US10218630B2 - System and method for increasing data transmission rates through a content distribution network - Google Patents
System and method for increasing data transmission rates through a content distribution network Download PDFInfo
- Publication number
- US10218630B2 US10218630B2 US14/927,115 US201514927115A US10218630B2 US 10218630 B2 US10218630 B2 US 10218630B2 US 201514927115 A US201514927115 A US 201514927115A US 10218630 B2 US10218630 B2 US 10218630B2
- Authority
- US
- United States
- Prior art keywords
- data
- user
- aggregation
- users
- cohort
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 101
- 238000009826 distribution Methods 0.000 title abstract description 84
- 230000005540 biological transmission Effects 0.000 title abstract description 27
- 230000002776 aggregation Effects 0.000 claims abstract description 195
- 238000004220 aggregation Methods 0.000 claims abstract description 195
- 230000015654 memory Effects 0.000 claims abstract description 52
- 238000004891 communication Methods 0.000 claims description 43
- 230000008569 process Effects 0.000 description 68
- 238000003860 storage Methods 0.000 description 66
- 230000004044 response Effects 0.000 description 43
- 238000007726 management method Methods 0.000 description 40
- 238000011156 evaluation Methods 0.000 description 39
- 230000004069 differentiation Effects 0.000 description 23
- 238000012545 processing Methods 0.000 description 16
- 230000010354 integration Effects 0.000 description 15
- 238000012549 training Methods 0.000 description 15
- 230000004075 alteration Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 230000003993 interaction Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000013403 standard screening design Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/36—Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
- H04L47/365—Dynamic adaptation of the packet size
-
- H04L67/2833—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/566—Grouping or aggregating service requests, e.g. for unified processing
Definitions
- This application relates to the field data transmission and network optimization.
- Nodes can include hosts such as personal computers, phones, servers as well as networking hardware. Two such devices can be said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other.
- Computer networks differ in the transmission media used to carry their signals, the communications protocols to organize network traffic, the network's size, topology and organizational intent. In most cases, communications protocols are layered on (i.e. work using) other more specific or more general communications protocols, except for the physical layer that directly deals with the transmission media.
- One aspect of the present disclosure relates to a system for increasing data transmission rates through a content distribution network by generating a customized aggregation comprising data packets selected to maximize a data acceptance rate.
- the system includes a memory including: a content library database comprising a plurality of data packets, which plurality of data packets include a plurality of delivery data packets and a plurality of assessment data packets; and a user profile database, which user profile database includes information identifying a cohort of users, and which user profile database includes information identifying a plurality of at least one attribute of each of the users in the cohort of users.
- the system includes a server that can: receive aggregation information identifying a plurality of delivery data packets and a plurality of assessment data packets; receive data packet data from the content library database; identify a recipient cohort, which recipient cohort includes the group of users designated to receive the aggregation via a plurality of user devices; generate a plurality of sub-cohorts by dividing the cohort into smaller groups, which users in each of the sub-cohorts share a common attribute; generate combined aggregation data characterizing the aggregation as a whole; generate an updated aggregation by removing at least one data packet from the aggregation; and provide the updated aggregation to the users in the sub-cohort.
- the data packet data can include data packet user data and data packet metadata.
- the system includes a plurality of user devices connected to the server via a communication network.
- the server can generate sub-cohort data, which sub-cohort data can be generated for each of the sub-cohorts from data of users in that sub-cohort.
- the combined aggregation data identifies a data acceptance rate.
- the server can identify the at least one data packet for removal by determining a difference between the aggregation data to the sub-cohort data, and comparing the difference to a threshold.
- generating an updated aggregation further includes adding at least one new data packet in the aggregation.
- the at least one new data packet is selected for inclusion in the aggregation based on a degree of in minimizing the difference between the aggregation data and the sub-cohort data.
- the at least one new data packet is selected for inclusion in the aggregation based on a degree of optimizing the difference between the aggregation data and the sub-cohort data.
- the combined aggregation data identifies a difficulty.
- One aspect of the present disclosure relates to a method for increasing data transmission rates through a content distribution network by generating a customized aggregation comprising data packets selected to maximize a data acceptance rate.
- the method includes receiving aggregation information identifying a plurality of delivery data packets and a plurality of assessment data packets, which plurality of delivery data packets and which plurality of assessment data packets are stored in a content library database; receiving with a server data packet data from the content library database, which data packet data identifies one or several attributes of the delivery data packets and the assessment data packets in the aggregation information; identifying with the server a recipient cohort, which recipient cohort includes the group of users designated to receive the aggregation via a plurality of user devices; and generating with the server a plurality of sub-cohorts by dividing the cohort into smaller groups, which users in each of the sub-cohorts share a common attribute.
- the method can include generating with the server combined aggregation data characterizing the aggregation as a whole, generating with the server an updated aggregation by removing at least one data packet from the aggregation, wherein the aggregation is updated to increase a data acceptance rate, and providing with the server the updated aggregation to the users in the sub-cohort via a plurality of user devices connected to the server by a communication network.
- the data packet data includes data packet user data and data packet metadata.
- the method includes generating sub-cohort data, which sub-cohort data can be generated for each of the sub-cohorts from data of users in that sub-cohort.
- the combined aggregation data identifies a data acceptance rate.
- the method can include identifying the at least one data packet for removal by determining a difference between the aggregation data to the sub-cohort data, and comparing the difference to a threshold.
- generating an updated aggregation further includes including at least one new data packet in the aggregation.
- the at least one new data packet is selected for inclusion in the aggregation based on a degree of in minimizing the difference between the aggregation data and the sub-cohort data.
- the at least one new data packet is selected for inclusion in the aggregation based on a degree of optimizing the difference between the aggregation data and the sub-cohort data.
- the combined aggregation data identifies a difficulty.
- FIG. 1 is a block diagram showing illustrating an example of a content distribution network.
- FIG. 2 is a block diagram illustrating a computer server and computing environment within a content distribution network.
- FIG. 3 is a block diagram illustrating an embodiment of one or more data store servers within a content distribution network.
- FIG. 4 is a block diagram illustrating an embodiment of one or more content management servers within a content distribution network.
- FIG. 5 is a block diagram illustrating the physical and logical components of a special-purpose computer device within a content distribution network.
- FIG. 6 contains a plurality of images of data acceptance curves.
- FIG. 7 contains a plurality of images of data packet curves.
- FIG. 8 is a flowchart illustrating one embodiment of a process for generating a customized aggregation to maximize data transmission rates through a content distribution network.
- FIG. 9 is a flowchart illustrating one embodiment of a process for generating a customized aggregation matched to a sub-cohort to maximize data transmission rates through the content distribution network.
- FIG. 10 is a flowchart illustrating one embodiment of a process for generating an aggregation database.
- Content distribution network 100 also referred to herein as the prediction system 100 , may include one or more content management servers 102 .
- content management servers 102 may be any desired type of server including, for example, a rack server, a tower server, a miniature server, a blade server, a mini rack server, a mobile server, an ultra-dense server, a super server, or the like, and may include various hardware components, for example, a motherboard, a processing units, memory systems, hard drives, network interfaces, power supplies, etc.
- Content management server 102 may include one or more server farms, clusters, or any other appropriate arrangement and/or combination or computer servers. Content management server 102 may act according to stored instructions located in a memory subsystem of the server 102 , and may run an operating system, including any commercially available server operating system and/or any other operating systems discussed herein.
- the content distribution network 100 may include one or more data store servers 104 , such as database servers and file-based storage systems.
- the database servers 104 can access data that can be stored on a variety of hardware components. These hardware components can include, for example, components forming tier 0 storage, components forming tier 1 storage, components forming tier 2 storage, and/or any other tier of storage.
- tier 0 storage refers to storage that is the fastest tier of storage in the database server 104 , and particularly, the tier 0 storage is the fastest storage that is not RAM or cache memory.
- the tier 0 memory can be embodied in solid state memory such as, for example, a solid-state drive (SSD) and/or flash memory.
- SSD solid-state drive
- the tier 1 storage refers to storage that is one or several higher performing systems in the memory management system, and that is relatively slower than tier 0 memory, and relatively faster than other tiers of memory.
- the tier 1 memory can be one or several hard disks that can be, for example, high-performance hard disks. These hard disks can be one or both of physically or communicatingly connected such as, for example, by one or several fiber channels.
- the one or several disks can be arranged into a disk storage system, and specifically can be arranged into an enterprise class disk storage system.
- the disk storage system can include any desired level of redundancy to protect data stored therein, and in one embodiment, the disk storage system can be made with grid architecture that creates parallelism for uniform allocation of system resources and balanced data distribution.
- the tier 2 storage refers to storage that includes one or several relatively lower performing systems in the memory management system, as compared to the tier 1 and tier 2 storages.
- tier 2 memory is relatively slower than tier 1 and tier 0 memories.
- Tier 2 memory can include one or several SATA-drives or one or several NL-SATA drives.
- the one or several hardware and/or software components of the database server 104 can be arranged into one or several storage area networks (SAN), which one or several storage area networks can be one or several dedicated networks that provide access to data storage, and particularly that provides access to consolidated, block level data storage.
- SAN storage area networks
- a SAN typically has its own network of storage devices that are generally not accessible through the local area network (LAN) by other devices. The SAN allows access to these devices in a manner such that these devices appear to be locally attached to the user device.
- Data stores 104 may comprise stored data relevant to the functions of the content distribution network 100 . Illustrative examples of data stores 104 that may be maintained in certain embodiments of the content distribution network 100 are described below in reference to FIG. 3 . In some embodiments, multiple data stores may reside on a single server 104 , either using the same storage components of server 104 or using different physical storage components to assure data security and integrity between data stores. In other embodiments, each data store may have a separate dedicated data store server 104 .
- Content distribution network 100 also may include one or more user devices 106 and/or supervisor devices 110 .
- User devices 106 and supervisor devices 110 may display content received via the content distribution network 100 , and may support various types of user interactions with the content.
- User devices 106 and supervisor devices 110 may include mobile devices such as smartphones, tablet computers, personal digital assistants, and wearable computing devices. Such mobile devices may run a variety of mobile operating systems, and may be enabled for Internet, e-mail, short message service (SMS), Bluetooth®, mobile radio-frequency identification (M-RFID), and/or other communication protocols.
- Other user devices 106 and supervisor devices 110 may be general purpose personal computers or special-purpose computing devices including, by way of example, personal computers, laptop computers, workstation computers, projection devices, and interactive room display systems. Additionally, user devices 106 and supervisor devices 110 may be any other electronic devices, such as thin-client computers, Internet-enabled gaming systems, business or home appliances, and/or personal messaging devices, capable of communicating over network(s) 120 .
- user devices 106 and supervisor devices 110 may correspond to different types of specialized devices, for example, student devices and teacher devices in an educational network, employee devices and presentation devices in a company network, different gaming devices in a gaming network, etc.
- user devices 106 and supervisor devices 110 may operate in the same physical location 107 , such as a classroom or conference room.
- the devices may contain components that support direct communications with other nearby devices, such as wireless transceivers and wireless communications interfaces, Ethernet sockets or other Local Area Network (LAN) interfaces, etc.
- LAN Local Area Network
- the user devices 106 and supervisor devices 110 need not be used at the same location 107 , but may be used in remote geographic locations in which each user device 106 and supervisor device 110 may use security features and/or specialized hardware (e.g., hardware-accelerated SSL and HTTPS, WS-Security, firewalls, etc.) to communicate with the content management server 102 and/or other remotely located user devices 106 .
- security features and/or specialized hardware e.g., hardware-accelerated SSL and HTTPS, WS-Security, firewalls, etc.
- different user devices 106 and supervisor devices 110 may be assigned different designated roles, such as presenter devices, teacher devices, administrator devices, or the like, and in such cases the different devices may be provided with additional hardware and/or software components to provide content and support user capabilities not available to the other devices.
- the content distribution network 100 can include a large number of user devices 106 such as, for example, 100, 500, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 50,000, 100,000, 250,000, 1,000,000, 5,000,000, 10,000,000, 100,000,000, 500,000,000 and/or any other or intermediate number of user devices 106 .
- the large number of user devices 106 can enable the functioning of the content distribution network 100 .
- the large number of user devices 106 can allow a large number of students to interact with the content distribution network 100 to thereby generate the data volume to enable performing of the methods and processes discussed at length below.
- this volume of data can be so large that it cannot be processed by a human. Such a volume of data is referred to herein as a massive data volume.
- the content distribution network 100 also may include a privacy server 108 that maintains private user information at the privacy server 108 while using applications or services hosted on other servers.
- the privacy server 108 may be used to maintain private data of a user within one jurisdiction even though the user is accessing an application hosted on a server (e.g., the content management server 102 ) located outside the jurisdiction.
- the privacy server 108 may intercept communications between a user device 106 or supervisor device 110 and other devices that include private user information.
- the privacy server 108 may create a token or identifier that does not disclose the private information and may use the token or identifier when communicating with the other servers and systems, instead of using the user's private information.
- the content management server 102 may be in communication with one or more additional servers, such as a content server 112 , a user data server 114 , and/or an administrator server 116 .
- a content server 112 may include some or all of the same physical and logical components as the content management server(s) 102 , and in some cases, the hardware and software components of these servers 112 - 116 may be incorporated into the content management server(s) 102 , rather than being implemented as separate computer servers.
- Content server 112 may include hardware and software components to generate, store, and maintain the content resources for distribution to user devices 106 and other devices in the network 100 .
- content server 112 may include data stores of training materials, presentations, plans, syllabi, reviews, evaluations, interactive programs and simulations, course models, course outlines, and various training interfaces that correspond to different materials and/or different types of user devices 106 .
- a content server 112 may include media content files such as music, movies, television programming, games, and advertisements.
- User data server 114 may include hardware and software components that store and process data for multiple users relating to each user's activities and usage of the content distribution network 100 .
- the content management server 102 may record and track each user's system usage, including their user device 106 , content resources accessed, and interactions with other user devices 106 .
- This data may be stored and processed by the user data server 114 , to support user tracking and analysis features.
- the user data server 114 may store and analyze each user's training materials viewed, presentations attended, courses completed, interactions, evaluation results, and the like.
- the user data server 114 may also include a repository for user-generated material, such as evaluations and tests completed by users, and documents and assignments prepared by users.
- the user data server 114 may store and process resource access data for multiple users (e.g., content titles accessed, access times, data usage amounts, gaming histories, user devices and device types, etc.).
- Administrator server 116 may include hardware and software components to initiate various administrative functions at the content management server 102 and other components within the content distribution network 100 .
- the administrator server 116 may monitor device status and performance for the various servers, data stores, and/or user devices 106 in the content distribution network 100 .
- the administrator server 116 may add or remove devices from the network 100 , and perform device maintenance such as providing software updates to the devices in the network 100 .
- Various administrative tools on the administrator server 116 may allow authorized users to set user access permissions to various content resources, monitor resource usage by users and devices 106 , and perform analyses and generate reports on specific network users and/or devices (e.g., resource usage tracking reports, training evaluations, etc.).
- the content distribution network 100 may include one or more communication networks 120 . Although only a single network 120 is identified in FIG. 1 , the content distribution network 100 may include any number of different communication networks between any of the computer servers and devices shown in FIG. 1 and/or other devices described herein. Communication networks 120 may enable communication between the various computing devices, servers, and other components of the content distribution network 100 . As discussed below, various implementations of content distribution networks 100 may employ different types of networks 120 , for example, computer networks, telecommunications networks, wireless networks, and/or any combination of these and/or other networks.
- an illustrative distributed computing environment 200 including a computer server 202 , four client computing devices 206 , and other components that may implement certain embodiments and features described herein.
- the server 202 may correspond to the content management server 102 discussed above in FIG. 1
- the client computing devices 206 may correspond to the user devices 106 .
- the computing environment 200 illustrated in FIG. 2 may correspond to any other combination of devices and servers configured to implement a client-server model or other distributed computing architecture.
- Client devices 206 may be configured to receive and execute client applications over one or more networks 220 . Such client applications may be web browser based applications and/or standalone software applications, such as mobile device applications. Server 202 may be communicatively coupled with the client devices 206 via one or more communication networks 220 . Client devices 206 may receive client applications from server 202 or from other application providers (e.g., public or private application stores). Server 202 may be configured to run one or more server software applications or services, for example, web-based or cloud-based services, to support content distribution and interaction with client devices 206 . Users operating client devices 206 may in turn utilize one or more client applications (e.g., virtual client applications) to interact with server 202 to utilize the services provided by these components.
- client applications e.g., virtual client applications
- Various different subsystems and/or components 204 may be implemented on server 202 . Users operating the client devices 206 may initiate one or more client applications to use services provided by these subsystems and components.
- the subsystems and components within the server 202 and client devices 206 may be implemented in hardware, firmware, software, or combinations thereof.
- Various different system configurations are possible in different distributed computing systems 200 and content distribution networks 100 .
- the embodiment shown in FIG. 2 is thus one example of a distributed computing system and is not intended to be limiting.
- exemplary computing environment 200 is shown with four client computing devices 206 , any number of client computing devices may be supported. Other devices, such as specialized sensor devices, etc., may interact with client devices 206 and/or server 202 .
- various security and integration components 208 may be used to send and manage communications between the server 202 and user devices 206 over one or more communication networks 220 .
