronic apparatus including the same
US20090153437A1 (en) 2006-03-08 2009-06-18 Lumus Ltd. Device and method for alignment of binocular personal display
WO2007130130A2 (en) 2006-04-06 2007-11-15 Sbg Labs Inc. Method and apparatus for providing a transparent display
US9465227B2 (en) 2006-04-06 2016-10-11 Digilens, Inc. Laser illumination device
US20140037242A1 (en) 2006-04-06 2014-02-06 Sbg Labs Inc. Laser illumination device
US8547638B2 (en) 2006-06-02 2013-10-01 Nokia Corporation Color distribution in exit pupil expanders
US20100231693A1 (en) 2006-06-02 2010-09-16 Tapani Levola Stereoscopic Exit Pupil Expander Display
US20110096401A1 (en) 2006-06-02 2011-04-28 Tapani Levola Split Exit Pupil Expander
US8254031B2 (en) 2006-06-02 2012-08-28 Nokia Corporation Color distribution in exit pupil expanders
US20120320460A1 (en) 2006-06-02 2012-12-20 Nokia Corporation Color distribution in exit pupil expanders
US20100165465A1 (en) 2006-06-02 2010-07-01 Tapani Levola Color Distribution in Exit Pupil Expanders
US7415173B2 (en) 2006-06-13 2008-08-19 Nokia Corporation Position sensor
US8301031B2 (en) 2006-06-13 2012-10-30 Nokia Siemens Networks Gmbh & Co. Kg Method and arrangement for switching a Raman pump laser on and/or off
US20080001909A1 (en) 2006-06-30 2008-01-03 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of driving the same
US20090316246A1 (en) 2006-06-30 2009-12-24 Hoya Corporation Photochromic film, photochromic lens comprising the same, and method of manufacturing photochromic lens
US8199803B2 (en) 2006-07-14 2012-06-12 Nokia Siemens Neworks GmbH & Co. KG Receiver structure and method for the demodulation of a quadrature-modulated signal
WO2008011066A2 (en) 2006-07-18 2008-01-24 L-1 Identity Solutions Operating Company Methods and apparatus for self check-in of items for transportation
US20100177388A1 (en) 2006-08-23 2010-07-15 Mirage Innovations Ltd. Diffractive optical relay device with improved color uniformity
US20100065726A1 (en) 2006-09-01 2010-03-18 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
CN200944140Y (en) 2006-09-08 2007-09-05 李伯伦 Straight waveguide display panel
US7525448B1 (en) 2006-09-28 2009-04-28 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US8830143B1 (en) 2006-09-28 2014-09-09 Rockwell Collins, Inc. Enhanced vision system and method for an aircraft
US8160409B2 (en) 2006-09-29 2012-04-17 Microsoft Corporation Flat-panel optical projection apparatus
US8152315B2 (en) 2006-10-02 2012-04-10 Microsoft Corporation Flat-panel optical projection apparatus with reduced distortion
US8000491B2 (en) 2006-10-24 2011-08-16 Nokia Corporation Transducer device and assembly
US20120281943A1 (en) 2006-11-13 2012-11-08 Sbg Labs Inc. Laser illumination device
US20100277803A1 (en) 2006-12-14 2010-11-04 Nokia Corporation Display Device Having Two Operating Modes
US20100096562A1 (en) 2006-12-21 2010-04-22 Koninklijke Philips Electronics N.V. Wiregrid waveguide
CN101589326A (en) 2006-12-28 2009-11-25 诺基亚公司 Device for expanding the exit pupil in two dimensions
US20110002143A1 (en) 2006-12-28 2011-01-06 Nokia Corporation Light guide plate and a method of manufacturing thereof
US7369911B1 (en) 2007-01-10 2008-05-06 International Business Machines Corporation Methods, systems, and computer program products for managing movement of work-in-process materials in an automated manufacturing environment
US20090019222A1 (en) 2007-01-11 2009-01-15 International Business Machines Corporation Method and system for placement of logical data stores to minimize request response time
US8493366B2 (en) 2007-01-25 2013-07-23 Microsoft Corporation Dynamic projected user interface
US8022942B2 (en) 2007-01-25 2011-09-20 Microsoft Corporation Dynamic projected user interface
WO2008100545A2 (en) 2007-02-12 2008-08-21 E. I. Du Pont De Nemours And Company Production of arachidonic acid in oilseed plants
US8432363B2 (en) 2007-02-23 2013-04-30 Nokia Corporation Optical actuators in keypads
US20090122413A1 (en) 2007-02-28 2009-05-14 Joe Hoffman Systems and methods for aiding situational awareness
US7600893B2 (en) 2007-05-01 2009-10-13 Exalos Ag Display apparatus, method and light source
US20100165660A1 (en) 2007-05-20 2010-07-01 Weber Michael F Backlight and display system using same
US7999982B2 (en) 2007-05-31 2011-08-16 Konica Minolta Holdings, Inc. Hologram optical element, fabrication method thereof, and image display apparatus