- the security and integration components 208 may include separate servers, such as web servers and/or authentication servers, and/or specialized networking components, such as firewalls, routers, gateways, load balancers, and the like.
- the security and integration components 208 may correspond to a set of dedicated hardware and/or software operating at the same physical location and under the control of same entities as server 202 .
- components 208 may include one or more dedicated web servers and network hardware in a datacenter or a cloud infrastructure.
- the security and integration components 208 may correspond to separate hardware and software components which may be operated at a separate physical location and/or by a separate entity.
- Security and integration components 208 may implement various security features for data transmission and storage, such as authenticating users and restricting access to unknown or unauthorized users.
- security and integration components 208 may provide, for example, a file-based integration scheme or a service-based integration scheme for transmitting data between the various devices in the content distribution network 100 .
- Security and integration components 208 also may use secure data transmission protocols and/or encryption for data transfers, for example, File Transfer Protocol (FTP), Secure File Transfer Protocol (SFTP), and/or Pretty Good Privacy (PGP) encryption.
- FTP File Transfer Protocol
- SFTP Secure File Transfer Protocol
- PGP Pretty Good Privacy
- one or more web services may be implemented within the security and integration components 208 and/or elsewhere within the content distribution network 100 .
- Such web services including cross-domain and/or cross-platform web services, may be developed for enterprise use in accordance with various web service standards, such as RESTful web services (i.e., services based on the Representation State Transfer (REST) architectural style and constraints), and/or web services designed in accordance with the Web Service Interoperability (WS-I) guidelines.
- Some web services may use the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocol to provide secure connections between the server 202 and user devices 206 .
- SSL or TLS may use HTTP or HTTPS to provide authentication and confidentiality.
- web services may be implemented using REST over HTTPS with the OAuth open standard for authentication, or using the WS-Security standard which provides for secure SOAP messages using XML encryption.
- the security and integration components 208 may include specialized hardware for providing secure web services.
- security and integration components 208 may include secure network appliances having built-in features such as hardware-accelerated SSL and HTTPS, WS-Security, and firewalls.
- Such specialized hardware may be installed and configured in front of any web servers, so that any external devices may communicate directly with the specialized hardware.
- Communication network(s) 220 may be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially-available protocols, including without limitation, TCP/IP (transmission control protocol/Internet protocol), SNA (systems network architecture), IPX (Internet packet exchange), Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocols, Hyper Text Transfer Protocol (HTTP) and Secure Hyper Text Transfer Protocol (HTTPS), Bluetooth®, Near Field Communication (NFC), and the like.
- network(s) 220 may be local area networks (LAN), such as one based on Ethernet, Token-Ring and/or the like.
- Network(s) 220 also may be wide-area networks, such as the Internet.
- Networks 220 may include telecommunication networks such as a public switched telephone networks (PSTNs), or virtual networks such as an intranet or an extranet.
- PSTNs public switched telephone networks
- Infrared and wireless networks e.g., using the Institute of Electrical and Electronics (IEEE) 802.11 protocol suite or other wireless protocols
- IEEE 802.11 protocol suite or other wireless protocols also may be included in networks 220 .
- Computing environment 200 also may include one or more data stores 210 and/or back-end servers 212 .
- the data stores 210 may correspond to data store server(s) 104 discussed above in FIG. 1
- back-end servers 212 may correspond to the various back-end servers 112 - 116 .
- Data stores 210 and servers 212 may reside in the same datacenter or may operate at a remote location from server 202 .
- one or more data stores 210 may reside on a non-transitory storage medium within the server 202 .
- Other data stores 210 and back-end servers 212 may be remote from server 202 and configured to communicate with server 202 via one or more networks 220 .
- data stores 210 and back-end servers 212 may reside in a storage-area network (SAN), or may use storage-as-a-service (STaaS) architectural model.
- SAN storage-area network
- STaaS storage-as-a-service
- data stores 301 - 311 may reside in storage on a single computer server 104 (or a single server farm or cluster) under the control of a single entity, or may reside on separate servers operated by different entities and/or at remote locations.
- data stores 301 - 311 may be accessed by the content management server 102 and/or other devices and servers within the network 100 (e.g., user devices 106 , supervisor devices 110 , administrator servers 116 , etc.). Access to one or more of the data stores 301 - 311 may be limited or denied based on the processes, user credentials, and/or devices attempting to interact with the data store.
- data stores server(s) 104 may be implemented in data stores server(s) 104 to store listings of available content titles and descriptions, content title usage statistics, subscriber profiles, account data, payment data, network usage statistics, etc.
- a user profile data store 301 may include information relating to the end users within the content distribution network 100 . This information may include user characteristics such as the user names, access credentials (e.g., logins and passwords), user preferences, and information relating to any previous user interactions within the content distribution network 100 (e.g., requested content, posted content, content modules completed, training scores or evaluations, other associated users, etc.).
- user characteristics such as the user names, access credentials (e.g., logins and passwords), user preferences, and information relating to any previous user interactions within the content distribution network 100 (e.g., requested content, posted content, content modules completed, training scores or evaluations, other associated users, etc.).
- this information can relate to one or several individual end users such as, for example, one or several students, teachers, administrators, or the like, and in some embodiments, this information can relate to one or several institutional end users such as, for example, one or several schools, groups of schools such as one or several school districts, one or several colleges, one or several universities, one or several training providers, or the like.
- the information within the user profile database 301 can identify one or several courses of study that the student has initiated, completed, and/or partially completed, as well as grades received in those courses of study.
- the student's academic and/or educational history can further include information identifying student performance on one or several tests, quizzes, and/or assignments. In some embodiments, this information can be stored in a tier of memory that is not the fastest memory in the content delivery network 100 .
- the data identifying one or several student learning styles can include data identifying a learning style based on the student's educational history such as, for example, identifying a student as an auditory learner when the student has received significantly higher grades and/or scores on assignments and/or in courses favorable to auditory learners.
- this information can be stored in a tier of memory that is not the fastest memory in the content delivery network 100 .
- the data in the use profile database 301 can be segregated and/or divided based on one or several attributes of the data such as, for example, the age of the data, the content relating to which the data was collected, or the like. In some embodiments, this data can identify one or several correct or incorrect answers provided by the student, the expected number of correct or incorrect answers provided by the student, student response times, student learning styles, or the like.
- the student database can include a data acceptance curve that can define an expected learning trajectory for one or several students based on historic data for those one or several students and, in some embodiments, also based on one or several predictive models. A data acceptance curve for one or several users is referred to herein as a user data acceptance curve.
- the user data acceptance curve can comprise a plurality of data acceptance curves calculated for data packets of different difficulties and/or a plurality of data acceptance curves calculated for data packets having different subject matters or skills.
- the user profile database 301 can further include information relating to one or several teachers and/or instructors who are responsible for organizing, presenting, and/or managing the presentation of information to the student.
- user profile database 301 can include information identifying courses and/or subjects that have been taught by the teacher, data identifying courses and/or subjects currently taught by the teacher, and/or data identifying courses and/or subjects that will be taught by the teacher. In some embodiments, this can include information relating to one or several teaching styles of one or several teachers.
- the user profile database 301 can further include information indicating past evaluations and/or evaluation reports received by the teacher.
- the user profile database 301 can further include information relating to improvement suggestions received by the teacher, training received by the teacher, continuing education received by the teacher, and/or the like. In some embodiments, this information can be stored in a tier of memory that is not the fastest memory in the content delivery network 100 .
- An accounts data store 302 may generate and store account data for different users in various roles within the content distribution network 100 .
- accounts may be created in an accounts data store 302 for individual end users, supervisors, administrator users, and entities such as companies or educational institutions.
- Account data may include account types, current account status, account characteristics, and any parameters, limits, restrictions associated with the accounts.
- a content library data store 303 may include information describing the individual data packets, also referred to herein as content items or content resources available via the content distribution network 100 .
- a data packet is a group of data providable to a user such as, data for teaching a skill or conveying knowledge and/or for assessing a skill or knowledge.
- the library data store 303 may include metadata, properties, and other characteristics associated with the content resources stored in the content server 112 .
- Such data may identify one or more aspects or content attributes of the associated content resources, for example, subject matter, access level, or skill level of the content resources, license attributes of the content resources (e.g., any limitations and/or restrictions on the licensable use and/or distribution of the content resource), price attributes of the content resources (e.g., a price and/or price structure for determining a payment amount for use or distribution of the content resource), rating attributes for the content resources (e.g., data indicating the evaluation or effectiveness of the content resource), and the like.
- the library data store 303 may be configured to allow updating of content metadata or properties, and to allow the addition and/or removal of information relating to the content resources.
- content relationships may be implemented as graph structures, which may be stored in the library data store 303 or in an additional store for use by selection algorithms along with the other metadata.
- the content library database 303 can include a plurality of databases such as, for example, a structure database, an aggregate database, a data packet database, also referred to herein as a content item database, which can include a content database and a question database, and a content response database.
- the content response database can include information used to determine whether a user response to a question was correct or incorrect.
- the content response database can further include raw question data including information relating to correct or incorrect responses provided by users and user data associated with some or all of those responses.
- this user data can identify one or several attributes of the user such as, for example, any of the user properties discussed above in the user profile database 301 .
- the content response database can include raw question data including information relating to correct or incorrect responses provided by users and one or several pointers pointing to those users' data in the user profile database 301 .
- the content item database can include one or several data packets.
- the one or several data packets can include, for example, data packets for conveying information to a user, also referred to herein as delivery data packets or delivery content items, and data packets to assess a knowledge level and/or skill level of the user, also referred to as assessment data packets or assessment content items.
- These data packets can include one or several character strings, text, images, audio, video, or the like.
- data packets to convey information to the user can include one or several demonstrations, lectures, readings, lessons, videos or video clips, recordings, audio clips, or the like, and in some embodiments, the data packets to assess a knowledge level and/or skill level of the user can include one or several questions including, for example, one or several short answer questions, essay questions, multiple choice questions, true/false questions, or the like.
- the data packets to convey information can be stored in the content database of the data packet database, and in some embodiments, the data packets to assess the knowledge level and/or skill level of the user can be stored in the question database of the data packet database.
- the content item database can include a data acceptance curve that can define an expected learning trajectory for one or several data packets based on historic data for those one or several data packets and, in some embodiments, also based on one or several predictive models.
- a data acceptance curve for one or several data packets is referred to herein as a data packet acceptance curve.
- the data packet acceptance curve can comprise a plurality of data acceptance curves calculated for with data packet user data collected from one or several users. In some embodiments, these one or several user can have different attributes such as different skill levels, different learning styles, or the like.
- the aggregate database can include a grouping of data packets including, for example, and grouping of one or both of content items to convey information to a user and content items to assess a knowledge level and/or skill level of the user.
- This grouping of data packets can be created by a user such as a teacher, instructor, supervisor, or the like. In some embodiments, this grouping of data packets can be created by the user via the supervisor device. In some embodiments, this grouping of data packets can be a lesson that can be given to one or several users.
- this content can be stored directly in the structure database, and in some embodiments, the structure database can comprise one or several pointers pointing to other databases containing the appropriate content.
- the structure database can contain one or several lessons, one or several questions, and/or one or several answers, some or all of which can be organized and/or connected.
- the knowledge database can comprise one or several pointers pointing to one or several lessons in the aggregate database, one or several pointers pointing to one or several data packets that can be, for example, questions, in the data packet database, and/or one or several pointers pointing to one or several responses in the content response database.
- the pointers in the structure database can be referenced and the desired data can be retrieved from its locations.
- the structure database can further include one or several external content structures.
- these external content structures can be pre-existing and can be linked to one or several data packets.
- the external content structure can be used to provide an initial organization of the data packets, which initial organization can be altered and/or refined based on information collected from one or several users in response to receipt of one or several of the data packets.
- a license data store 305 may include information relating to licenses and/or licensing of the content resources within the content distribution network 100 .
- the license data store 305 may identify licenses and licensing terms for individual content resources and/or compilations of content resources in the content server 112 , the rights holders for the content resources, and/or common or large-scale right holder information such as contact information for rights holders of content not included in the content server 112 .
- a content access data store 306 may include access rights and security information for the content distribution network 100 and specific content resources.
- the content access data store 306 may include login information (e.g., user identifiers, logins, passwords, etc.) that can be verified during user login attempts to the network 100 .
- the content access data store 306 also may be used to store assigned user roles and/or user levels of access. For example, a user's access level may correspond to the sets of content resources and/or the client or server applications that the user is permitted to access. Certain users may be permitted or denied access to certain applications and resources based on their subscription level, training program, course/grade level, etc.
- Certain users may have supervisory access over one or more end users, allowing the supervisor to access all or portions of the end user's content, activities, evaluations, etc. Additionally, certain users may have administrative access over some users and/or some applications in the content management network 100 , allowing such users to add and remove user accounts, modify user access permissions, perform maintenance updates on software and servers, etc.
- a source data store 307 may include information relating to the source of the content resources available via the content distribution network.
- a source data store 307 may identify the authors and originating devices of content resources, previous pieces of data and/or groups of data originating from the same authors or originating devices, and the like.
- An evaluation data store 308 may include information used to direct the evaluation of users and content resources in the content management network 100 .
- the evaluation data store 308 may contain, for example, the analysis criteria and the analysis guidelines for evaluating users (e.g., trainees/students, gaming users, media content consumers, etc.) and/or for evaluating the content resources in the network 100 .
- the evaluation data store 308 also may include information relating to evaluation processing tasks, for example, the identification of users and user devices 106 that have received certain content resources or accessed certain applications, the status of evaluations or evaluation histories for content resources, users, or applications, and the like.
- Evaluation criteria may be stored in the evaluation data store 308 including data and/or instructions in the form of one or several electronic rubrics or scoring guides for use in the evaluation of the content, users, or applications.
- the evaluation data store 308 also may include past evaluations and/or evaluation analyses for users, content, and applications, including relative rankings, characterizations, explanations, and the like.
- a model data store 309 can store information relating to one or several predictive models.
- the predictive models can include, for example, a Rasch model, an item response model, a Performance Factor Analysis model, Knowledge Tracing, one or several statistical models, including, for example, one or several normal models, or the like.
- the predictive models can be generally applicable to any user of the content distribution network 100 or components thereof, or to content stored in the content distribution network 100 .
- the predictive models can be customized for one or several selected user and/or selected content.
- a threshold database 310 can store one or several threshold values. These one or several threshold values can delineate between states or conditions. In one exemplary embodiment, for example, a threshold value can delineate between an acceptable user performance and an unacceptable user performance, between content appropriate for a user and content that is inappropriate for a user, or the like.
- data store server(s) 104 may include one or more external data aggregators 311 .
- External data aggregators 311 may include third-party data sources accessible to the content management network 100 , but not maintained by the content management network 100 .
- External data aggregators 311 may include any electronic information source relating to the users, content resources, or applications of the content distribution network 100 .
- external data aggregators 311 may be third-party data stores containing demographic data, education related data, consumer sales data, health related data, and the like.
- Illustrative external data aggregators 311 may include, for example, social networking web servers, public records data stores, learning management systems, educational institution servers, business servers, consumer sales data stores, medical record data stores, etc. Data retrieved from various external data aggregators 311 may be used to verify and update user account information, suggest user content, and perform user and content evaluations.
- content management server(s) 102 may include various server hardware and software components that manage the content resources within the content distribution network 100 and provide interactive and adaptive content to users on various user devices 106 .
- content management server(s) 102 may provide instructions to and receive information from the other devices within the content distribution network 100 , in order to manage and transmit content resources, user data, and server or client applications executing within the network 100 .
- a content management server 102 may include a content customization system 402 .
- the content customization system 402 may be implemented using dedicated hardware within the content distribution network 100 (e.g., a content customization server 402 ), or using designated hardware and software resources within a shared content management server 102 .
- the content customization system 402 may adjust the selection and adaptive capabilities of content resources to match the needs and desires of the users receiving the content.
- the content customization system 402 may query various data stores and servers 104 to retrieve user information, such as user preferences and characteristics (e.g., from a user profile data store 301 ), user access restrictions to content recourses (e.g., from a content access data store 306 ), previous user results and content evaluations (e.g., from an evaluation data store 308 ), and the like. Based on the retrieved information from data stores 104 and other data sources, the content customization system 402 may modify content resources for individual users.
- user preferences and characteristics e.g., from a user profile data store 301
- user access restrictions to content recourses e.g., from a content access data store 306
- previous user results and content evaluations e.g., from an evaluation data store 308
- the content customization system 402 may modify content resources for individual users.
- a content management server 102 also may include a user management system 404 .
- the user management system 404 may be implemented using dedicated hardware within the content distribution network 100 (e.g., a user management server 404 ), or using designated hardware and software resources within a shared content management server 102 .
- the user management system 404 may monitor the progress of users through various types of content resources and groups, such as media compilations, courses or curriculums in training or educational contexts, interactive gaming environments, and the like.
- the user management system 404 may query one or more databases and/or data store servers 104 to retrieve user data such as associated content compilations or programs, content completion status, user goals, results, and the like.
- a content management server 102 also may include an evaluation system 406 .
- the evaluation system 406 may be implemented using dedicated hardware within the content distribution network 100 (e.g., an evaluation server 406 ), or using designated hardware and software resources within a shared content management server 102 .