CN101688977A (en) 2007-06-04 2010-03-31 诺基亚公司 A diffractive beam expander and a virtual display based on a diffractive beam expander
US20100171680A1 (en) 2007-06-04 2010-07-08 Lumus Ltd. Distributed head-mounted display system
US20100214659A1 (en) 2007-06-04 2010-08-26 Tapani Levola Diffractive beam expander and a virtual display based on a diffractive beam expander
US20080309586A1 (en) 2007-06-13 2008-12-18 Anthony Vitale Viewing System for Augmented Reality Head Mounted Display
US8314819B2 (en) 2007-06-14 2012-11-20 Nokia Corporation Displays with integrated backlighting
US20100231705A1 (en) 2007-07-18 2010-09-16 Elbit Systems Ltd. Aircraft landing assistance
US7733571B1 (en) 2007-07-24 2010-06-08 Rockwell Collins, Inc. Phosphor screen and displays systems
US7605719B1 (en) 2007-07-25 2009-10-20 Rockwell Collins, Inc. System and methods for displaying a partial images and non-overlapping, shared-screen partial images acquired from vision systems
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US20100202725A1 (en) 2007-07-26 2010-08-12 Sbg Labs Inc. Laser illumination device
WO2009013597A2 (en) 2007-07-26 2009-01-29 Milan Momcilo Popovich Laser illumination device
US20180143449A1 (en) 2007-07-26 2018-05-24 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US8186874B2 (en) 2007-08-08 2012-05-29 Semi-Conductor Devices—An Elbit Systems-Rafael Partnership Thermally based system and method for detecting counterfeit drugs
US8403490B2 (en) 2007-09-26 2013-03-26 Panasonic Corporation Beam scanning-type display device, method, program and integrated circuit
US20100060551A1 (en) 2007-09-26 2010-03-11 Keiji Sugiyama Beam scanning-type display device, method, program and integrated circuit
US8491121B2 (en) 2007-10-09 2013-07-23 Elbit Systems Of America, Llc Pupil scan apparatus
US20100265117A1 (en) 2007-10-24 2010-10-21 Elta Systems Ltd. System and method for imaging objects
US20090121301A1 (en) 2007-11-09 2009-05-14 Hon Hai Precision Industry Co., Ltd. Image capture module
US20120280956A1 (en) 2007-11-21 2012-11-08 Kakuya Yamamoto Display apparatus
US8398242B2 (en) 2007-11-21 2013-03-19 Panasonic Corporation Display apparatus
US20090136246A1 (en) 2007-11-26 2009-05-28 Kabushiki Kaisha Toshiba Image forming apparatus having paper type detection section and paper type confirmation method of the same
JP2009133999A (en) 2007-11-29 2009-06-18 Sony Corp Image display apparatus
US8432372B2 (en) 2007-11-30 2013-04-30 Microsoft Corporation User input using proximity sensing
US20110013423A1 (en) 2007-12-03 2011-01-20 Selbrede Martin G Light injection system and method for uniform luminosity of waveguide-based displays
US20110235365A1 (en) 2007-12-03 2011-09-29 Mccollum Timothy A Light injection system and method for uniform luminosity of waveguide-based displays
US8132976B2 (en) 2007-12-05 2012-03-13 Microsoft Corporation Reduced impact keyboard with cushioned keys
US20100315719A1 (en) 2007-12-17 2010-12-16 Pasi Saarikko Exit Pupil Expanders with Spherical and Aspheric Substrates
US20100296163A1 (en) 2007-12-18 2010-11-25 Pasi Saarikko Exit Pupil Expanders with Wide Field-of-View
EP2225592A1 (en) 2007-12-18 2010-09-08 Nokia Corporation Exit pupil expanders with wide field-of-view
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
US20120294037A1 (en) 2008-01-30 2012-11-22 Qualcomm Mems Technologies, Inc. Illumination device
US20090213208A1 (en) 2008-02-21 2009-08-27 Otto Glatt Panoramic camera
US20110050548A1 (en) 2008-03-04 2011-03-03 Elbit Systems Electro Optics Elop Ltd. Head up display utilizing an lcd and a diffuser
US7589900B1 (en) 2008-03-11 2009-09-15 Microvision, Inc. Eyebox shaping through virtual vignetting
US8264498B1 (en) 2008-04-01 2012-09-11 Rockwell Collins, Inc. System, apparatus, and method for presenting a monochrome image of terrain on a head-up display unit
US20120007979A1 (en) 2008-04-16 2012-01-12 Elbit Systems Ltd. Advanced Technology Center Multispectral enhanced vision system and method for aircraft landing in inclement weather conditions
US8643691B2 (en) 2008-05-12 2014-02-04 Microsoft Corporation Gaze accurate video conferencing
US7733572B1 (en) 2008-06-09 2010-06-08 Rockwell Collins, Inc. Catadioptric system, apparatus, and method for producing images on a universal, head-up display
US8295710B2 (en) 2008-07-04 2012-10-23 Nokia Siemens Networks Oy Optical I-Q-modulator
US8159752B2 (en) 2008-08-07 2012-04-17 Elbit Systems Ltd. Wide field of view coverage head-up display system
US20100060990A1 (en) 2008-08-07 2010-03-11 Elbit Systems Ltd Wide field of view coverage head-up display system
US7984884B1 (en) 2008-08-08 2011-07-26 B.I.G. Ideas, LLC Artificial christmas tree stand
US7656585B1 (en) 2008-08-19 2010-02-02 Microvision, Inc. Embedded relay lens for head-up displays or the like
US7969644B2 (en) 2008-09-02 2011-06-28 Elbit Systems Of America, Llc System and method for despeckling an image illuminated by a coherent light source
US7660047B1 (en) 2008-09-03 2010-02-09 Microsoft Corporation Flat panel lens
US7961117B1 (en) 2008-09-16 2011-06-14 Rockwell Collins, Inc. System, module, and method for creating a variable FOV image presented on a HUD combiner unit
US20120242661A1 (en) 2008-09-24 2012-09-27 Kabushiki Kaisha Toshiba Stereoscopic image display apparatus
US8384730B1 (en) 2008-09-26 2013-02-26 Rockwell Collins, Inc. System, module, and method for generating HUD image data from synthetic vision system image data
US8188925B2 (en) 2008-11-07 2012-05-29 Microsoft Corporation Bent monopole antenna with shared segments
US20110238399A1 (en) 2008-11-19 2011-09-29 Elbit Systems Ltd. System and a method for mapping a magnetic field
US20100136319A1 (en) 2008-12-03 2010-06-03 Keio University Method for forming mesoporous silica layer, its porous coating, anti-reflection coating, and optical member
US8306423B2 (en) 2008-12-08 2012-11-06 Nokia Siemens Networks Oy Method and optical network component for signal processing in an optical network and communication system
US20100246993A1 (en) 2008-12-12 2010-09-30 Fei Company Method for determining distortions in a particle-optical apparatus
WO2010067117A1 (en) 2008-12-12 2010-06-17 Bae Systems Plc Improvements in or relating to waveguides
WO2010078856A1 (en) 2009-01-07 2010-07-15 Magnetic Autocontrol Gmbh Apparatus for a checkpoint
US8082222B2 (en) 2009-01-14 2011-12-20 Bmc Software, Inc. CMDB federation method and management system
US20110026774A1 (en) 2009-02-05 2011-02-03 Elbit Systems Ltd. Controlling an imaging apparatus over a delayed communication link
US20110310356A1 (en) 2009-02-27 2011-12-22 Epicrystals Oy Image projector and an illuminating unit suitable for use in an image projector
US20120099203A1 (en) 2009-03-05 2012-04-26 Elbit Systems Electro-Optics Elop Ltd. Optical device and method for correcting chromatic aberrations
US20100232003A1 (en) 2009-03-13 2010-09-16 Transitions Optical, Inc. Vision enhancing optical articles
US8746008B1 (en) 2009-03-29 2014-06-10 Montana Instruments Corporation Low vibration cryocooled system for low temperature microscopy and spectroscopy applications
US8427439B2 (en) 2009-04-13 2013-04-23 Microsoft Corporation Avoiding optical effects of touch on liquid crystal display
US8136690B2 (en) 2009-04-14 2012-03-20 Microsoft Corporation Sensing the amount of liquid in a vessel
US20190113751A9 (en) 2009-04-27 2019-04-18 Digilens, Inc. Diffractive projection apparatus
US20170052374A1 (en) 2009-04-27 2017-02-23 Jonathan David Waldern Diffractive projection apparatus
WO2010125337A2 (en) 2009-04-27 2010-11-04 Milan Momcilo Popovich Compact holographic edge illuminated wearable display
US8321810B2 (en) 2009-04-30 2012-11-27 Microsoft Corporation Configuring an adaptive input device with selected graphical images
US20100299814A1 (en) 2009-06-01 2010-12-02 Wilcox Industries Corp. Helmet Mount for Viewing Device
US20110001895A1 (en) 2009-07-06 2011-01-06 Dahl Scott R Driving mechanism for liquid crystal based optical device
US20120105634A1 (en) 2009-07-08 2012-05-03 Elbit Systems Ltd. Automatic video surveillance system and method
US9244275B1 (en) 2009-07-10 2016-01-26 Rockwell Collins, Inc. Visual display system using multiple image sources and heads-up-display system using the same
US20110019250A1 (en) 2009-07-22 2011-01-27 Sony Corporation Image displaying apparatus and optical Apparatus
US20120127577A1 (en) 2009-07-31 2012-05-24 Horiba Jobin Yvon Sas Planar optical system for wide field-of-view polychromatic imaging
WO2011012825A1 (en) 2009-07-31 2011-02-03 Horiba Jobin Yvon Sas Planar optical system for wide field-of-view polychromatic imaging
US20120224062A1 (en) 2009-08-07 2012-09-06 Light Blue Optics Ltd Head up displays
US8447365B1 (en) 2009-08-11 2013-05-21 Howard M. Imanuel Vehicle communication system
US20110038024A1 (en) 2009-08-13 2011-02-17 Darwin Optical Co., Ltd. Photochromic optical article
US8354806B2 (en) 2009-08-21 2013-01-15 Microsoft Corporation Scanning collimation of light via flat panel lamp