- the evaluation system 406 may be configured to receive and analyze information from user devices 106 . For example, various ratings of content resources submitted by users may be compiled and analyzed, and then stored in a data store (e.g., a content library data store 303 and/or evaluation data store 308 ) associated with the content.
- the evaluation server 406 may analyze the information to determine the effectiveness or appropriateness of content resources with, for example, a subject matter, an age group, a skill level, or the like.
- the evaluation system 406 may provide updates to the content customization system 402 or the user management system 404 , with the attributes of one or more content resources or groups of resources within the network 100 .
- the evaluation system 406 also may receive and analyze user evaluation data from user devices 106 , supervisor devices 110 , and administrator servers 116 , etc. For instance, evaluation system 406 may receive, aggregate, and analyze user evaluation data for different types of users (e.g., end users, supervisors, administrators, etc.) in different contexts (e.g., media consumer ratings, trainee or student comprehension levels, teacher effectiveness levels, gamer skill levels, etc.).
- a content management server 102 also may include a content delivery system 408 .
- the content delivery system 408 may be implemented using dedicated hardware within the content distribution network 100 (e.g., a content delivery server 408 ), or using designated hardware and software resources within a shared content management server 102 .
- the content delivery system 408 may receive content resources from the content customization system 402 and/or from the user management system 404 , and provide the resources to user devices 106 .
- the content delivery system 408 may determine the appropriate presentation format for the content resources based on the user characteristics and preferences, and/or the device capabilities of user devices 106 . If needed, the content delivery system 408 may convert the content resources to the appropriate presentation format and/or compress the content before transmission. In some embodiments, the content delivery system 408 may also determine the appropriate transmission media and communication protocols for transmission of the content resources.
- the content delivery system 408 may include specialized security and integration hardware 410 , along with corresponding software components to implement the appropriate security features content transmission and storage, to provide the supported network and client access models, and to support the performance and scalability requirements of the network 100 .
- the security and integration layer 410 may include some or all of the security and integration components 208 discussed above in FIG. 2 , and may control the transmission of content resources and other data, as well as the receipt of requests and content interactions, to and from the user devices 106 , supervisor devices 110 , administrative servers 116 , and other devices in the network 100 .
- the system 500 may correspond to any of the computing devices or servers of the content distribution network 100 described above, or any other computing devices described herein.
- computer system 500 includes processing units 504 that communicate with a number of peripheral subsystems via a bus subsystem 502 .
- peripheral subsystems include, for example, a storage subsystem 510 , an I/O subsystem 526 , and a communications subsystem 532 .
- Bus subsystem 502 provides a mechanism for letting the various components and subsystems of computer system 500 communicate with each other as intended. Although bus subsystem 502 is shown schematically as a single bus, alternative embodiments of the bus subsystem may utilize multiple buses. Bus subsystem 502 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. Such architectures may include, for example, an Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus manufactured to the IEEE P1386.1 standard.
- ISA Industry Standard Architecture
- MCA Micro Channel Architecture
- EISA Enhanced ISA
- VESA Video Electronics Standards Association
- PCI Peripheral Component Interconnect
- Processing unit 504 which may be implemented as one or more integrated circuits (e.g., a conventional microprocessor or microcontroller), controls the operation of computer system 500 .
- processors including single core and/or multicore processors, may be included in processing unit 504 .
- processing unit 504 may be implemented as one or more independent processing units 506 and/or 508 with single or multicore processors and processor caches included in each processing unit.
- processing unit 504 may also be implemented as a quad-core processing unit or larger multicore designs (e.g., hexa-core processors, octo-core processors, ten-core processors, or greater.
- Processing unit 504 may execute a variety of software processes embodied in program code, and may maintain multiple concurrently executing programs or processes. At any given time, some or all of the program code to be executed can be resident in processor(s) 504 and/or in storage subsystem 510 .
- computer system 500 may include one or more specialized processors, such as digital signal processors (DSPs), outboard processors, graphics processors, application-specific processors, and/or the like.
- DSPs digital signal processors
- outboard processors such as graphics processors, application-specific processors, and/or the like.
- I/O subsystem 526 may include device controllers 528 for one or more user interface input devices and/or user interface output devices 530 .
- User interface input and output devices 530 may be integral with the computer system 500 (e.g., integrated audio/video systems, and/or touchscreen displays), or may be separate peripheral devices which are attachable/detachable from the computer system 500 .
- Input devices 530 may include a keyboard, pointing devices such as a mouse or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel, a dial, a button, a switch, a keypad, audio input devices with voice command recognition systems, microphones, and other types of input devices.
- Input devices 530 may also include three dimensional (3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices such as speakers, digital cameras, digital camcorders, portable media players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and eye gaze tracking devices.
- Additional input devices 530 may include, for example, motion sensing and/or gesture recognition devices that enable users to control and interact with an input device through a natural user interface using gestures and spoken commands, eye gesture recognition devices that detect eye activity from users and transform the eye gestures as input into an input device, voice recognition sensing devices that enable users to interact with voice recognition systems through voice commands, medical imaging input devices, MIDI keyboards, digital musical instruments, and the like.
- Output devices 530 may include one or more display subsystems, indicator lights, or non-visual displays such as audio output devices, etc.
- Display subsystems may include, for example, cathode ray tube (CRT) displays, flat-panel devices, such as those using a liquid crystal display (LCD) or plasma display, light-emitting diode (LED) displays, projection devices, touch screens, and the like.
- CTR cathode ray tube
- LCD liquid crystal display
- LED light-emitting diode
- output devices 530 may include, without limitation, a variety of display devices that visually convey text, graphics and audio/video information such as monitors, printers, speakers, headphones, automotive navigation systems, plotters, voice output devices, and modems.
- Computer system 500 may comprise one or more storage subsystems 510 , comprising hardware and software components used for storing data and program instructions, such as system memory 518 and computer-readable storage media 516 .
- the system memory 518 and/or computer-readable storage media 516 may store program instructions that are loadable and executable on processing units 504 , as well as data generated during the execution of these programs.
- system memory 518 may be stored in volatile memory (such as random access memory (RAM) 512 ) and/or in non-volatile storage drives 514 (such as read-only memory (ROM), flash memory, etc.).
- RAM random access memory
- ROM read-only memory
- the RAM 512 may contain data and/or program modules that are immediately accessible to and/or presently being operated and executed by processing units 504 .
- system memory 518 may include multiple different types of memory, such as static random access memory (SRAM) or dynamic random access memory (DRAM).
- SRAM static random access memory
- DRAM dynamic random access memory
- a basic input/output system (BIOS), containing the basic routines that help to transfer information between elements within computer system 500 , such as during start-up, may typically be stored in the non-volatile storage drives 514 .
- system memory 518 may include application programs 520 , such as client applications, Web browsers, mid-tier applications, server applications, etc., program data 522 , and an operating system 524 .
- Storage subsystem 510 also may provide one or more tangible computer-readable storage media 516 for storing the basic programming and data constructs that provide the functionality of some embodiments.
- Software programs, code modules, instructions that when executed by a processor provide the functionality described herein may be stored in storage subsystem 510 . These software modules or instructions may be executed by processing units 504 .
- Storage subsystem 510 may also provide a repository for storing data used in accordance with the present invention.
- Storage subsystem 510 may also include a computer-readable storage media reader that can further be connected to computer-readable storage media 516 .
- computer-readable storage media 516 may comprehensively represent remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing, storing, transmitting, and retrieving computer-readable information.
- Computer-readable storage media 516 containing program code, or portions of program code may include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information.
- This can include tangible computer-readable storage media such as RAM, ROM, electronically erasable programmable ROM (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible computer readable media.
- This can also include nontangible computer-readable media, such as data signals, data transmissions, or any other medium which can be used to transmit the desired information and which can be accessed by computer system 500 .
- computer-readable storage media 516 may include a hard disk drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM, DVD, and Blu-Ray® disk, or other optical media.
- Computer-readable storage media 516 may include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure digital (SD) cards, DVD disks, digital video tape, and the like.
- Computer-readable storage media 516 may also include, solid-state drives (SSD) based on non-volatile memory such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based SSDs.
- SSD solid-state drives
- volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based SSDs.
- MRAM magnetoresistive RAM
- hybrid SSDs that use a combination of DRAM and flash memory based SSDs.
- the disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for computer system 500 .
- Communications subsystem 532 may provide a communication interface from computer system 500 and external computing devices via one or more communication networks, including local area networks (LANs), wide area networks (WANs) (e.g., the Internet), and various wireless telecommunications networks.
- the communications subsystem 532 may include, for example, one or more network interface controllers (NICs) 534 , such as Ethernet cards, Asynchronous Transfer Mode NICs, Token Ring NICs, and the like, as well as one or more wireless communications interfaces 536 , such as wireless network interface controllers (WNICs), wireless network adapters, and the like.
- NICs network interface controllers
- WNICs wireless network interface controllers
- the communications subsystem 532 may include one or more modems (telephone, satellite, cable, ISDN), synchronous or asynchronous digital subscriber line (DSL) units, FireWire® interfaces, USB® interfaces, and the like.
- Communications subsystem 536 also may include radio frequency (RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile communication technologies, or any combination thereof), global positioning system (GPS) receiver components, and/or other components.
- RF radio frequency
- the various physical components of the communications subsystem 532 may be detachable components coupled to the computer system 500 via a computer network, a FireWire® bus, or the like, and/or may be physically integrated onto a motherboard of the computer system 500 .
- Communications subsystem 532 also may be implemented in whole or in part by software.
- communications subsystem 532 may also receive input communication in the form of structured and/or unstructured data feeds, event streams, event updates, and the like, on behalf of one or more users who may use or access computer system 500 .
- communications subsystem 532 may be configured to receive data feeds in real-time from users of social networks and/or other communication services, web feeds such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or more third party information sources (e.g., data aggregators 309 ).
- RSS Rich Site Summary
- communications subsystem 532 may be configured to receive data in the form of continuous data streams, which may include event streams of real-time events and/or event updates (e.g., sensor data applications, financial tickers, network performance measuring tools, clickstream analysis tools, automobile traffic monitoring, etc.). Communications subsystem 532 may output such structured and/or unstructured data feeds, event streams, event updates, and the like to one or more data stores 104 that may be in communication with one or more streaming data source computers coupled to computer system 500 .
- event streams of real-time events and/or event updates e.g., sensor data applications, financial tickers, network performance measuring tools, clickstream analysis tools, automobile traffic monitoring, etc.
- Communications subsystem 532 may output such structured and/or unstructured data feeds, event streams, event updates, and the like to one or more data stores 104 that may be in communication with one or more streaming data source computers coupled to computer system 500 .
- exemplary images of data acceptance curves 600 which can be either user data acceptance curves or data packet acceptance curves.
- Each of these images includes an axis labeled a “p(correct)” which identifies a percent of time that a desired response is received for a next provided data packet.
- Each of these images also includes an axis labeled “number of corrects” which identifies the number of desired responses provided to a category or group of data packets.
- Each of the images further include indicators 602 that identify aggregated data for one or several users and a trend-line 604 depicting expected user progress based on the some or all of the data represented by the indicators 602 .
- a data acceptance curve 600 can be generated for one or several users.
- the data acceptance curve 600 can be based on the interactions of these one or several users with the content distribution network 100 , and particularly based on the responses provided by these one or several users to assessment data packets provided by the content distribution network 100 .
- This user data acceptance curve can identify how these one or several users accept data which can include, for example, develop a new skill or skill set, master or learn subject matter, or the like.
- one or several users who have a higher data acceptance rate are indicated by a relatively steeper slope of the trend-line 604 than one or several users with a lower data acceptance rate.
- a data acceptance curve 600 can be generated for one or several data packets.
- Such content item data acceptance curves can be stored in the content library database 303 .
- the data acceptance curve 600 can identify the acceptance of the data of the one or several data packets, particularly vis-à-vis the current grouping of the one or several data packets. This acceptance curve can thus depict the relationship between exposure to related data packets and the likelihood of providing a desired response to the one or several data packets for which the data acceptance curve 600 is created.
- the data acceptance curve 600 can be generated with data for one or several users and can be, for example, associated in one of the databases with those one or several users or with one or several data packets.
- the data acceptance curve can provide information relating to an expected outcome for one or several users as the one or several users provide additional desired responses.
- the slope of the trend-line 604 can provide an indicator of this expected progress, and specifically, a steep, positive trend-line 604 indicates that a user has historically progressed and/or processed data packets more rapidly than a relatively less steep, positive trend-line 604 .
- the data acceptance curves 600 can further provide an indicator between the correlation between data packets, and specifically between one or both of a plurality of assessment data packets and one or several delivery data packets.
- a relatively less positively sloped trend-line can indicate a weaker correlation between one or several topics, subjects, and/or skills of a plurality of data packets.
- image (a) indicates a relatively stronger correlation between the provided data packets associated with the response data represented in image (a) than the correlation of either images (b) and (c), and image (a) likewise indicates that the one or several users associated with the response data represented in image (a) process data faster than those users of images (b) and (c).
- image (c) indicates a relatively weaker correlation between the provided data packets associated with the response data represented in image (c) than the correlation of either images (a) and (b), and image (c) likewise indicates that the one or several users associated with the response data represented in image (c) process data slower than those users of images (a) and (b).
- the data packets curves can be stored in the content library database 303 and can be, for example, associated with the data packet(s) for which they were created.
- Each of the images of content item curves in FIG. 7 includes an axis labeled a “p(correct)” which identifies a probability of receiving a desired response to the data packet for which the data packet curve 700 is created.
- Each of these images further includes an axis labeled “ability ⁇ ” that identifies a skill level of one or several users who have responded to the data packet associated with the content item curve 700 .
- the data packet curve 700 can include information identifying one or several properties of the data packet including, for example, the difficulty of the data packet, the differentiation of the data packet, and a randomness measure or randomness parameter of the data packet.
- the differentiation of a content item describes the degree to which correct and incorrect responses to a data packet distinguish between skill levels.
- a data packet having a greater level of differentiation will, across a data set, better distinguish between user skill levels than a data packet having a lower level of differentiation.
- the differentiation of a data packet is indicated by the range of ability levels corresponding to non-asymptotic portion of the data packet curve 700 , or more generally, by the width of the non-asymptotic portion of the data packet curve 700 . Accordingly, both the data packets associated with images (a) and (b) have approximately equal levels of differentiation.
- the randomness measure of the data packet characterizes the likelihood of randomly receiving the desired response from a user to that data packet. This randomness can be indicated by a vertical displacement of the data packet curve 700 along the axis labeled “p(correct).” Accordingly, the data packet associated with image (c) is more greatly affected by randomness than the data packets associated with (a) and (b) as a user has a greater than 20 percent chance of providing the desired response, regardless of ability, to the data packet associated with image (c).
- the process 800 can be performed by components of the content distribution network 100 .
- the process 800 begins at block 842 wherein a aggregation information is received.
- the aggregation information can identify one or several data packets, including one or several delivery data packets and/or one or several assessment data packets, for intended delivery to one or several users, which users can be, for example, one or several students, via, for example, one or several user devices 106 .
- the content delivery network can receive one or several parameters from the user-supervisor. These parameters can, for example, specify one or several attributes of the desired aggregation of data packets for providing to one or several users. These attributes can specify, for example, a difficulty level, a differentiation level, a time parameter which can include, for example, the maximum or average duration for user data acceptance, a subject matter parameter which can identify one or several topics, skills, or the like for inclusion the aggregation, or the like. In some embodiments, these attributes can be applied to either or both of the aggregation as a whole or to some or all of the individual data packets forming the aggregation.
- these attributes can be received from the supervisor device 110 via one or several communications networks 120 .
- the supervisor device 110 can include a graphical user interface (GUI) including features enabling user inputs indicative of these attributes.
- GUI graphical user interface
- the GUI can include a plurality of sliders each of which corresponds to an attribute. By varying the position of a sliding element along the length of the slider, the user-supervisor can adjust attribute levels.
- the content delivery network 100 or its components can identify one or several data packets that either alone or in combination correspond to the specified attributes. Information relating to these one or several data packets can be collected and stored in one of the databases such as, for example, the content library database 303 , and these one or several data packets can be identified as the aggregation.
- the process 800 proceeds to block 844 wherein the one or several data packets identified by the aggregation information are retrieved and/or received.
- these one or several data packets can be retrieved or received from one of the databases such as the content library database 303 by for example, the central processor 102 of the content delivery network 100 .
- the process 800 proceeds to block 846 where data packet metadata for the retrieved data packets is retrieved.
- the data packet metadata can relate to and/or identify one or several aspects of the content of the data packet.
- the data packet metadata does not change based on user interactions with the content delivery network 100 , and specifically does not change based on user responses to provided data packets.
- content metadata can be received for some or all of the data packets received in block 844 .
- the data packet metadata can be retrieved and/or received from the content library database 303 .
- the process 800 proceeds to block 848 where the data packet user data is retrieved or received.
- the data packet user data can include data associated with each of the data packets, which is based on one or several user interactions with the content delivery network 100 , and specifically which is based on one or several user responses provided to one or several assessment data packets.
- the data packet user data can be retrieved simultaneous with the retrieval of the data packets, and can be retrieved from the content library database 303 .
- the process 800 proceeds to block 850 wherein a recipient cohort is identified.
- the recipient cohort is the group of users designated to receive the aggregation.
- the recipient cohort can be determined based on information received from the user-supervisor and/or based on user information stored in, for example, the user profile database 301 .
- the recipient cohort can correspond to users participating in a group such as, for example, the class, a program, the training group, or the like.
- the recipient cohort can be identified by determining the group for receiving the aggregation and then determining the users in that group.
- the user-supervisor can designate a class for receiving the aggregation and the users in that class can be identified based on, for example, enrollment information stored in the user profile database 301 .
- recipient cohort user data is received or retrieved.
- this recipient cohort user data can be received or retrieved from the user profile database 301 .
- This information can identify one or several attributes of the user and/or can identify one or several user actions. These attributes can include, for example, the data acceptance rate, a skill level, a learning style, or the like.
- the one or several user actions can include, for example, information identifying one or several data packets received by the user, information identifying one or several responses provided by the user including identifying one or several desired responses or undesired responses provided by the user, amount of time spent interacting with the content distribution network 100 , amount of time spent receiving and/or responding to data packets, or the like. In some embodiments, this can include receiving, and/or retrieval of one or several data acceptance curves associated with one or several of the users in the recipient cohort.
- the process 800 proceeds to block 854 wherein combined aggregation data is generated.
- the combined aggregation data can be generated from one or both of the data packet metadata retrieved in block 846 and the data packet user data retrieved in block 848 .
- This combined aggregation data can characterize an attribute of the aggregation as a whole such as, for example, the difficulty of the aggregation as a whole, the differentiation of the aggregation as a whole, the anticipated time required for the aggregation as a whole, or the like.
- this combined aggregation data can be generated by identifying and combining like attributes from the data packets in the aggregation according to known techniques.
- combined cohort data can be generated from cohort user data received an block 852 .
- This combined cohort data can characterize an attribute of the cohort as a whole such as, for example, the data acceptance rate, the skill level, lapsed time including the time already spent by users and the recipient cohort receiving and/or responding to data packets, or the like.
- this combined cohort data can be generated by identifying and combining the like attributes from users and the cohort according to known techniques.
- the process 800 proceeds to block 858 wherein the combined aggregation data is compared to the combined cohort data.
- this comparison can be performed by a component of the content distribution network 100 such as the central server 102 .
- This comparison can determine whether one or several attributes of the aggregation correspond, or more specifically satisfactorily correspond to one or several attributes of the cohort.
- the content distribution network 100 can determine a difference between one or several attributes indicated in the combined aggregation data and in the combined cohort data, and can compare this difference to a threshold value.
- the comparison of the combined aggregation data and the combined cohort data can include determining whether the difficulty level of the aggregation corresponds the skill level of the cohort, if the data acceptance rate of the aggregation as adapted to correspond to one or several attributes of the cohort is acceptable, determining whether the differentiation level of the aggregation is satisfactory, or the like.
- the data acceptance rate for the aggregation can be adjusted to correspond to attributes of the users in the cohort.
- one or several cohort parameters were parameters relating to users in the cohort can be used to filter data used in generating the aggregation data acceptance rate such that the data used in generating the aggregation data acceptance rate approximates attributes of the cohort as a whole or of individual users and the cohort.
- this can include filtering user data used in generating the data acceptance rate for the aggregation such that user data for users having similar skill levels to users in the cohort is included, such that user data acceptance rates of users in a cohort corresponds to those in the user data used in generating the data acceptance rate, or the like.
- the process 800 proceeds to decision block 868 wherein it is determined whether the aggregation is compatible with the cohort. In some embodiments, this can include determining whether the one or several compared attributes of the combined aggregation data in the combined cohort data satisfactorily match in which case the process 800 proceeds to block 862 wherein the aggregation is recommended for use to, for example, the user-supervisor via the supervisor device 110 . In some embodiments, this recommendation can further include the providing of the aggregation in the data packets included therein to the users identified in the recipient cohort of block 850 .
- this recommendation can include identification of one or several data packets in the aggregation for removal and/or the identification of one or several data packets for inclusion in the aggregation.
- the recommendation of the alteration can be provided to the user-supervisor via the supervisor device 110 in response to which, the content delivery network 100 can receive a response from the user-supervisor either accepting are refusing the recommendation. If the recommendation is refused, then the aggregation can be provided in its original form to the users in the cohort identified and block 850 .
- the aggregation can be updated and the process 800 can return to block 854 and combined aggregation data can be generated for the updated aggregation and the process 800 can then proceed as outlined above.
- the recommendation can be provided in the form of an alert.
- the alert can be generated by the central server 102 and/or the privacy server 108 and can be provided to at least one of the user devices 106 and/or the supervisor device 110 .
- an alert, containing information relevant to the recommended alteration can be provided to the user-supervisor along with a prompt to indicate whether the recommended alteration is accepted or refused.
- any information disclosed herein as provided to one or several user devices 106 and/or supervisor devices 110 can be provided in a form of an alert.
- the providing of this alert can include the identification of one or several user device 106 and/or user accounts associated with the user. After these one or several user devices 106 and/or user accounts have been identified, the providing of this alert can include determining a use location of the user based on determining if the user is actively using one of the identified user devices 106 and/or accounts.
- the use location may correspond to a physical location of the device 106 , 110 being actively used, and in some embodiments, the use location can comprise the user account and/or user device which the creator of the thread is currently using.
- the alert can be provided to the user via that user device 106 and/or account that is actively being used. If the user is not actively using a user device 106 and/or account, a default device, such as a smart phone or tablet, can be identified and the alert can be provided to this default device. In some embodiments, the alert can include code to direct the default device to provide an indicator of the received alert such as, for example, an aural, tactile, or visual indicator of receipt of the alert.
- FIG. 9 a flowchart illustrating one embodiment of a process 900 for generating a customized aggregation matched to a sub-cohort to maximize data transmission rates through the content distribution network 100 is shown.
- data transmission times as measured from the transmission of a first data packet of an aggregation until the transmission of a last data packet of an aggregation, can be minimized by customizing the contents of the aggregation according to one or several aggregation attributes or attributes of the data packets in the aggregation.
- such customization of the aggregation can increase data acceptance rates, and thereby increase transmission rates.
- the process 900 can be performed by the content distribution network 100 and/or one or several components of the content distribution network 100 .
- the process 900 begins at block 902 , wherein aggregation information is received.
- the aggregation information can identify one or several data packets, including one or several delivery data packets and/or one or several assessment data packets, for intended delivery to one or several users, which users can be, for example, one or several students, via, for example, one or several user devices 106 .
- the aggregation information can be generated by the content delivery network 100 or can be received from a user-supervisor such as a teacher, and instructor, or any individual, group, or entity responsible for providing content to one or several other users as discussed above.
- the process 900 proceeds to block 904 wherein the one or several data packets identified by the aggregation information are retrieved and/or received.
- these one or several data packets can be retrieved or received from one of the databases such as the content library database 303 by for example, the central processor 102 of the content delivery network 100 .
- the process 900 proceeds to block 906 wherein data packet data, which can include, for example, data packet metadata and/or data packet user data is retrieved as discussed above with respect to blocks 846 , 848 of FIG. 8 .
- data packet data which can include, for example, data packet metadata and/or data packet user data is retrieved as discussed above with respect to blocks 846 , 848 of FIG. 8 .
- the process 900 proceeds to block 908 wherein a recipient cohort is identified.
- the recipient cohort is the group of users designated to receive the aggregation via a plurality of user devices 106 .
- the recipient cohort can be determined based on information received from the user-supervisor and/or based on user information stored in, for example, the user profile database 301 .
- the recipient cohort can correspond to users participating in a group such as, for example, the class, a program, the training group, or the like.
- the recipient cohort can be identified by determining the group for receiving the aggregation and then determining the users in that group.
- the user-supervisor can designate a class for receiving the aggregation and the users in that class can be identified based on, for example, enrollment information stored in the user profile database 301 .
- recipient cohort user data is received or retrieved.
- this recipient cohort user data can be received or retrieved from the user profile database 301 .
- This information can identify one or several attributes of the user and/or can identify one or several user actions. These attributes can include, for example, the data acceptance rate, a skill level, a learning style, or the like.
- the one or several user actions can include, for example, information identifying one or several data packets received by the user, information identifying one or several responses provided by the user including identifying one or several desired responses or undesired responses provided by the user, amount of time spent interacting with the content distribution network 100 , amount of time spent receiving and/or responding to data packets, or the like. In some embodiments, this can include receiving, and/or retrieval of one or several data acceptance curves associated with one or several of the users in the recipient cohort.
- the process 900 proceeds to block 912 , wherein one or several sub-cohorts are created by, for example, dividing the recipient cohort into smaller groups.
- the one or several cohorts comprise one or several sub-sets of the users in the recipient cohort.
- further matching of the aggregation to user attributes can be achieved by the formation of these one or several sub-cohorts.
- one or several sub-cohorts can be created in in a variety of different ways.
- one or several sub-cohorts can be created by receiving information from the user-supervisor specifying a desired number of sub-cohorts and one or several desired attributes for use in forming these cohorts.
- the user-supervisor can further provide information specifying a priority and/or a relative ranking among the attributes for use in creating the sub-cohorts.
- the one or several users in the recipient cohort can be relatively ranked with respect to each other vis-à-vis the one or several identified attributes and the users in the recipient cohort can then be divided into sub-cohorts based on the relative ranking by, for example, creating the specified number of sub-cohorts of an equal size.
- the content distribution network can evaluate the users of the recipient group based on those one or several attributes and identify sub-cohorts optimized such that members of the sub-cohorts have the maximum amount of similarity of attributes with other members of the same sub-cohort.
- the process 900 proceeds to block 914 wherein combined aggregation data is generated.
- the combined aggregation data can be generated from one or both of the content data received in block 906 .
- This combined aggregation data can characterize an attribute of the aggregation as a whole such as, for example, the difficulty of the aggregation as a whole, the differentiation of the aggregation as a whole, the anticipated time required for the aggregation as a whole, or the like.
- this combined aggregation data can be generated by identifying and combining like attributes from the data packets in the aggregation according to known techniques.
- sub-cohort data can be generated from user data of users belonging to a sub-cohort.
- sub-cohort data can be generated for each of the sub-cohorts. This sub-cohort data can characterize an attribute of the sub-cohort as a whole such as, for example, the data acceptance rate, the skill level, lapsed time including the time already spent by users and the recipient cohort receiving and/or responding to data packets, or the like.
- this sub-cohort data can be generated by identifying and combining the like attributes from users in the sub-cohort according to known techniques.
- the process 900 proceeds to block 919 wherein the combined aggregation data is compared to the sub-cohort data for some or all of the sub-cohorts. In some embodiments, this comparison is separately performed for some or all of the sub-cohorts. In some embodiments, this comparison can be performed by a component of the content distribution network 100 such as the central server 102 . This comparison can determine whether one or several attributes of the aggregation correspond, or more specifically satisfactorily correspond to one or several attributes of each of the sub-cohorts. In some embodiments, the content distribution network 100 can determine a difference between one or several attributes indicated in the combined aggregation data and in the sub-cohort data for each of the sub-cohorts, and can compare this difference to a threshold value.
- the comparison of the combined aggregation data and the sub-cohort data can include determining whether the difficulty level of the aggregation corresponds the skill level of the sub-cohort, if the data acceptance rate of the aggregation as adapted to correspond to one or several attributes of the sub-cohort is acceptable, determining whether the differentiation level of the aggregation is satisfactory, or the like.
- the data acceptance rate for the aggregation can be adjusted to correspond to attributes of the users in the sub-cohort.
- one or several sub-cohort parameters relating to users in the sub-cohort can be used to filter data used in generating the aggregation data acceptance rate such that the data used in generating the aggregation data acceptance rate approximates attributes of the sub-cohort as a whole or of individual users in the sub-cohort.
- this can include filtering user data used in generating the data acceptance rate for the aggregation such that user data for users having similar skill levels to users in the sub-cohort is included. By doing this, user data acceptance rates of users in a sub-cohort corresponds to those in the user data used in generating the data acceptance rate.
- the process 900 proceeds to decision block 918 wherein it is determined, for some or all of the sub-cohorts, whether the aggregation is compatible with the sub-cohorts. In some embodiments, this determination includes selecting one of the sub-cohorts, receiving the results of the comparison in block 919 , and determining whether the one or several compared attributes of the combined aggregation data and the combined sub-cohort data of the selected sub-cohort satisfactorily match. If there is a satisfactory match, then the process 900 proceeds to block 920 wherein the aggregation is recommended for use to a user such as, for example, the user-supervisor via the supervisor device 110 .
- the process 900 proceeds to block 922 , wherein the aggregation is provided to the users of matching sub-cohort.
- the aggregation can be provided to the users of the matching sub-cohort via one or several user devices 106 .
- the process 900 proceeds to block 924 wherein an alteration to the aggregation is recommended.
- this recommended alteration is general to all sub-cohorts, and in some embodiments, this alteration is specific to the sub-cohort having sub-cohort data that did not adequately match the combined aggregation data.
- the recommendation for alteration can be a request for the generation of an aggregation specifically tailored to the user attributes of one of the sub-cohorts. This can, in some embodiments, result in some or all of the sub-cohorts receiving a uniquely tailored aggregation.
- this recommendation can include identification of one or several data packets in the aggregation for removal and/or the identification of one or several data packets for inclusion in the aggregation. These data packets can be identified for removal and/or for inclusion based on one or several attributes of these data packets. In one embodiment for example in which the difficulty of the aggregation is too high, one or several data packets can be identified that meet the parameters of the aggregation but that are less difficult and these data packets can be recommended for inclusion in the aggregation. Similarly, data packets having other attributes can be identified and recommended for removal from or inclusion in the aggregation. In some embodiments, the recommendation of the alteration can be provided to the user-supervisor via the supervisor device 110 .
- one or several data packets can be identified for removal by identifying the content items in the aggregation. After the content items have been identified a contribution value can be determined, which contribution value characterizes the degree to which one or several attributes contribute to the failure of the aggregation to meet the threshold. In some embodiments, this can include determining a difference between the attribute for each of the data packets and the sub-cohort aggregate, and then comparing this difference to the threshold value. In some embodiments, the data packets can be ranked according to the degree to which they detrimentally contribute to the failure of the aggregation to meet the threshold, and one or several of the worst ranked data packets can be selected for removal from the aggregation.
- one or several data packets can be selected for inclusion in the aggregation by retrieving the aggregation database or aggregation database information.
- the aggregation database or aggregation database information identifies data packets that are includable in the aggregation.
- a content item from the aggregation database can be selected for evaluation, which content item can, in some embodiments, not be presently included in the aggregation.
- one or several differences can be determined between one or several attributes of the content item and the sub-cohort data, and these differences can be compared to the threshold value.
- This selection and comparison of content items can be repeated until all data packets in the aggregation database, or a desired number of data packets in the aggregation database have been evaluated. These data packets can then be rank ordered according to the degree to which their inclusion in the aggregation would contribute to the meeting of threshold values.
- data packets can then be selected for inclusion by comparing the difference of potential data packets for inclusion to the difference of potential data packets for removal. In some embodiments, this comparison can be performed according to the ranked order of both the data packets for potential inclusion and the data packets for potential removal. In some embodiments, a data packet can be designated for removal if a potential data packet for inclusion would more positively contribute to the meeting of the threshold. This identification of data packets for removal and inclusion can continue until an altered aggregation is created that would meet the threshold or until there are no additional data packets in the aggregation database that more positively contribute to meeting of the threshold than data packets already included in the aggregation.
- the process 900 proceeds to decision block 926 wherein it is determined if the recommendation is accepted. In some embodiments, and in response to the alteration recommendation, the content delivery network 100 can receive a response from the user-supervisor via the supervisor device 110 either accepting are refusing the recommendation. If the alteration recommendation is not accepted, then the process 900 advances to block 922 and proceeds as outlined above. If the alteration recommendation is accepted, then the aggregation can be altered per the recommendation as indicated in block 928 and the process 900 can return to block 904 and proceed as outlined above. This updated aggregation can be provided to the user via a user device 106 if after repeating steps 904 - 919 , it is determined that the combined aggregation data of the updated aggregation corresponds to the sub-cohort data.
- FIG. 10 a flowchart illustrating one embodiment of a process 1000 for generating an aggregation database is shown. This can involve the receipt of a group of data packets and the selection of a subgroup of those data packets for inclusion in the aggregation database.
- data packets are included in the aggregation database based on one or several attributes of the data packets such as, for example, difficulty, differentiation, and a randomness factor.
- the aggregation database can be customized for an aggregation based on one or several desired attributes of the aggregation, thus, when the aggregation database is created, the aggregation can contain a set of data packets that are suitable for use in the aggregation.
- the process 1000 can be performed by the content distribution network 100 and/or one or several components thereof.
- the process 1000 begins at block 1002 , wherein a group, also referred to herein as a set, of data packets is received.
- the set of questions can be received from the content library database 303 .
- the process 1000 proceeds to block 1004 , wherein the data packet user data is retrieved.
- the data packet user data can be retrieved simultaneous with the retrieval of the data packets, and can be retrieved from the content library database 303 .
- a data packet attribute is determined for some or all of the retrieved data packets.
- This data packet attribute can be, for example, a difficulty, skill level, differentiation level, randomness level, a rate of data acceptance, or the like.