US8189973B2 (en) 2009-08-21 2012-05-29 Microsoft Corporation Efficient collimation of light with optical wedge
US7970246B2 (en) 2009-08-21 2011-06-28 Microsoft Corporation Efficient collimation of light with optical wedge
US20110299075A1 (en) 2009-10-01 2011-12-08 Meade Jeffrey T Optical slicer for improving the spectral resolution of a dispersive spectrograph
US8089568B1 (en) 2009-10-02 2012-01-03 Rockwell Collins, Inc. Method of and system for providing a head up display (HUD)
WO2011042711A2 (en) 2009-10-09 2011-04-14 Milan Momcilo Popovich Compact edge illuminated diffractive display
US9726540B2 (en) 2009-10-09 2017-08-08 Digilens, Inc. Diffractive waveguide providing structured illumination for object detection
US20170356801A1 (en) 2009-10-09 2017-12-14 Digilens, Inc. Diffractive waveguide providing structured illumination for object detection
US20150285682A1 (en) 2009-10-09 2015-10-08 Milan Momcilo Popovich Diffractive waveguide providing structured illumination for object detection
US20120218481A1 (en) 2009-10-27 2012-08-30 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display
US8885112B2 (en) 2009-10-27 2014-11-11 Sbg Labs, Inc. Compact holographic edge illuminated eyeglass display
US8384694B2 (en) 2009-11-17 2013-02-26 Microsoft Corporation Infrared vision with liquid crystal display device
US8578038B2 (en) 2009-11-30 2013-11-05 Nokia Corporation Method and apparatus for providing access to social content
US9253359B2 (en) 2009-12-28 2016-02-02 Canon Components, Inc. Contact image sensor unit including a detachable light guide supporting member and image reading apparatus using the same
US20110157707A1 (en) 2009-12-29 2011-06-30 Elbit Systems Of America, Llc System and Method for Adjusting a Projected Image
US20110164221A1 (en) 2010-01-04 2011-07-07 Elbit Systems Of America, Llc System and Method for Efficiently Delivering Rays from a Light Source to Create an Image
US8137981B2 (en) 2010-02-02 2012-03-20 Nokia Corporation Apparatus and associated methods
US9274339B1 (en) 2010-02-04 2016-03-01 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US20120235884A1 (en) 2010-02-28 2012-09-20 Osterhout Group, Inc. Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US20120235900A1 (en) 2010-02-28 2012-09-20 Osterhout Group, Inc. See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US8814691B2 (en) 2010-02-28 2014-08-26 Microsoft Corporation System and method for social networking gaming with an augmented reality
US20130138275A1 (en) 2010-03-03 2013-05-30 Elbit Systems Ltd. System for guiding an aircraft to a reference point in low visibility conditions
US20110242349A1 (en) 2010-03-31 2011-10-06 Sony Corporation Solid-state image capturing device and electronic device
US20150219834A1 (en) 2010-04-16 2015-08-06 Flex Lighting Ii, Llc Display with a film-based lightguide and light redirecting optical element
EP2381290A1 (en) 2010-04-23 2011-10-26 BAE Systems PLC Optical waveguide and display device
US8477261B2 (en) 2010-05-26 2013-07-02 Microsoft Corporation Shadow elimination in the backlight for a 3-D display
CN101881936A (en) 2010-06-04 2010-11-10 谈顺毅 Holographical wave guide display and generation method of holographical image thereof
CN102314092A (en) 2010-06-09 2012-01-11 Asml荷兰有限公司 Position sensor and lithographic apparatus
US8670029B2 (en) 2010-06-16 2014-03-11 Microsoft Corporation Depth camera illuminator with superluminescent light-emitting diode
US8253914B2 (en) 2010-06-23 2012-08-28 Microsoft Corporation Liquid crystal display (LCD)
US8736802B2 (en) 2010-06-23 2014-05-27 Microsoft Corporation Liquid crystal display (LCD)
US20130141937A1 (en) 2010-08-10 2013-06-06 Sharp Kabushiki Kaisha Light-controlling element, display device and illumination device
US8633786B2 (en) 2010-09-27 2014-01-21 Nokia Corporation Apparatus and associated methods
US8305577B2 (en) 2010-11-04 2012-11-06 Nokia Corporation Method and apparatus for spectrometry
US20120162764A1 (en) 2010-12-24 2012-06-28 Sony Corporation Head-mounted display
US20120176665A1 (en) 2011-01-11 2012-07-12 Hoon Song 3-dimensional image display apparatus
US8619062B2 (en) 2011-02-03 2013-12-31 Microsoft Corporation Touch-pressure sensing in a display panel
US8189263B1 (en) 2011-04-01 2012-05-29 Google Inc. Image waveguide with mirror arrays
US20140043689A1 (en) 2011-04-18 2014-02-13 Stephen Paul Mason Projection display
US8693087B2 (en) 2011-06-30 2014-04-08 Microsoft Corporation Passive matrix quantum dot display
US8767294B2 (en) 2011-07-05 2014-07-01 Microsoft Corporation Optic with extruded conic profile
US20130016362A1 (en) 2011-07-13 2013-01-17 Faro Technologies, Inc. Device and method using a spatial light modulator to find 3d coordinates of an object
US20140152778A1 (en) 2011-07-26 2014-06-05 Magna Electronics Inc. Imaging system for vehicle
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
EP2995986B1 (en) 2011-08-24 2017-04-12 Rockwell Collins, Inc. Data display
EP2748670A1 (en) 2011-08-24 2014-07-02 Popovich, Milan Momcilo Wearable data display
WO2013033274A1 (en) 2011-08-29 2013-03-07 Vuzix Corporation Controllable waveguide for near-eye display applications
US20140330159A1 (en) 2011-09-26 2014-11-06 Beth Israel Deaconess Medical Center, Inc. Quantitative methods and systems for neurological assessment
US8937772B1 (en) 2011-09-30 2015-01-20 Rockwell Collins, Inc. System for and method of stowing HUD combiners
US9366864B1 (en) 2011-09-30 2016-06-14 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US8634139B1 (en) 2011-09-30 2014-01-21 Rockwell Collins, Inc. System for and method of catadioptric collimation in a compact head up display (HUD)
US9977247B1 (en) 2011-09-30 2018-05-22 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US8749890B1 (en) 2011-09-30 2014-06-10 Rockwell Collins, Inc. Compact head up display (HUD) for cockpits with constrained space envelopes
US20130101253A1 (en) 2011-10-19 2013-04-25 Milan Momcilo Popovich Compact wearable display
US20170212295A1 (en) 2011-11-22 2017-07-27 Sergiy Vasylyev Waveguide illumination system
US20140104685A1 (en) 2012-01-04 2014-04-17 David D. Bohn Eyebox adjustment for interpupillary distance
US20130170031A1 (en) 2012-01-04 2013-07-04 David D. Bohn Eyebox adjustment for interpupillary distance
US10459311B2 (en) 2012-01-06 2019-10-29 Digilens Inc. Contact image sensor using switchable Bragg gratings
US20200081317A1 (en) 2012-01-06 2020-03-12 Digilens Inc. Contact Image Sensor Using Switchable Bragg Gratings
US20190187538A1 (en) 2012-01-06 2019-06-20 Digilens Inc. Contact Image Sensor Using Switchable Bragg Gratings
US20130184904A1 (en) 2012-01-18 2013-07-18 John Gadzinski Vehicle operator display and assistive mechanisms
US8810600B2 (en) 2012-01-23 2014-08-19 Microsoft Corporation Wearable display device calibration
US20150107671A1 (en) 2012-01-24 2015-04-23 AMI Research & Development, LLC Monolithic broadband energy collector with dichroic filters and mirrors embedded in waveguide
US20130200710A1 (en) 2012-02-04 2013-08-08 Steven Andrew Robbins Solar Power Module with Safety Features and Related Method of Operation
US8749886B2 (en) 2012-03-21 2014-06-10 Google Inc. Wide-angle wide band polarizing beam splitter
US20130249895A1 (en) 2012-03-23 2013-09-26 Microsoft Corporation Light guide display and field of view
US20130258701A1 (en) 2012-03-28 2013-10-03 Microsoft Corporation Mobile Device Light Guide Display
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US20130257848A1 (en) 2012-03-28 2013-10-03 Microsoft Corporation Augmented Reality Light Guide Display
US8830588B1 (en) 2012-03-28 2014-09-09 Rockwell Collins, Inc. Reflector and cover glass for substrate guided HUD
JP2013235256A (en) 2012-04-10 2013-11-21 Panasonic Corp Computer generated hologram type display device
WO2013163347A1 (en) 2012-04-25 2013-10-31 Rockwell Collins, Inc. Holographic wide angle display
US20160291328A1 (en) 2012-04-25 2016-10-06 Rockwell Collins, Inc. Holographic wide angle display
JP2015523586A (en) 2012-04-25 2015-08-13 ロックウェル・コリンズ・インコーポレーテッド Holographic wide-angle display
US20150109763A1 (en) 2012-05-09 2015-04-23 Sony Corporation Illumination apparatus and display unit
US9456744B2 (en) 2012-05-11 2016-10-04 Digilens, Inc. Apparatus for eye tracking
US20170031160A1 (en) 2012-05-11 2017-02-02 Digilens, Inc. Apparatus for eye tracking
US20180113303A1 (en) 2012-05-11 2018-04-26 Digilens, Inc. Apparatus for eye tracking
US9804389B2 (en) 2012-05-11 2017-10-31 Digilens, Inc. Apparatus for eye tracking
US20150289762A1 (en) 2012-05-11 2015-10-15 Milan Momcilo Popovich Apparatus for eye tracking
US20130305437A1 (en) 2012-05-19 2013-11-21 Skully Helmets Inc. Augmented reality motorcycle helmet
US20130314793A1 (en) 2012-05-22 2013-11-28 Steven John Robbins Waveguide optics focus elements
US20130328948A1 (en) 2012-06-06 2013-12-12 Dolby Laboratories Licensing Corporation Combined Emissive and Reflective Dual Modulation Display System