- these data packet attributes can be determined, for example, from one or more of one or several data acceptance curves 600 for a data packet, and/or from one or several data packet curves 700 .
- the process 1000 proceeds to block 1008 , wherein one or several quality thresholds are retrieved.
- the quality threshold can be based on desired attributes for an aggregation such as can be specified as discussed above via a GUI on the supervisor device 110 . These quality thresholds can be stored in one of the databases such as, for example, content library database 303 .
- the process 1000 proceeds to block 1010 , wherein the quality thresholds are compared with the data packet attributes determined in block 1006 .
- the process 1000 proceeds to decision block 1012 , wherein it is determined if the randomness attribute of the data packet exceeds the quality threshold for randomness. In some embodiments, this comparison can determine whether the data packet is too likely to receive a desired response based on randomness, and particularly based on guessing. If the randomness attribute exceeds the quality attribute for randomness, then the process 1000 proceeds to block 1014 and the data packet is excluded from the aggregation database and an indicator of excessive randomness is provided to the user-supervisor and/or is stored in the content library database 303 .
- the process 1000 proceeds to decision block 1016 , wherein it is determined if the differentiation attribute exceeds the quality threshold for differentiation. In some embodiments, this can determine whether the data packet sufficiently differentiates between skill levels. If the differentiation level does not exceed the threshold for differentiation, the data packet has insufficient differentiation and the process 1000 proceeds to block 1018 , and the data packet is excluded from the aggregation database and an indicator of insufficient differentiation is provided to the user-supervisor and/or is stored in the content library database 303 .
- the process 1000 proceeds decision block 1020 , wherein it is determine if the difficulty attribute of the data packet is acceptable, or inacceptable as either being too high or too low vis-à-vis the quality threshold for difficulty. If it is determined that the difficulty level of the data packet is too high, then the process 1000 proceeds to block 1022 and the data packet is excluded from the aggregation database and an indicator of excessive difficulty is provided to the user-supervisor and/or is stored in the content library database 303 .
- the process 1000 proceeds to block 1024 and the data packet is excluded from the aggregation database and an indicator of inadequate difficulty is provided to the user-supervisor and/or is stored in the content library database 303 .
- process 1000 proceeds to block 1026 and an indicator of acceptability is associated with the data packet, for example, in the content library database 303 .
- the process 1000 then proceeds to block 1028 , wherein the data packet is stored in the aggregation database in, for example, the content library database.
- process 1000 can be repeated until all of the data packets retrieved in block 1002 have been evaluated and either included in, or excluded from the aggregation database.
- the data packets in the aggregation database can then be selected according to one or both of processes 800 and 900 in creating the aggregation.
- Implementation of the techniques, blocks, steps and means described above may be done in various ways. For example, these techniques, blocks, steps and means may be implemented in hardware, software, or a combination thereof.
- the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described above, and/or a combination thereof.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described above, and/or a combination thereof.
- the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a swim diagram, a data flow diagram, a structure diagram, or a block diagram. Although a depiction may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged.
- a process is terminated when its operations are completed, but could have additional steps not included in the figure.
- a process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
- embodiments may be implemented by hardware, software, scripting languages, firmware, middleware, microcode, hardware description languages, and/or any combination thereof.
- the program code or code segments to perform the necessary tasks may be stored in a machine readable medium such as a storage medium.
- a code segment or machine-executable instruction may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a script, a class, or any combination of instructions, data structures, and/or program statements.
- a code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, and/or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
- the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
- Any machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
- software codes may be stored in a memory.
- Memory may be implemented within the processor or external to the processor.
- the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other storage medium and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
- the term “storage medium” may represent one or more memories for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.
- ROM read only memory
- RAM random access memory
- magnetic RAM magnetic RAM
- core memory magnetic disk storage mediums
- optical storage mediums flash memory devices and/or other machine readable mediums for storing information.
- machine-readable medium includes, but is not limited to portable or fixed storage devices, optical storage devices, and/or various other storage mediums capable of storing that contain or carry instruction(s) and/or data.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Systems and methods for increasing data transmission rates through a content distribution network by generating a customized aggregation comprising data packets selected to maximize a data acceptance rate are disclosed herein. The system can include a memory having a content library database storing a plurality of data packets and a user profile database. The system can further include a server that can receive aggregation information identifying a plurality of delivery data packets and a plurality of assessment data packets, receive data packet data from the content library database, and generate an updated aggregation by removing at least one data packet from the aggregation.
Description
This application claims the benefit of U.S. Provisional Application No. 62/072,910, filed on Oct. 30, 2014, the entirety of which is hereby incorporated by reference herein.
This application relates to the field data transmission and network optimization.
A computer network or data network is a telecommunications network which allows computers to exchange data. In computer networks, networked computing devices exchange data with each other along network links (data connections). The connections between nodes are established using either cable media or wireless media. The best-known computer network is the Internet.
Network computer devices that originate, route and terminate the data are called network nodes. Nodes can include hosts such as personal computers, phones, servers as well as networking hardware. Two such devices can be said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other.
Computer networks differ in the transmission media used to carry their signals, the communications protocols to organize network traffic, the network's size, topology and organizational intent. In most cases, communications protocols are layered on (i.e. work using) other more specific or more general communications protocols, except for the physical layer that directly deals with the transmission media.
As the volume of data exchanged between nodes in computer networks has increased, the speed of data transmission has become increasingly more important. Although current technologies provide improved speeds as compared to their predecessors, further developments are needed.
One aspect of the present disclosure relates to a system for increasing data transmission rates through a content distribution network by generating a customized aggregation comprising data packets selected to maximize a data acceptance rate. The system includes a memory including: a content library database comprising a plurality of data packets, which plurality of data packets include a plurality of delivery data packets and a plurality of assessment data packets; and a user profile database, which user profile database includes information identifying a cohort of users, and which user profile database includes information identifying a plurality of at least one attribute of each of the users in the cohort of users. The system includes a server that can: receive aggregation information identifying a plurality of delivery data packets and a plurality of assessment data packets; receive data packet data from the content library database; identify a recipient cohort, which recipient cohort includes the group of users designated to receive the aggregation via a plurality of user devices; generate a plurality of sub-cohorts by dividing the cohort into smaller groups, which users in each of the sub-cohorts share a common attribute; generate combined aggregation data characterizing the aggregation as a whole; generate an updated aggregation by removing at least one data packet from the aggregation; and provide the updated aggregation to the users in the sub-cohort.
In some embodiments, the data packet data can include data packet user data and data packet metadata. In some embodiments, the system includes a plurality of user devices connected to the server via a communication network. In some embodiments, the server can generate sub-cohort data, which sub-cohort data can be generated for each of the sub-cohorts from data of users in that sub-cohort. In some embodiments, the combined aggregation data identifies a data acceptance rate.
In some embodiments, the server can identify the at least one data packet for removal by determining a difference between the aggregation data to the sub-cohort data, and comparing the difference to a threshold. In some embodiments generating an updated aggregation further includes adding at least one new data packet in the aggregation. In some embodiments, the at least one new data packet is selected for inclusion in the aggregation based on a degree of in minimizing the difference between the aggregation data and the sub-cohort data. In some embodiments, the at least one new data packet is selected for inclusion in the aggregation based on a degree of optimizing the difference between the aggregation data and the sub-cohort data. In some embodiments, the combined aggregation data identifies a difficulty.
One aspect of the present disclosure relates to a method for increasing data transmission rates through a content distribution network by generating a customized aggregation comprising data packets selected to maximize a data acceptance rate. The method includes receiving aggregation information identifying a plurality of delivery data packets and a plurality of assessment data packets, which plurality of delivery data packets and which plurality of assessment data packets are stored in a content library database; receiving with a server data packet data from the content library database, which data packet data identifies one or several attributes of the delivery data packets and the assessment data packets in the aggregation information; identifying with the server a recipient cohort, which recipient cohort includes the group of users designated to receive the aggregation via a plurality of user devices; and generating with the server a plurality of sub-cohorts by dividing the cohort into smaller groups, which users in each of the sub-cohorts share a common attribute. The method can include generating with the server combined aggregation data characterizing the aggregation as a whole, generating with the server an updated aggregation by removing at least one data packet from the aggregation, wherein the aggregation is updated to increase a data acceptance rate, and providing with the server the updated aggregation to the users in the sub-cohort via a plurality of user devices connected to the server by a communication network.
In some embodiments, the data packet data includes data packet user data and data packet metadata. In some embodiments, the method includes generating sub-cohort data, which sub-cohort data can be generated for each of the sub-cohorts from data of users in that sub-cohort. In some embodiments, the combined aggregation data identifies a data acceptance rate. In some embodiments, the method can include identifying the at least one data packet for removal by determining a difference between the aggregation data to the sub-cohort data, and comparing the difference to a threshold.
In some embodiments, generating an updated aggregation further includes including at least one new data packet in the aggregation. In some embodiments, the at least one new data packet is selected for inclusion in the aggregation based on a degree of in minimizing the difference between the aggregation data and the sub-cohort data. In some embodiments, the at least one new data packet is selected for inclusion in the aggregation based on a degree of optimizing the difference between the aggregation data and the sub-cohort data. In some embodiments, the combined aggregation data identifies a difficulty.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
The ensuing description provides illustrative embodiment(s) only and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the illustrative embodiment(s) will provide those skilled in the art with an enabling description for implementing a preferred exemplary embodiment. It is understood that various changes can be made in the function and arrangement of elements without departing from the spirit and scope as set forth in the appended claims.
With reference now to FIG. 1 , a block diagram is shown illustrating various components of a content distribution network (CDN) 100 which implements and supports certain embodiments and features described herein. Content distribution network 100, also referred to herein as the prediction system 100, may include one or more content management servers 102. As discussed below in more detail, content management servers 102 may be any desired type of server including, for example, a rack server, a tower server, a miniature server, a blade server, a mini rack server, a mobile server, an ultra-dense server, a super server, or the like, and may include various hardware components, for example, a motherboard, a processing units, memory systems, hard drives, network interfaces, power supplies, etc. Content management server 102 may include one or more server farms, clusters, or any other appropriate arrangement and/or combination or computer servers. Content management server 102 may act according to stored instructions located in a memory subsystem of the server 102, and may run an operating system, including any commercially available server operating system and/or any other operating systems discussed herein.
The content distribution network 100 may include one or more data store servers 104, such as database servers and file-based storage systems. The database servers 104 can access data that can be stored on a variety of hardware components. These hardware components can include, for example, components forming tier 0 storage, components forming tier 1 storage, components forming tier 2 storage, and/or any other tier of storage. In some embodiments, tier 0 storage refers to storage that is the fastest tier of storage in the database server 104, and particularly, the tier 0 storage is the fastest storage that is not RAM or cache memory. In some embodiments, the tier 0 memory can be embodied in solid state memory such as, for example, a solid-state drive (SSD) and/or flash memory.
In some embodiments, the tier 1 storage refers to storage that is one or several higher performing systems in the memory management system, and that is relatively slower than tier 0 memory, and relatively faster than other tiers of memory. The tier 1 memory can be one or several hard disks that can be, for example, high-performance hard disks. These hard disks can be one or both of physically or communicatingly connected such as, for example, by one or several fiber channels. In some embodiments, the one or several disks can be arranged into a disk storage system, and specifically can be arranged into an enterprise class disk storage system. The disk storage system can include any desired level of redundancy to protect data stored therein, and in one embodiment, the disk storage system can be made with grid architecture that creates parallelism for uniform allocation of system resources and balanced data distribution.
In some embodiments, the tier 2 storage refers to storage that includes one or several relatively lower performing systems in the memory management system, as compared to the tier 1 and tier 2 storages. Thus, tier 2 memory is relatively slower than tier 1 and tier 0 memories. Tier 2 memory can include one or several SATA-drives or one or several NL-SATA drives.
In some embodiments, the one or several hardware and/or software components of the database server 104 can be arranged into one or several storage area networks (SAN), which one or several storage area networks can be one or several dedicated networks that provide access to data storage, and particularly that provides access to consolidated, block level data storage. A SAN typically has its own network of storage devices that are generally not accessible through the local area network (LAN) by other devices. The SAN allows access to these devices in a manner such that these devices appear to be locally attached to the user device.
In different contexts of content distribution networks 100, user devices 106 and supervisor devices 110 may correspond to different types of specialized devices, for example, student devices and teacher devices in an educational network, employee devices and presentation devices in a company network, different gaming devices in a gaming network, etc. In some embodiments, user devices 106 and supervisor devices 110 may operate in the same physical location 107, such as a classroom or conference room. In such cases, the devices may contain components that support direct communications with other nearby devices, such as wireless transceivers and wireless communications interfaces, Ethernet sockets or other Local Area Network (LAN) interfaces, etc. In other implementations, the user devices 106 and supervisor devices 110 need not be used at the same location 107, but may be used in remote geographic locations in which each user device 106 and supervisor device 110 may use security features and/or specialized hardware (e.g., hardware-accelerated SSL and HTTPS, WS-Security, firewalls, etc.) to communicate with the content management server 102 and/or other remotely located user devices 106. Additionally, different user devices 106 and supervisor devices 110 may be assigned different designated roles, such as presenter devices, teacher devices, administrator devices, or the like, and in such cases the different devices may be provided with additional hardware and/or software components to provide content and support user capabilities not available to the other devices.
In some embodiments, the content distribution network 100 can include a large number of user devices 106 such as, for example, 100, 500, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 50,000, 100,000, 250,000, 1,000,000, 5,000,000, 10,000,000, 100,000,000, 500,000,000 and/or any other or intermediate number of user devices 106. In some embodiments, the large number of user devices 106 can enable the functioning of the content distribution network 100. Specifically, the large number of user devices 106 can allow a large number of students to interact with the content distribution network 100 to thereby generate the data volume to enable performing of the methods and processes discussed at length below. In some embodiments, this volume of data can be so large that it cannot be processed by a human. Such a volume of data is referred to herein as a massive data volume.
The content distribution network 100 also may include a privacy server 108 that maintains private user information at the privacy server 108 while using applications or services hosted on other servers. For example, the privacy server 108 may be used to maintain private data of a user within one jurisdiction even though the user is accessing an application hosted on a server (e.g., the content management server 102) located outside the jurisdiction. In such cases, the privacy server 108 may intercept communications between a user device 106 or supervisor device 110 and other devices that include private user information. The privacy server 108 may create a token or identifier that does not disclose the private information and may use the token or identifier when communicating with the other servers and systems, instead of using the user's private information.
As illustrated in FIG. 1 , the content management server 102 may be in communication with one or more additional servers, such as a content server 112, a user data server 114, and/or an administrator server 116. Each of these servers may include some or all of the same physical and logical components as the content management server(s) 102, and in some cases, the hardware and software components of these servers 112-116 may be incorporated into the content management server(s) 102, rather than being implemented as separate computer servers.
User data server 114 may include hardware and software components that store and process data for multiple users relating to each user's activities and usage of the content distribution network 100. For example, the content management server 102 may record and track each user's system usage, including their user device 106, content resources accessed, and interactions with other user devices 106. This data may be stored and processed by the user data server 114, to support user tracking and analysis features. For instance, in the professional training and educational contexts, the user data server 114 may store and analyze each user's training materials viewed, presentations attended, courses completed, interactions, evaluation results, and the like. The user data server 114 may also include a repository for user-generated material, such as evaluations and tests completed by users, and documents and assignments prepared by users. In the context of media distribution and interactive gaming, the user data server 114 may store and process resource access data for multiple users (e.g., content titles accessed, access times, data usage amounts, gaming histories, user devices and device types, etc.).
The content distribution network 100 may include one or more communication networks 120. Although only a single network 120 is identified in FIG. 1 , the content distribution network 100 may include any number of different communication networks between any of the computer servers and devices shown in FIG. 1 and/or other devices described herein. Communication networks 120 may enable communication between the various computing devices, servers, and other components of the content distribution network 100. As discussed below, various implementations of content distribution networks 100 may employ different types of networks 120, for example, computer networks, telecommunications networks, wireless networks, and/or any combination of these and/or other networks.
With reference to FIG. 2 , an illustrative distributed computing environment 200 is shown including a computer server 202, four client computing devices 206, and other components that may implement certain embodiments and features described herein. In some embodiments, the server 202 may correspond to the content management server 102 discussed above in FIG. 1 , and the client computing devices 206 may correspond to the user devices 106. However, the computing environment 200 illustrated in FIG. 2 may correspond to any other combination of devices and servers configured to implement a client-server model or other distributed computing architecture.
Various different subsystems and/or components 204 may be implemented on server 202. Users operating the client devices 206 may initiate one or more client applications to use services provided by these subsystems and components. The subsystems and components within the server 202 and client devices 206 may be implemented in hardware, firmware, software, or combinations thereof. Various different system configurations are possible in different distributed computing systems 200 and content distribution networks 100. The embodiment shown in FIG. 2 is thus one example of a distributed computing system and is not intended to be limiting.
Although exemplary computing environment 200 is shown with four client computing devices 206, any number of client computing devices may be supported. Other devices, such as specialized sensor devices, etc., may interact with client devices 206 and/or server 202.