US20150177688A1 (en) 2012-06-18 2015-06-25 Milan Momcilo Popovich Apparatus for copying a hologram
US8816578B1 (en) 2012-07-16 2014-08-26 Rockwell Collins, Inc. Display assembly configured for reduced reflection
US20140027006A1 (en) 2012-07-26 2014-01-30 Brian Foley Splash-Retarding Fluid Collection System
US20140172296A1 (en) 2012-07-30 2014-06-19 Aleksandr Shtukater Systems and methods for navigation
US8913324B2 (en) 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
US9516193B2 (en) 2012-08-10 2016-12-06 Mitsubishi Electric Corporation Contact image sensor, output correction device for contact image sensor, and output correction method for contact image sensor
US8742952B1 (en) 2012-08-14 2014-06-03 Rockwell Collins, Inc. Traffic awareness systems and methods
US20140064655A1 (en) 2012-08-31 2014-03-06 Ian A. Nguyen Ned polarization system for wavelength pass-through
DE102012108424A1 (en) 2012-09-10 2014-03-13 Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover Optical system for endoscopic applications, has image interface that is oriented parallel to object interface with surface geometry and is oriented orthogonally to optical axis of gradient index (GRIN) lens
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
CN103823267A (en) 2012-11-16 2014-05-28 罗克韦尔柯林斯公司 Transparent waveguide display
US20180373115A1 (en) 2012-11-16 2018-12-27 Digilens, Inc. Transparent Waveguide Display
JP2014132328A (en) 2012-11-16 2014-07-17 Rockwell Collins Inc Transparent waveguide display
US20150316768A1 (en) 2012-12-10 2015-11-05 Bae Systems Plc Improvements in and relating to displays
US20140168260A1 (en) 2012-12-13 2014-06-19 Paul M. O'Brien Waveguide spacers within an ned device
WO2014090379A1 (en) 2012-12-14 2014-06-19 Merck Patent Gmbh Birefringent rm lens
US20140168055A1 (en) 2012-12-17 2014-06-19 Clinton B. Smith Method and system for the display of virtual image edits
US20140267420A1 (en) 2013-03-15 2014-09-18 Magic Leap, Inc. Display system and method
US9679367B1 (en) 2013-04-17 2017-06-13 Rockwell Collins, Inc. HUD system and method with dynamic light exclusion
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US20160209657A1 (en) 2013-05-20 2016-07-21 Digilens, Inc. Holographic waveguide eye tracker
DE102013209436A1 (en) 2013-05-22 2014-11-27 Robert Bosch Gmbh Apparatus and method for generating a lighting pattern
US20150309264A1 (en) 2013-06-11 2015-10-29 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9176324B1 (en) 2013-06-25 2015-11-03 Rockwell Collins, Inc. Enhanced-image presentation system, device, and method
US9754507B1 (en) 2013-07-02 2017-09-05 Rockwell Collins, Inc. Virtual/live hybrid behavior to mitigate range and behavior constraints
US20190042827A1 (en) 2013-07-31 2019-02-07 Digilens, Inc. Method and Apparatus for Contact Image Sensing
US10423813B2 (en) 2013-07-31 2019-09-24 Digilens Inc. Method and apparatus for contact image sensing
US9377852B1 (en) 2013-08-29 2016-06-28 Rockwell Collins, Inc. Eye tracking as a method to improve the user interface
JP2015053163A (en) 2013-09-06 2015-03-19 セイコーエプソン株式会社 Optical device and image display apparatus
US9785231B1 (en) 2013-09-26 2017-10-10 Rockwell Collins, Inc. Head worn display integrity monitor system and methods
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US20150160529A1 (en) 2013-12-11 2015-06-11 Sbg Labs Inc. Holographic Waveguide Display
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US20150167868A1 (en) 2013-12-17 2015-06-18 Scott Boncha Maple sap vacuum collection systems with chew proof tubing
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
CN103777282A (en) 2014-02-26 2014-05-07 华中科技大学 Optical grating coupler and optical signal coupling method
US9635352B1 (en) 2014-03-11 2017-04-25 Rockwell Collins, Inc. Systems and methods for indicating improper viewing angles
US9762895B1 (en) 2014-03-11 2017-09-12 Rockwell Collins, Inc. Dual simultaneous image presentation for a three-dimensional aviation display
US9648313B1 (en) 2014-03-11 2017-05-09 Rockwell Collins, Inc. Aviation display system and method
JP2015172713A (en) 2014-03-12 2015-10-01 オリンパス株式会社 display device
US9766465B1 (en) 2014-03-25 2017-09-19 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9678345B1 (en) 2014-08-15 2017-06-13 Rockwell Collins, Inc. Dynamic vergence correction in binocular displays
US9733475B1 (en) 2014-09-08 2017-08-15 Rockwell Collins, Inc. Curved waveguide combiner for head-mounted and helmet-mounted displays (HMDS), a collimated virtual window, or a head up display (HUD)
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US20170276940A1 (en) 2014-09-19 2017-09-28 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
WO2016046514A1 (en) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Holographic waveguide opticaltracker
US20180232048A1 (en) 2014-09-26 2018-08-16 Digilens, Inc. Holographic waveguide optical tracker
US20180011324A1 (en) 2015-01-12 2018-01-11 Digilens, Inc. Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
WO2016116733A1 (en) 2015-01-20 2016-07-28 Milan Momcilo Popovich Holographic waveguide lidar
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US20190072723A1 (en) 2015-02-12 2019-03-07 Digilens, Inc. Waveguide Grating Device
WO2016135434A1 (en) 2015-02-23 2016-09-01 Milan Momcilo Popovich Electrically focus-tunable lens
US20180246354A1 (en) 2015-02-23 2018-08-30 Digilens, Inc. Electrically focus-tunable lens
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US20170032166A1 (en) 2015-05-14 2017-02-02 Cross Match Technologies, Inc. Handheld biometric scanner device
US9541763B1 (en) 2015-07-29 2017-01-10 Rockwell Collins, Inc. Active HUD alignment
US9791694B1 (en) 2015-08-07 2017-10-17 Rockwell Collins, Inc. Transparent film display system for vehicles
CN108474945A (en) 2015-10-05 2018-08-31 迪吉伦斯公司 Waveguide display
US20180284440A1 (en) 2015-10-05 2018-10-04 Digilens, Inc. Waveguide Display
JP2018533069A (en) 2015-10-05 2018-11-08 ディジレンズ・インコーポレイテッド Waveguide display
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US20170160546A1 (en) 2015-12-02 2017-06-08 Rockwell Collins, Inc. Worn display using a peripheral view
US9874931B1 (en) 2016-02-22 2018-01-23 Rockwell Collins, Inc. Head-tracking system and method
US20170255257A1 (en) 2016-03-04 2017-09-07 Rockwell Collins, Inc. Systems and methods for delivering imagery to head-worn display systems
EP3433659A1 (en) 2016-03-24 2019-01-30 DigiLens, Inc. Method and apparatus for providing a polarization selective holographic waveguide device
CN108780224A (en) 2016-03-24 2018-11-09 迪吉伦斯公司 Method and apparatus for providing polarization selectivity holographical wave guide device
WO2017162999A1 (en) 2016-03-24 2017-09-28 Popovich Milan Momcilo Method and apparatus for providing a polarization selective holographic waveguide device
US20190121027A1 (en) 2016-03-24 2019-04-25 Digilens, Inc. Method and Apparatus for Providing a Polarization Selective Holographic Waveguide Device
JP2019512745A (en) 2016-03-24 2019-05-16 ディジレンズ・インコーポレイテッド Method and apparatus for providing polarization selective holographic waveguide device
EP3433658A1 (en) 2016-04-11 2019-01-30 DigiLens, Inc. Holographic waveguide apparatus for structured light projection
CN109154717A (en) 2016-04-11 2019-01-04 迪吉伦斯公司 Holographic waveguide device for project structured light
WO2017178781A1 (en) 2016-04-11 2017-10-19 GRANT, Alastair, John Holographic waveguide apparatus for structured light projection
US20190129085A1 (en) 2016-04-11 2019-05-02 Digilens, Inc. Holographic Waveguide Apparatus for Structured Light Projection
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
US20180210198A1 (en) 2017-01-26 2018-07-26 Rockwell Collins, Inc. Head up display with an angled light pipe
WO2019046649A1 (en) 2017-08-30 2019-03-07 Digilens, Inc. Methods and apparatus for compensating image distortion and illumination nonuniform ity in a waveguide
US20190064735A1 (en) 2017-08-30 2019-02-28 Digilens, Inc. Methods and Apparatus for Compensating Image Distortion and Illumination Nonuniformity in a Waveguide

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
"Navy awards SGB Labs a contract for HMDs for simulation and training", Press releases, DigiLens, Oct. 2012, pp. 1-2.
"Plastic has replaced glass in photochromic lens", 2003, 1 page.
"USAF Awards SBG Labs an SBIR Contract for Wde Field of View HUD", Press Release, SBG Labs DigiLens, Apr. 2014, 2 pgs.
"Webster's Third New International Dictionary 433", (1986), 3 pages.
Amitai et al., "Visor-display design based on planar holographic optics", Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Cameron, "The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays", Proc. of SPIE, 2009, 11 pages, vol. 7326.
Crawford, "Electrically Switchable Bragg Gratings", Optics & Photonics News, pp. 54-59, Apr. 2003.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pgs.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pgs.