As shown in FIG. 2 , various security and integration components 208 may be used to send and manage communications between the server 202 and user devices 206 over one or more communication networks 220. The security and integration components 208 may include separate servers, such as web servers and/or authentication servers, and/or specialized networking components, such as firewalls, routers, gateways, load balancers, and the like. In some cases, the security and integration components 208 may correspond to a set of dedicated hardware and/or software operating at the same physical location and under the control of same entities as server 202. For example, components 208 may include one or more dedicated web servers and network hardware in a datacenter or a cloud infrastructure. In other examples, the security and integration components 208 may correspond to separate hardware and software components which may be operated at a separate physical location and/or by a separate entity.
Security and integration components 208 may implement various security features for data transmission and storage, such as authenticating users and restricting access to unknown or unauthorized users. In various implementations, security and integration components 208 may provide, for example, a file-based integration scheme or a service-based integration scheme for transmitting data between the various devices in the content distribution network 100. Security and integration components 208 also may use secure data transmission protocols and/or encryption for data transfers, for example, File Transfer Protocol (FTP), Secure File Transfer Protocol (SFTP), and/or Pretty Good Privacy (PGP) encryption.
In some embodiments, one or more web services may be implemented within the security and integration components 208 and/or elsewhere within the content distribution network 100. Such web services, including cross-domain and/or cross-platform web services, may be developed for enterprise use in accordance with various web service standards, such as RESTful web services (i.e., services based on the Representation State Transfer (REST) architectural style and constraints), and/or web services designed in accordance with the Web Service Interoperability (WS-I) guidelines. Some web services may use the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocol to provide secure connections between the server 202 and user devices 206. SSL or TLS may use HTTP or HTTPS to provide authentication and confidentiality. In other examples, web services may be implemented using REST over HTTPS with the OAuth open standard for authentication, or using the WS-Security standard which provides for secure SOAP messages using XML encryption. In other examples, the security and integration components 208 may include specialized hardware for providing secure web services. For example, security and integration components 208 may include secure network appliances having built-in features such as hardware-accelerated SSL and HTTPS, WS-Security, and firewalls. Such specialized hardware may be installed and configured in front of any web servers, so that any external devices may communicate directly with the specialized hardware.
Communication network(s) 220 may be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially-available protocols, including without limitation, TCP/IP (transmission control protocol/Internet protocol), SNA (systems network architecture), IPX (Internet packet exchange), Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocols, Hyper Text Transfer Protocol (HTTP) and Secure Hyper Text Transfer Protocol (HTTPS), Bluetooth®, Near Field Communication (NFC), and the like. Merely by way of example, network(s) 220 may be local area networks (LAN), such as one based on Ethernet, Token-Ring and/or the like. Network(s) 220 also may be wide-area networks, such as the Internet. Networks 220 may include telecommunication networks such as a public switched telephone networks (PSTNs), or virtual networks such as an intranet or an extranet. Infrared and wireless networks (e.g., using the Institute of Electrical and Electronics (IEEE) 802.11 protocol suite or other wireless protocols) also may be included in networks 220.
With reference to FIG. 3 , an illustrative set of data stores and/or data store servers are shown, corresponding to the data store servers 104 of the content distribution network 100 discussed above in FIG. 1 . One or more individual data stores 301-311 may reside in storage on a single computer server 104 (or a single server farm or cluster) under the control of a single entity, or may reside on separate servers operated by different entities and/or at remote locations. In some embodiments, data stores 301-311 may be accessed by the content management server 102 and/or other devices and servers within the network 100 (e.g., user devices 106, supervisor devices 110, administrator servers 116, etc.). Access to one or more of the data stores 301-311 may be limited or denied based on the processes, user credentials, and/or devices attempting to interact with the data store.
The paragraphs below describe examples of specific data stores that may be implemented within some embodiments of a content distribution network 100. It should be understood that the below descriptions of data stores 301-311, including their functionality and types of data stored therein, are illustrative and non-limiting. Data stores server architecture, design, and the execution of specific data stores 301-311 may depend on the context, size, and functional requirements of a content distribution network 100. For example, in content distribution systems 100 used for professional training and educational purposes, separate databases or file-based storage systems may be implemented in data store server(s) 104 to store trainee and/or student data, trainer and/or professor data, training module data and content descriptions, training results, evaluation data, and the like. In contrast, in content distribution systems 100 used for media distribution from content providers to subscribers, separate data stores may be implemented in data stores server(s) 104 to store listings of available content titles and descriptions, content title usage statistics, subscriber profiles, account data, payment data, network usage statistics, etc.
A user profile data store 301, also referred to herein as a user profile database 301, may include information relating to the end users within the content distribution network 100. This information may include user characteristics such as the user names, access credentials (e.g., logins and passwords), user preferences, and information relating to any previous user interactions within the content distribution network 100 (e.g., requested content, posted content, content modules completed, training scores or evaluations, other associated users, etc.). In some embodiments, this information can relate to one or several individual end users such as, for example, one or several students, teachers, administrators, or the like, and in some embodiments, this information can relate to one or several institutional end users such as, for example, one or several schools, groups of schools such as one or several school districts, one or several colleges, one or several universities, one or several training providers, or the like.
In some embodiments in which the one or several end users are individuals, and specifically are students, the user profile database 301 can further include information relating to these students' academic and/or educational history, which academic and/or educational history can be temporally divided and/or temporally dividable. In some embodiments, this academic and/or education history can be temporally divided and/or temporally dividable into recent and non-recent data. In some embodiments, data can be recent when it has been captured and/or generated within the past two years, within the past year, within the past six months, within the past three months, within the past month, within the past two weeks, within the past week, within the past three days, within the past day, within the past 12 hours, within the past six hours, within the past three hours, and/or within any other or intermediate time period.
In some embodiments, the information within the user profile database 301 can identify one or several courses of study that the student has initiated, completed, and/or partially completed, as well as grades received in those courses of study. In some embodiments, the student's academic and/or educational history can further include information identifying student performance on one or several tests, quizzes, and/or assignments. In some embodiments, this information can be stored in a tier of memory that is not the fastest memory in the content delivery network 100.
The user profile database 301 can include information relating to one or several student learning preferences. In some embodiments, for example, the student may have one or several preferred learning styles, one or several most effective learning styles, and/or the like. In some embodiments, the students learning style can be any learning style describing how the student best learns or how the student prefers to learn. In one embodiment, these learning styles can include, for example, identification of the student as an auditory learner, as a visual learner, and/or as a tactile learner. In some embodiments, the data identifying one or several student learning styles can include data identifying a learning style based on the student's educational history such as, for example, identifying a student as an auditory learner when the student has received significantly higher grades and/or scores on assignments and/or in courses favorable to auditory learners. In some embodiments, this information can be stored in a tier of memory that is not the fastest memory in the content delivery network 100.
In some embodiments, the data in the use profile database 301 can be segregated and/or divided based on one or several attributes of the data such as, for example, the age of the data, the content relating to which the data was collected, or the like. In some embodiments, this data can identify one or several correct or incorrect answers provided by the student, the expected number of correct or incorrect answers provided by the student, student response times, student learning styles, or the like. In some embodiments, the student database can include a data acceptance curve that can define an expected learning trajectory for one or several students based on historic data for those one or several students and, in some embodiments, also based on one or several predictive models. A data acceptance curve for one or several users is referred to herein as a user data acceptance curve. In some embodiments, the user data acceptance curve can comprise a plurality of data acceptance curves calculated for data packets of different difficulties and/or a plurality of data acceptance curves calculated for data packets having different subject matters or skills.
The user profile database 301 can further include information relating to one or several teachers and/or instructors who are responsible for organizing, presenting, and/or managing the presentation of information to the student. In some embodiments, user profile database 301 can include information identifying courses and/or subjects that have been taught by the teacher, data identifying courses and/or subjects currently taught by the teacher, and/or data identifying courses and/or subjects that will be taught by the teacher. In some embodiments, this can include information relating to one or several teaching styles of one or several teachers. In some embodiments, the user profile database 301 can further include information indicating past evaluations and/or evaluation reports received by the teacher. In some embodiments, the user profile database 301 can further include information relating to improvement suggestions received by the teacher, training received by the teacher, continuing education received by the teacher, and/or the like. In some embodiments, this information can be stored in a tier of memory that is not the fastest memory in the content delivery network 100.
An accounts data store 302, also referred to herein as an accounts database 302, may generate and store account data for different users in various roles within the content distribution network 100. For example, accounts may be created in an accounts data store 302 for individual end users, supervisors, administrator users, and entities such as companies or educational institutions. Account data may include account types, current account status, account characteristics, and any parameters, limits, restrictions associated with the accounts.
A content library data store 303, also referred to herein as a content library database 303, may include information describing the individual data packets, also referred to herein as content items or content resources available via the content distribution network 100. As used herein, a data packet is a group of data providable to a user such as, data for teaching a skill or conveying knowledge and/or for assessing a skill or knowledge. In some embodiments, the library data store 303 may include metadata, properties, and other characteristics associated with the content resources stored in the content server 112. Such data may identify one or more aspects or content attributes of the associated content resources, for example, subject matter, access level, or skill level of the content resources, license attributes of the content resources (e.g., any limitations and/or restrictions on the licensable use and/or distribution of the content resource), price attributes of the content resources (e.g., a price and/or price structure for determining a payment amount for use or distribution of the content resource), rating attributes for the content resources (e.g., data indicating the evaluation or effectiveness of the content resource), and the like. In some embodiments, the library data store 303 may be configured to allow updating of content metadata or properties, and to allow the addition and/or removal of information relating to the content resources. For example, content relationships may be implemented as graph structures, which may be stored in the library data store 303 or in an additional store for use by selection algorithms along with the other metadata.
In some embodiments, the content library database 303 can include a plurality of databases such as, for example, a structure database, an aggregate database, a data packet database, also referred to herein as a content item database, which can include a content database and a question database, and a content response database. The content response database can include information used to determine whether a user response to a question was correct or incorrect. In some embodiments, the content response database can further include raw question data including information relating to correct or incorrect responses provided by users and user data associated with some or all of those responses. In some embodiments, this user data can identify one or several attributes of the user such as, for example, any of the user properties discussed above in the user profile database 301. In some embodiments, the content response database can include raw question data including information relating to correct or incorrect responses provided by users and one or several pointers pointing to those users' data in the user profile database 301.
The content item database can include one or several data packets. In some embodiments, the one or several data packets can include, for example, data packets for conveying information to a user, also referred to herein as delivery data packets or delivery content items, and data packets to assess a knowledge level and/or skill level of the user, also referred to as assessment data packets or assessment content items. These data packets can include one or several character strings, text, images, audio, video, or the like. In some embodiments, data packets to convey information to the user can include one or several demonstrations, lectures, readings, lessons, videos or video clips, recordings, audio clips, or the like, and in some embodiments, the data packets to assess a knowledge level and/or skill level of the user can include one or several questions including, for example, one or several short answer questions, essay questions, multiple choice questions, true/false questions, or the like. In some embodiments, the data packets to convey information can be stored in the content database of the data packet database, and in some embodiments, the data packets to assess the knowledge level and/or skill level of the user can be stored in the question database of the data packet database.
In some embodiments, the content item database can include a data acceptance curve that can define an expected learning trajectory for one or several data packets based on historic data for those one or several data packets and, in some embodiments, also based on one or several predictive models. A data acceptance curve for one or several data packets is referred to herein as a data packet acceptance curve. In some embodiments, the data packet acceptance curve can comprise a plurality of data acceptance curves calculated for with data packet user data collected from one or several users. In some embodiments, these one or several user can have different attributes such as different skill levels, different learning styles, or the like.
The aggregate database can include a grouping of data packets including, for example, and grouping of one or both of content items to convey information to a user and content items to assess a knowledge level and/or skill level of the user. This grouping of data packets can be created by a user such as a teacher, instructor, supervisor, or the like. In some embodiments, this grouping of data packets can be created by the user via the supervisor device. In some embodiments, this grouping of data packets can be a lesson that can be given to one or several users.
The structure database can include data identifying a content structure or a knowledge structure that interrelates and interlinks content that can be, for example, stored in others of the databases of, for example, the content library database 303. In some embodiments, for example, the content structure can identify one or several groupings of data packets or grouping categories by which one or several data packets can be identified and/or related. These groupings of data packets can be formed based on the existence or degree of existence of one or several shared attributes among the grouped data packets. In some embodiments, these one or several shared attributes can include, for example, the content of the grouped data packets including one or both of: (1) information is contained in the grouped data packets; and (2) how information is conveyed by the grouped data packets (e.g. text, video, image(s), audio, etc.), a skill or skill level of the grouped data packets, of the like.
In some embodiments, this content can be stored directly in the structure database, and in some embodiments, the structure database can comprise one or several pointers pointing to other databases containing the appropriate content. Thus, in some embodiments, the structure database can contain one or several lessons, one or several questions, and/or one or several answers, some or all of which can be organized and/or connected. In some embodiments, the knowledge database can comprise one or several pointers pointing to one or several lessons in the aggregate database, one or several pointers pointing to one or several data packets that can be, for example, questions, in the data packet database, and/or one or several pointers pointing to one or several responses in the content response database. In some embodiments, and in response to a request from the content management server 102, the pointers in the structure database can be referenced and the desired data can be retrieved from its locations.
In some embodiments, the structure database can further include one or several external content structures. In some embodiments, these external content structures can be pre-existing and can be linked to one or several data packets. In some embodiments, the external content structure can be used to provide an initial organization of the data packets, which initial organization can be altered and/or refined based on information collected from one or several users in response to receipt of one or several of the data packets.
A pricing data store 304, also referred to herein as a pricing database, may include pricing information and/or pricing structures for determining payment amounts for providing access to the content distribution network 100 and/or the individual content resources within the network 100. In some cases, pricing may be determined based on a user's access to the content distribution network 100, for example, a time-based subscription fee, or pricing based on network usage. In other cases, pricing may be tied to specific content resources. Certain content resources may have associated pricing information, whereas other pricing determinations may be based on the resources accessed, the profiles and/or accounts of the user and the desired level of access (e.g., duration of access, network speed, etc.). Additionally, the pricing data store 304 may include information relating to compilation pricing for groups of content resources, such as group prices and/or price structures for groupings of resources.
A license data store 305, also referred to herein as a license database, may include information relating to licenses and/or licensing of the content resources within the content distribution network 100. For example, the license data store 305 may identify licenses and licensing terms for individual content resources and/or compilations of content resources in the content server 112, the rights holders for the content resources, and/or common or large-scale right holder information such as contact information for rights holders of content not included in the content server 112.
A content access data store 306, also referred to herein as a content access database, may include access rights and security information for the content distribution network 100 and specific content resources. For example, the content access data store 306 may include login information (e.g., user identifiers, logins, passwords, etc.) that can be verified during user login attempts to the network 100. The content access data store 306 also may be used to store assigned user roles and/or user levels of access. For example, a user's access level may correspond to the sets of content resources and/or the client or server applications that the user is permitted to access. Certain users may be permitted or denied access to certain applications and resources based on their subscription level, training program, course/grade level, etc. Certain users may have supervisory access over one or more end users, allowing the supervisor to access all or portions of the end user's content, activities, evaluations, etc. Additionally, certain users may have administrative access over some users and/or some applications in the content management network 100, allowing such users to add and remove user accounts, modify user access permissions, perform maintenance updates on software and servers, etc.
A source data store 307, also referred to herein as a source database, may include information relating to the source of the content resources available via the content distribution network. For example, a source data store 307 may identify the authors and originating devices of content resources, previous pieces of data and/or groups of data originating from the same authors or originating devices, and the like.
An evaluation data store 308, also referred to herein as an evaluation database, may include information used to direct the evaluation of users and content resources in the content management network 100. In some embodiments, the evaluation data store 308 may contain, for example, the analysis criteria and the analysis guidelines for evaluating users (e.g., trainees/students, gaming users, media content consumers, etc.) and/or for evaluating the content resources in the network 100. The evaluation data store 308 also may include information relating to evaluation processing tasks, for example, the identification of users and user devices 106 that have received certain content resources or accessed certain applications, the status of evaluations or evaluation histories for content resources, users, or applications, and the like. Evaluation criteria may be stored in the evaluation data store 308 including data and/or instructions in the form of one or several electronic rubrics or scoring guides for use in the evaluation of the content, users, or applications. The evaluation data store 308 also may include past evaluations and/or evaluation analyses for users, content, and applications, including relative rankings, characterizations, explanations, and the like.
A model data store 309, also referred to herein as a model database, can store information relating to one or several predictive models. The predictive models can include, for example, a Rasch model, an item response model, a Performance Factor Analysis model, Knowledge Tracing, one or several statistical models, including, for example, one or several normal models, or the like. In some embodiments, the predictive models can be generally applicable to any user of the content distribution network 100 or components thereof, or to content stored in the content distribution network 100. In some embodiments, the predictive models can be customized for one or several selected user and/or selected content.
A threshold database 310, also referred to herein as a threshold database, can store one or several threshold values. These one or several threshold values can delineate between states or conditions. In one exemplary embodiment, for example, a threshold value can delineate between an acceptable user performance and an unacceptable user performance, between content appropriate for a user and content that is inappropriate for a user, or the like.
In addition to the illustrative data stores described above, data store server(s) 104 (e.g., database servers, file-based storage servers, etc.) may include one or more external data aggregators 311. External data aggregators 311 may include third-party data sources accessible to the content management network 100, but not maintained by the content management network 100. External data aggregators 311 may include any electronic information source relating to the users, content resources, or applications of the content distribution network 100. For example, external data aggregators 311 may be third-party data stores containing demographic data, education related data, consumer sales data, health related data, and the like. Illustrative external data aggregators 311 may include, for example, social networking web servers, public records data stores, learning management systems, educational institution servers, business servers, consumer sales data stores, medical record data stores, etc. Data retrieved from various external data aggregators 311 may be used to verify and update user account information, suggest user content, and perform user and content evaluations.
With reference now to FIG. 4 , a block diagram is shown illustrating an embodiment of one or more content management servers 102 within a content distribution network 100. As discussed above, content management server(s) 102 may include various server hardware and software components that manage the content resources within the content distribution network 100 and provide interactive and adaptive content to users on various user devices 106. For example, content management server(s) 102 may provide instructions to and receive information from the other devices within the content distribution network 100, in order to manage and transmit content resources, user data, and server or client applications executing within the network 100.
A content management server 102 may include a content customization system 402. The content customization system 402 may be implemented using dedicated hardware within the content distribution network 100 (e.g., a content customization server 402), or using designated hardware and software resources within a shared content management server 102. In some embodiments, the content customization system 402 may adjust the selection and adaptive capabilities of content resources to match the needs and desires of the users receiving the content. For example, the content customization system 402 may query various data stores and servers 104 to retrieve user information, such as user preferences and characteristics (e.g., from a user profile data store 301), user access restrictions to content recourses (e.g., from a content access data store 306), previous user results and content evaluations (e.g., from an evaluation data store 308), and the like. Based on the retrieved information from data stores 104 and other data sources, the content customization system 402 may modify content resources for individual users.
A content management server 102 also may include a user management system 404. The user management system 404 may be implemented using dedicated hardware within the content distribution network 100 (e.g., a user management server 404), or using designated hardware and software resources within a shared content management server 102. In some embodiments, the user management system 404 may monitor the progress of users through various types of content resources and groups, such as media compilations, courses or curriculums in training or educational contexts, interactive gaming environments, and the like. For example, the user management system 404 may query one or more databases and/or data store servers 104 to retrieve user data such as associated content compilations or programs, content completion status, user goals, results, and the like.
A content management server 102 also may include an evaluation system 406. The evaluation system 406 may be implemented using dedicated hardware within the content distribution network 100 (e.g., an evaluation server 406), or using designated hardware and software resources within a shared content management server 102. The evaluation system 406 may be configured to receive and analyze information from user devices 106. For example, various ratings of content resources submitted by users may be compiled and analyzed, and then stored in a data store (e.g., a content library data store 303 and/or evaluation data store 308) associated with the content. In some embodiments, the evaluation server 406 may analyze the information to determine the effectiveness or appropriateness of content resources with, for example, a subject matter, an age group, a skill level, or the like. In some embodiments, the evaluation system 406 may provide updates to the content customization system 402 or the user management system 404, with the attributes of one or more content resources or groups of resources within the network 100. The evaluation system 406 also may receive and analyze user evaluation data from user devices 106, supervisor devices 110, and administrator servers 116, etc. For instance, evaluation system 406 may receive, aggregate, and analyze user evaluation data for different types of users (e.g., end users, supervisors, administrators, etc.) in different contexts (e.g., media consumer ratings, trainee or student comprehension levels, teacher effectiveness levels, gamer skill levels, etc.).
A content management server 102 also may include a content delivery system 408. The content delivery system 408 may be implemented using dedicated hardware within the content distribution network 100 (e.g., a content delivery server 408), or using designated hardware and software resources within a shared content management server 102. The content delivery system 408 may receive content resources from the content customization system 402 and/or from the user management system 404, and provide the resources to user devices 106. The content delivery system 408 may determine the appropriate presentation format for the content resources based on the user characteristics and preferences, and/or the device capabilities of user devices 106. If needed, the content delivery system 408 may convert the content resources to the appropriate presentation format and/or compress the content before transmission. In some embodiments, the content delivery system 408 may also determine the appropriate transmission media and communication protocols for transmission of the content resources.
In some embodiments, the content delivery system 408 may include specialized security and integration hardware 410, along with corresponding software components to implement the appropriate security features content transmission and storage, to provide the supported network and client access models, and to support the performance and scalability requirements of the network 100. The security and integration layer 410 may include some or all of the security and integration components 208 discussed above in FIG. 2 , and may control the transmission of content resources and other data, as well as the receipt of requests and content interactions, to and from the user devices 106, supervisor devices 110, administrative servers 116, and other devices in the network 100.
With reference now to FIG. 5 , a block diagram of an illustrative computer system is shown. The system 500 may correspond to any of the computing devices or servers of the content distribution network 100 described above, or any other computing devices described herein. In this example, computer system 500 includes processing units 504 that communicate with a number of peripheral subsystems via a bus subsystem 502. These peripheral subsystems include, for example, a storage subsystem 510, an I/O subsystem 526, and a communications subsystem 532.
I/O subsystem 526 may include device controllers 528 for one or more user interface input devices and/or user interface output devices 530. User interface input and output devices 530 may be integral with the computer system 500 (e.g., integrated audio/video systems, and/or touchscreen displays), or may be separate peripheral devices which are attachable/detachable from the computer system 500.
Depending on the configuration and type of computer system 500, system memory 518 may be stored in volatile memory (such as random access memory (RAM) 512) and/or in non-volatile storage drives 514 (such as read-only memory (ROM), flash memory, etc.). The RAM 512 may contain data and/or program modules that are immediately accessible to and/or presently being operated and executed by processing units 504. In some implementations, system memory 518 may include multiple different types of memory, such as static random access memory (SRAM) or dynamic random access memory (DRAM). In some implementations, a basic input/output system (BIOS), containing the basic routines that help to transfer information between elements within computer system 500, such as during start-up, may typically be stored in the non-volatile storage drives 514. By way of example, and not limitation, system memory 518 may include application programs 520, such as client applications, Web browsers, mid-tier applications, server applications, etc., program data 522, and an operating system 524.
Computer-readable storage media 516 containing program code, or portions of program code, may include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information. This can include tangible computer-readable storage media such as RAM, ROM, electronically erasable programmable ROM (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible computer readable media. This can also include nontangible computer-readable media, such as data signals, data transmissions, or any other medium which can be used to transmit the desired information and which can be accessed by computer system 500.
By way of example, computer-readable storage media 516 may include a hard disk drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM, DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 516 may include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable storage media 516 may also include, solid-state drives (SSD) based on non-volatile memory such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and flash memory based SSDs. The disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for computer system 500.
Communications subsystem 532 may provide a communication interface from computer system 500 and external computing devices via one or more communication networks, including local area networks (LANs), wide area networks (WANs) (e.g., the Internet), and various wireless telecommunications networks. As illustrated in FIG. 5 , the communications subsystem 532 may include, for example, one or more network interface controllers (NICs) 534, such as Ethernet cards, Asynchronous Transfer Mode NICs, Token Ring NICs, and the like, as well as one or more wireless communications interfaces 536, such as wireless network interface controllers (WNICs), wireless network adapters, and the like. Additionally and/or alternatively, the communications subsystem 532 may include one or more modems (telephone, satellite, cable, ISDN), synchronous or asynchronous digital subscriber line (DSL) units, FireWire® interfaces, USB® interfaces, and the like. Communications subsystem 536 also may include radio frequency (RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile communication technologies, or any combination thereof), global positioning system (GPS) receiver components, and/or other components.
The various physical components of the communications subsystem 532 may be detachable components coupled to the computer system 500 via a computer network, a FireWire® bus, or the like, and/or may be physically integrated onto a motherboard of the computer system 500. Communications subsystem 532 also may be implemented in whole or in part by software.
In some embodiments, communications subsystem 532 may also receive input communication in the form of structured and/or unstructured data feeds, event streams, event updates, and the like, on behalf of one or more users who may use or access computer system 500. For example, communications subsystem 532 may be configured to receive data feeds in real-time from users of social networks and/or other communication services, web feeds such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or more third party information sources (e.g., data aggregators 309). Additionally, communications subsystem 532 may be configured to receive data in the form of continuous data streams, which may include event streams of real-time events and/or event updates (e.g., sensor data applications, financial tickers, network performance measuring tools, clickstream analysis tools, automobile traffic monitoring, etc.). Communications subsystem 532 may output such structured and/or unstructured data feeds, event streams, event updates, and the like to one or more data stores 104 that may be in communication with one or more streaming data source computers coupled to computer system 500.
Due to the ever-changing nature of computers and networks, the description of computer system 500 depicted in the figure is intended only as a specific example. Many other configurations having more or fewer components than the system depicted in the figure are possible. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, firmware, software, or a combination. Further, connection to other computing devices, such as network input/output devices, may be employed. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the various embodiments.
With reference now to FIG. 6 , exemplary images of data acceptance curves 600 which can be either user data acceptance curves or data packet acceptance curves. Each of these images includes an axis labeled a “p(correct)” which identifies a percent of time that a desired response is received for a next provided data packet. Each of these images also includes an axis labeled “number of corrects” which identifies the number of desired responses provided to a category or group of data packets. Each of the images further include indicators 602 that identify aggregated data for one or several users and a trend-line 604 depicting expected user progress based on the some or all of the data represented by the indicators 602.
In some embodiments, a data acceptance curve 600 can be generated for one or several users. In such an embodiment, the data acceptance curve 600 can be based on the interactions of these one or several users with the content distribution network 100, and particularly based on the responses provided by these one or several users to assessment data packets provided by the content distribution network 100. This user data acceptance curve can identify how these one or several users accept data which can include, for example, develop a new skill or skill set, master or learn subject matter, or the like. In such an embodiment, one or several users who have a higher data acceptance rate are indicated by a relatively steeper slope of the trend-line 604 than one or several users with a lower data acceptance rate.
In some embodiments, a data acceptance curve 600 can be generated for one or several data packets. Such content item data acceptance curves can be stored in the content library database 303. In such an embodiment, the data acceptance curve 600 can identify the acceptance of the data of the one or several data packets, particularly vis-à-vis the current grouping of the one or several data packets. This acceptance curve can thus depict the relationship between exposure to related data packets and the likelihood of providing a desired response to the one or several data packets for which the data acceptance curve 600 is created.
The data acceptance curve 600 can be generated with data for one or several users and can be, for example, associated in one of the databases with those one or several users or with one or several data packets. In such an embodiment, the data acceptance curve can provide information relating to an expected outcome for one or several users as the one or several users provide additional desired responses. In such embodiments, the slope of the trend-line 604 can provide an indicator of this expected progress, and specifically, a steep, positive trend-line 604 indicates that a user has historically progressed and/or processed data packets more rapidly than a relatively less steep, positive trend-line 604.
In some embodiments, the data acceptance curves 600 can further provide an indicator between the correlation between data packets, and specifically between one or both of a plurality of assessment data packets and one or several delivery data packets. In some embodiments, for example, a relatively less positively sloped trend-line can indicate a weaker correlation between one or several topics, subjects, and/or skills of a plurality of data packets.
Accordingly, and referring to images (a), (b), and (c) of FIG. 6 , image (a) indicates a relatively stronger correlation between the provided data packets associated with the response data represented in image (a) than the correlation of either images (b) and (c), and image (a) likewise indicates that the one or several users associated with the response data represented in image (a) process data faster than those users of images (b) and (c). Similarly, image (c) indicates a relatively weaker correlation between the provided data packets associated with the response data represented in image (c) than the correlation of either images (a) and (b), and image (c) likewise indicates that the one or several users associated with the response data represented in image (c) process data slower than those users of images (a) and (b).
With reference now to FIG. 7 , a plurality of images of data packet curves 700, also referred to herein as content item curves 700, are shown. The data packets curves can be stored in the content library database 303 and can be, for example, associated with the data packet(s) for which they were created. Each of the images of content item curves in FIG. 7 includes an axis labeled a “p(correct)” which identifies a probability of receiving a desired response to the data packet for which the data packet curve 700 is created. Each of these images further includes an axis labeled “ability θ” that identifies a skill level of one or several users who have responded to the data packet associated with the content item curve 700.
In some embodiments, the data packet curve 700 can include information identifying one or several properties of the data packet including, for example, the difficulty of the data packet, the differentiation of the data packet, and a randomness measure or randomness parameter of the data packet.
In some embodiments, the difficulty of the data packet correlates to the probability of a user providing a desired response to the data packet. Thus, a user, regardless of skill level, will have a lower likelihood of providing the desired response to a first data packet that has a higher difficulty than the likelihood of that user providing the desired response to a second, relatively easier data packet. In some embodiments, the placement of the data packet along the axis labeled “ability θ” indicates the difficulty of the data packet, the width of the curve such indicates the differentiation of the data packet, and the absolute minimum of the data packet curve 700 indicates the randomness measure of the data packet. Thus, the data packet associated with image (a) is more difficult than the data packet associated with image (b).
In some embodiments, the differentiation of a content item describes the degree to which correct and incorrect responses to a data packet distinguish between skill levels. Thus, a data packet having a greater level of differentiation will, across a data set, better distinguish between user skill levels than a data packet having a lower level of differentiation. In some embodiments, the differentiation of a data packet is indicated by the range of ability levels corresponding to non-asymptotic portion of the data packet curve 700, or more generally, by the width of the non-asymptotic portion of the data packet curve 700. Accordingly, both the data packets associated with images (a) and (b) have approximately equal levels of differentiation.
The randomness measure of the data packet characterizes the likelihood of randomly receiving the desired response from a user to that data packet. This randomness can be indicated by a vertical displacement of the data packet curve 700 along the axis labeled “p(correct).” Accordingly, the data packet associated with image (c) is more greatly affected by randomness than the data packets associated with (a) and (b) as a user has a greater than 20 percent chance of providing the desired response, regardless of ability, to the data packet associated with image (c).
With reference now to FIG. 8 , a flowchart illustrating one embodiment of a process 800 for generating a customized aggregation to maximize data transmission rates through the content distribution network 100 is shown. The process 800 can be performed by components of the content distribution network 100. The process 800 begins at block 842 wherein a aggregation information is received. In some embodiments, the aggregation information can identify one or several data packets, including one or several delivery data packets and/or one or several assessment data packets, for intended delivery to one or several users, which users can be, for example, one or several students, via, for example, one or several user devices 106.
The aggregation information can be generated by the content delivery network 100 or can be received from a user-supervisor such as a teacher, and instructor, or any individual, group, or entity responsible for providing content to one or several other users. In some embodiments, the aggregation information can be received from the user-supervisor via one or several supervisor devices 110 and one or several communication networks 120.
In some embodiments in which the aggregation information is generated by the content delivery network 100, the content delivery network can receive one or several parameters from the user-supervisor. These parameters can, for example, specify one or several attributes of the desired aggregation of data packets for providing to one or several users. These attributes can specify, for example, a difficulty level, a differentiation level, a time parameter which can include, for example, the maximum or average duration for user data acceptance, a subject matter parameter which can identify one or several topics, skills, or the like for inclusion the aggregation, or the like. In some embodiments, these attributes can be applied to either or both of the aggregation as a whole or to some or all of the individual data packets forming the aggregation.
In some embodiments, these attributes can be received from the supervisor device 110 via one or several communications networks 120. In one particular embodiment, the supervisor device 110 can include a graphical user interface (GUI) including features enabling user inputs indicative of these attributes. In one embodiment, for example, the GUI can include a plurality of sliders each of which corresponds to an attribute. By varying the position of a sliding element along the length of the slider, the user-supervisor can adjust attribute levels.
After user inputs indicative of these attributes have been received, the content delivery network 100 or its components can identify one or several data packets that either alone or in combination correspond to the specified attributes. Information relating to these one or several data packets can be collected and stored in one of the databases such as, for example, the content library database 303, and these one or several data packets can be identified as the aggregation.
After the aggregation information has been received, the process 800 proceeds to block 844 wherein the one or several data packets identified by the aggregation information are retrieved and/or received. In some embodiments, these one or several data packets can be retrieved or received from one of the databases such as the content library database 303 by for example, the central processor 102 of the content delivery network 100.
After the data packets have been retrieved, the process 800 proceeds to block 846 where data packet metadata for the retrieved data packets is retrieved. In some embodiments, the data packet metadata can relate to and/or identify one or several aspects of the content of the data packet. In contrast to the data packet user data, the data packet metadata does not change based on user interactions with the content delivery network 100, and specifically does not change based on user responses to provided data packets. In some embodiments, content metadata can be received for some or all of the data packets received in block 844. The data packet metadata can be retrieved and/or received from the content library database 303.
After the data packet metadata is received, the process 800 proceeds to block 848 where the data packet user data is retrieved or received. The data packet user data can include data associated with each of the data packets, which is based on one or several user interactions with the content delivery network 100, and specifically which is based on one or several user responses provided to one or several assessment data packets. In some embodiments, the data packet user data can be retrieved simultaneous with the retrieval of the data packets, and can be retrieved from the content library database 303.