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, dated Jan. 28, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, dated Nov. 1, 2011, dated Nov. 10, 2011, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, dated Apr. 11, 2012, dated Apr. 19, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report dated May 1, 2012, dated May 10, 2012, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, dated Mar. 21, 2017, dated Mar. 30, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, dated Aug. 29, 2017, dated Sep. 8, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000040, Report dated Sep. 25, 2018 , dated Oct. 4, 2018, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2017/000055, dated Oct. 16, 2018, dated Oct. 25 2018, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2018/015553, dated Jun. 4, 2019, dated Jun. 13, 2019, 6 pgs.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, dated Nov. 8, 2010, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, dated Apr. 6, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, dated Jul. 13, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2017/000055, Search completed Jul. 19, 2017, dated Jul. 26, 2017, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, dated Mar. 28, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/015553, completed Aug. 6, 2018, dated Sep. 19, 2018, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/048960, Search completed Dec. 14, 2018, dated Jan. 8, 2019, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012758, completed Mar 12, 2019, dated Mar. 27, 2019, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2019/012764, completed Mar. 1, 2019, dated Mar. 18, 2019, 9 pgs.
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Mar. 14, 2019, dated Feb. 7, 2017, 21 pgs.
International Search Report and Written Opinion for International Application PCT/US2019/012759, completed Mar. 14, 2019, dated Apr. 15, 2019, 12 pgs.
International Search Report for PCT/GB2010/001982, completed by the European Patent Office dated Feb. 24, 2011, 4 pgs.
Irie, "Photochromic diarylethenes for photonic devices", Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Levola et al., "Replicated slanted gratings with a high refractive index material for in and outcoupling of light", Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Moffitt, "Head-Mounted Display Image Configurations", retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs.
Nordin G et al., "Diffraction Properties of Stratified Volume Holographic Optical Elements", Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217.
Schechter et al., "Compact beam expander with linear gratings", Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Urey, "Diffractive exit pupil expander for display applications", Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Written Opinion for International Application No. PCT/GB2010/001982, search completed Feb. 24, 2011, dated Mar. 8, 2011, 6 pgs.
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, dated Nov. 16, 2015, 7 pgs.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256155B2 (en) 2012-01-06 2022-02-22 Digilens Inc. Contact image sensor using switchable Bragg gratings
US11443547B2 (en) 2013-07-31 2022-09-13 Digilens Inc. Waveguide device incorporating beam direction selective light absorber
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US12298513B2 (en) 2016-12-02 2025-05-13 Digilens Inc. Waveguide device with uniform output illumination
US12248150B2 (en) 2017-01-05 2025-03-11 Digilens Inc. Wearable heads up displays
EP3438880B1 (en) * 2017-07-31 2024-02-21 Samsung Electronics Co., Ltd. Display for recognizing fingerprint and electronic device
US11114483B2 (en) * 2018-08-10 2021-09-07 Omnivision Technologies, Inc. Cavityless chip-scale image-sensor package
US12210153B2 (en) 2019-01-14 2025-01-28 Digilens Inc. Holographic waveguide display with light control layer
US12140764B2 (en) 2019-02-15 2024-11-12 Digilens Inc. Wide angle waveguide display
US12271035B2 (en) 2019-06-07 2025-04-08 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US12306585B2 (en) 2023-05-03 2025-05-20 Digilens Inc. Methods for fabricating optical waveguides

Also Published As

Publication number Publication date
US20200012839A1 (en) 2020-01-09
US20200372236A1 (en) 2020-11-26
WO2015015138A1 (en) 2015-02-05
US11443547B2 (en) 2022-09-13
US10089516B2 (en) 2018-10-02
US9727772B2 (en) 2017-08-08
US10423813B2 (en) 2019-09-24
US20190042827A1 (en) 2019-02-07
US20160283773A1 (en) 2016-09-29
US20170357841A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US11443547B2 (en) Waveguide device incorporating beam direction selective light absorber
US11256155B2 (en) Contact image sensor using switchable Bragg gratings
US20200150469A1 (en) Method and Apparatus for Contact Image Sensing
WO2011110821A1 (en) Biometric sensor
EP3334130B1 (en) Flat panel display embedding optical imaging sensor
US8335353B2 (en) Biometrics authentication system
EP3239824B1 (en) Flat panel display embedding optical imaging sensor
JP5674790B2 (en) Optically based planar scanner
CN108877492B (en) Flat panel display with embedded optical imaging sensor
WO2020015436A1 (en) Electronic device having texture detection function
CN109753852B (en) Optical assembly for object texture, display assembly and electronic equipment
KR20180003702A (en) Flat Panel Display Embedding Optical Imaging Sensor
CN108227064B (en) Directional Optical Units and Displays
AU2010300077A1 (en) Projection systems for touch input devices
CN112684621B (en) An image acquisition device
TWI772940B (en) Image acquisition device
CN111460867A (en) Fingerprint Identification Device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

AS Assignment

Owner name: DIGILENS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;SIGNING DATES FROM 20190410 TO 20190415;REEL/FRAME:053142/0279

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240818