After the data packet user data has been retrieved, the process 800 proceeds to block 850 wherein a recipient cohort is identified. In some embodiments, the recipient cohort is the group of users designated to receive the aggregation. The recipient cohort can be determined based on information received from the user-supervisor and/or based on user information stored in, for example, the user profile database 301. In one embodiment, for example, the recipient cohort can correspond to users participating in a group such as, for example, the class, a program, the training group, or the like. In some embodiments, the recipient cohort can be identified by determining the group for receiving the aggregation and then determining the users in that group. In one embodiment, for example, the user-supervisor can designate a class for receiving the aggregation and the users in that class can be identified based on, for example, enrollment information stored in the user profile database 301.
After the recipient cohort has been identified, the process 800 proceeds to block 852 wherein recipient cohort user data is received or retrieved. In some embodiments, this recipient cohort user data can be received or retrieved from the user profile database 301. This information can identify one or several attributes of the user and/or can identify one or several user actions. These attributes can include, for example, the data acceptance rate, a skill level, a learning style, or the like. The one or several user actions can include, for example, information identifying one or several data packets received by the user, information identifying one or several responses provided by the user including identifying one or several desired responses or undesired responses provided by the user, amount of time spent interacting with the content distribution network 100, amount of time spent receiving and/or responding to data packets, or the like. In some embodiments, this can include receiving, and/or retrieval of one or several data acceptance curves associated with one or several of the users in the recipient cohort.
After the recipient cohort user data has been received, the process 800 proceeds to block 854 wherein combined aggregation data is generated. In some embodiments, the combined aggregation data can be generated from one or both of the data packet metadata retrieved in block 846 and the data packet user data retrieved in block 848. This combined aggregation data can characterize an attribute of the aggregation as a whole such as, for example, the difficulty of the aggregation as a whole, the differentiation of the aggregation as a whole, the anticipated time required for the aggregation as a whole, or the like. In some embodiments, this combined aggregation data can be generated by identifying and combining like attributes from the data packets in the aggregation according to known techniques.
After the combined aggregation data has been generated, the process 800 proceeds to block 856 wherein combined cohort data is generated. In some embodiments, combined cohort data can be generated from cohort user data received an block 852. This combined cohort data can characterize an attribute of the cohort as a whole such as, for example, the data acceptance rate, the skill level, lapsed time including the time already spent by users and the recipient cohort receiving and/or responding to data packets, or the like. In some embodiments, this combined cohort data can be generated by identifying and combining the like attributes from users and the cohort according to known techniques.
After the combined cohort data has been generated, the process 800 proceeds to block 858 wherein the combined aggregation data is compared to the combined cohort data. In some embodiments, this comparison can be performed by a component of the content distribution network 100 such as the central server 102. This comparison can determine whether one or several attributes of the aggregation correspond, or more specifically satisfactorily correspond to one or several attributes of the cohort. In some embodiments, the content distribution network 100 can determine a difference between one or several attributes indicated in the combined aggregation data and in the combined cohort data, and can compare this difference to a threshold value.
In some embodiments, the comparison of the combined aggregation data and the combined cohort data can include determining whether the difficulty level of the aggregation corresponds the skill level of the cohort, if the data acceptance rate of the aggregation as adapted to correspond to one or several attributes of the cohort is acceptable, determining whether the differentiation level of the aggregation is satisfactory, or the like.
In some embodiments, for example, the data acceptance rate for the aggregation can be adjusted to correspond to attributes of the users in the cohort. Specifically, one or several cohort parameters were parameters relating to users in the cohort can be used to filter data used in generating the aggregation data acceptance rate such that the data used in generating the aggregation data acceptance rate approximates attributes of the cohort as a whole or of individual users and the cohort. In some embodiments, for example, this can include filtering user data used in generating the data acceptance rate for the aggregation such that user data for users having similar skill levels to users in the cohort is included, such that user data acceptance rates of users in a cohort corresponds to those in the user data used in generating the data acceptance rate, or the like.
After the combined aggregation data and the combined cohort data have been compared, the process 800 proceeds to decision block 868 wherein it is determined whether the aggregation is compatible with the cohort. In some embodiments, this can include determining whether the one or several compared attributes of the combined aggregation data in the combined cohort data satisfactorily match in which case the process 800 proceeds to block 862 wherein the aggregation is recommended for use to, for example, the user-supervisor via the supervisor device 110. In some embodiments, this recommendation can further include the providing of the aggregation in the data packets included therein to the users identified in the recipient cohort of block 850.
Returning again to decision block 868, if it is determined that the compared one or several attributes of the combined aggregation data in the combined cohort data do not match either in that they do not attain minimum desired levels or in that they exceed maximum desired levels, the process 800 proceeds to block 864 wherein an alteration is recommended. In some embodiments, this recommendation can include identification of one or several data packets in the aggregation for removal and/or the identification of one or several data packets for inclusion in the aggregation. In some embodiments, the recommendation of the alteration can be provided to the user-supervisor via the supervisor device 110 in response to which, the content delivery network 100 can receive a response from the user-supervisor either accepting are refusing the recommendation. If the recommendation is refused, then the aggregation can be provided in its original form to the users in the cohort identified and block 850.
Alternatively, if the recommendation is accepted, then the aggregation can be updated and the process 800 can return to block 854 and combined aggregation data can be generated for the updated aggregation and the process 800 can then proceed as outlined above.
In some embodiments, the recommendation can be provided in the form of an alert. The alert can be generated by the central server 102 and/or the privacy server 108 and can be provided to at least one of the user devices 106 and/or the supervisor device 110. In some embodiments, an alert, containing information relevant to the recommended alteration can be provided to the user-supervisor along with a prompt to indicate whether the recommended alteration is accepted or refused.
In some embodiments, any information disclosed herein as provided to one or several user devices 106 and/or supervisor devices 110 can be provided in a form of an alert. In some embodiments, for example, the providing of this alert can include the identification of one or several user device 106 and/or user accounts associated with the user. After these one or several user devices 106 and/or user accounts have been identified, the providing of this alert can include determining a use location of the user based on determining if the user is actively using one of the identified user devices 106 and/or accounts. In some embodiments, the use location may correspond to a physical location of the device 106, 110 being actively used, and in some embodiments, the use location can comprise the user account and/or user device which the creator of the thread is currently using.
If the user is actively using one of the user devices and/or accounts, the alert can be provided to the user via that user device 106 and/or account that is actively being used. If the user is not actively using a user device 106 and/or account, a default device, such as a smart phone or tablet, can be identified and the alert can be provided to this default device. In some embodiments, the alert can include code to direct the default device to provide an indicator of the received alert such as, for example, an aural, tactile, or visual indicator of receipt of the alert.
With reference now to FIG. 9 , a flowchart illustrating one embodiment of a process 900 for generating a customized aggregation matched to a sub-cohort to maximize data transmission rates through the content distribution network 100 is shown. In some embodiments, data transmission times, as measured from the transmission of a first data packet of an aggregation until the transmission of a last data packet of an aggregation, can be minimized by customizing the contents of the aggregation according to one or several aggregation attributes or attributes of the data packets in the aggregation. In some embodiments, such customization of the aggregation can increase data acceptance rates, and thereby increase transmission rates.
The process 900 can be performed by the content distribution network 100 and/or one or several components of the content distribution network 100. The process 900 begins at block 902, wherein aggregation information is received. In some embodiments, the aggregation information can identify one or several data packets, including one or several delivery data packets and/or one or several assessment data packets, for intended delivery to one or several users, which users can be, for example, one or several students, via, for example, one or several user devices 106. The aggregation information can be generated by the content delivery network 100 or can be received from a user-supervisor such as a teacher, and instructor, or any individual, group, or entity responsible for providing content to one or several other users as discussed above.
After the aggregation information has been received, the process 900 proceeds to block 904 wherein the one or several data packets identified by the aggregation information are retrieved and/or received. In some embodiments, these one or several data packets can be retrieved or received from one of the databases such as the content library database 303 by for example, the central processor 102 of the content delivery network 100.
After the data packets have been retrieved, the process 900 proceeds to block 906 wherein data packet data, which can include, for example, data packet metadata and/or data packet user data is retrieved as discussed above with respect to blocks 846, 848 of FIG. 8 . After the data packet data has been retrieved, the process 900 proceeds to block 908 wherein a recipient cohort is identified. In some embodiments, the recipient cohort is the group of users designated to receive the aggregation via a plurality of user devices 106. The recipient cohort can be determined based on information received from the user-supervisor and/or based on user information stored in, for example, the user profile database 301. In one embodiment, for example, the recipient cohort can correspond to users participating in a group such as, for example, the class, a program, the training group, or the like. In some embodiments, the recipient cohort can be identified by determining the group for receiving the aggregation and then determining the users in that group. In one embodiment, for example, the user-supervisor can designate a class for receiving the aggregation and the users in that class can be identified based on, for example, enrollment information stored in the user profile database 301.
After the recipient cohort has been identified, the process 900 proceeds to block 910, wherein recipient cohort user data is received or retrieved. In some embodiments, this recipient cohort user data can be received or retrieved from the user profile database 301. This information can identify one or several attributes of the user and/or can identify one or several user actions. These attributes can include, for example, the data acceptance rate, a skill level, a learning style, or the like. The one or several user actions can include, for example, information identifying one or several data packets received by the user, information identifying one or several responses provided by the user including identifying one or several desired responses or undesired responses provided by the user, amount of time spent interacting with the content distribution network 100, amount of time spent receiving and/or responding to data packets, or the like. In some embodiments, this can include receiving, and/or retrieval of one or several data acceptance curves associated with one or several of the users in the recipient cohort.
After the recipient cohort user data has been retrieved, the process 900 proceeds to block 912, wherein one or several sub-cohorts are created by, for example, dividing the recipient cohort into smaller groups. In some embodiments, the one or several cohorts comprise one or several sub-sets of the users in the recipient cohort. In some embodiments, further matching of the aggregation to user attributes can be achieved by the formation of these one or several sub-cohorts.
These one or several sub-cohorts can be created in in a variety of different ways. In one exemplary embodiment, for example, one or several sub-cohorts can be created by receiving information from the user-supervisor specifying a desired number of sub-cohorts and one or several desired attributes for use in forming these cohorts. In such an embodiment, and if several desired attributes are desired for use in creating the sub-cohorts, the user-supervisor can further provide information specifying a priority and/or a relative ranking among the attributes for use in creating the sub-cohorts. After this information has been received by the content distribution network 100, the one or several users in the recipient cohort can be relatively ranked with respect to each other vis-à-vis the one or several identified attributes and the users in the recipient cohort can then be divided into sub-cohorts based on the relative ranking by, for example, creating the specified number of sub-cohorts of an equal size.
Alternatively, having received the desired number of sub-cohorts in the one or several attributes for creating the sub-cohorts, the content distribution network can evaluate the users of the recipient group based on those one or several attributes and identify sub-cohorts optimized such that members of the sub-cohorts have the maximum amount of similarity of attributes with other members of the same sub-cohort.
After the sub-cohorts have been created, the process 900 proceeds to block 914 wherein combined aggregation data is generated. In some embodiments, the combined aggregation data can be generated from one or both of the content data received in block 906. This combined aggregation data can characterize an attribute of the aggregation as a whole such as, for example, the difficulty of the aggregation as a whole, the differentiation of the aggregation as a whole, the anticipated time required for the aggregation as a whole, or the like. In some embodiments, this combined aggregation data can be generated by identifying and combining like attributes from the data packets in the aggregation according to known techniques.
After the combined aggregation data has been generated, the process 900 proceeds to block 916 wherein sub-cohort data is generated. In some embodiments, combined cohort data can be generated from user data of users belonging to a sub-cohort. In some embodiments, sub-cohort data can be generated for each of the sub-cohorts. This sub-cohort data can characterize an attribute of the sub-cohort as a whole such as, for example, the data acceptance rate, the skill level, lapsed time including the time already spent by users and the recipient cohort receiving and/or responding to data packets, or the like. In some embodiments, this sub-cohort data can be generated by identifying and combining the like attributes from users in the sub-cohort according to known techniques.
After the sub-cohort data has been generated, the process 900 proceeds to block 919 wherein the combined aggregation data is compared to the sub-cohort data for some or all of the sub-cohorts. In some embodiments, this comparison is separately performed for some or all of the sub-cohorts. In some embodiments, this comparison can be performed by a component of the content distribution network 100 such as the central server 102. This comparison can determine whether one or several attributes of the aggregation correspond, or more specifically satisfactorily correspond to one or several attributes of each of the sub-cohorts. In some embodiments, the content distribution network 100 can determine a difference between one or several attributes indicated in the combined aggregation data and in the sub-cohort data for each of the sub-cohorts, and can compare this difference to a threshold value.
In some embodiments, the comparison of the combined aggregation data and the sub-cohort data can include determining whether the difficulty level of the aggregation corresponds the skill level of the sub-cohort, if the data acceptance rate of the aggregation as adapted to correspond to one or several attributes of the sub-cohort is acceptable, determining whether the differentiation level of the aggregation is satisfactory, or the like.
In some embodiments, for example, the data acceptance rate for the aggregation can be adjusted to correspond to attributes of the users in the sub-cohort. Specifically, one or several sub-cohort parameters relating to users in the sub-cohort can be used to filter data used in generating the aggregation data acceptance rate such that the data used in generating the aggregation data acceptance rate approximates attributes of the sub-cohort as a whole or of individual users in the sub-cohort. In some embodiments, for example, this can include filtering user data used in generating the data acceptance rate for the aggregation such that user data for users having similar skill levels to users in the sub-cohort is included. By doing this, user data acceptance rates of users in a sub-cohort corresponds to those in the user data used in generating the data acceptance rate.
After the combined aggregation data and the sub-cohort data have been compared, the process 900 proceeds to decision block 918 wherein it is determined, for some or all of the sub-cohorts, whether the aggregation is compatible with the sub-cohorts. In some embodiments, this determination includes selecting one of the sub-cohorts, receiving the results of the comparison in block 919, and determining whether the one or several compared attributes of the combined aggregation data and the combined sub-cohort data of the selected sub-cohort satisfactorily match. If there is a satisfactory match, then the process 900 proceeds to block 920 wherein the aggregation is recommended for use to a user such as, for example, the user-supervisor via the supervisor device 110.
After the aggregation has been recommended, the process 900 proceeds to block 922, wherein the aggregation is provided to the users of matching sub-cohort. In some embodiments, the aggregation can be provided to the users of the matching sub-cohort via one or several user devices 106.
Returning again to decision block 918, if it is determined that there is not a satisfactory match between the sub-cohort data for one of the sub-cohorts and the combined aggregation data, then the process 900 proceeds to block 924 wherein an alteration to the aggregation is recommended. In some embodiments, this recommended alteration is general to all sub-cohorts, and in some embodiments, this alteration is specific to the sub-cohort having sub-cohort data that did not adequately match the combined aggregation data. Thus, in some embodiments, the recommendation for alteration can be a request for the generation of an aggregation specifically tailored to the user attributes of one of the sub-cohorts. This can, in some embodiments, result in some or all of the sub-cohorts receiving a uniquely tailored aggregation.
In some embodiments, this recommendation can include identification of one or several data packets in the aggregation for removal and/or the identification of one or several data packets for inclusion in the aggregation. These data packets can be identified for removal and/or for inclusion based on one or several attributes of these data packets. In one embodiment for example in which the difficulty of the aggregation is too high, one or several data packets can be identified that meet the parameters of the aggregation but that are less difficult and these data packets can be recommended for inclusion in the aggregation. Similarly, data packets having other attributes can be identified and recommended for removal from or inclusion in the aggregation. In some embodiments, the recommendation of the alteration can be provided to the user-supervisor via the supervisor device 110.
Specifically, in one embodiment, one or several data packets can be identified for removal by identifying the content items in the aggregation. After the content items have been identified a contribution value can be determined, which contribution value characterizes the degree to which one or several attributes contribute to the failure of the aggregation to meet the threshold. In some embodiments, this can include determining a difference between the attribute for each of the data packets and the sub-cohort aggregate, and then comparing this difference to the threshold value. In some embodiments, the data packets can be ranked according to the degree to which they detrimentally contribute to the failure of the aggregation to meet the threshold, and one or several of the worst ranked data packets can be selected for removal from the aggregation.
In some embodiments, one or several data packets can be selected for inclusion in the aggregation by retrieving the aggregation database or aggregation database information. In some embodiments, the aggregation database or aggregation database information identifies data packets that are includable in the aggregation. After the aggregation database has been retrieved, a content item from the aggregation database can be selected for evaluation, which content item can, in some embodiments, not be presently included in the aggregation. In some embodiments, one or several differences can be determined between one or several attributes of the content item and the sub-cohort data, and these differences can be compared to the threshold value. This selection and comparison of content items can be repeated until all data packets in the aggregation database, or a desired number of data packets in the aggregation database have been evaluated. These data packets can then be rank ordered according to the degree to which their inclusion in the aggregation would contribute to the meeting of threshold values.
In some embodiments data packets can then be selected for inclusion by comparing the difference of potential data packets for inclusion to the difference of potential data packets for removal. In some embodiments, this comparison can be performed according to the ranked order of both the data packets for potential inclusion and the data packets for potential removal. In some embodiments, a data packet can be designated for removal if a potential data packet for inclusion would more positively contribute to the meeting of the threshold. This identification of data packets for removal and inclusion can continue until an altered aggregation is created that would meet the threshold or until there are no additional data packets in the aggregation database that more positively contribute to meeting of the threshold than data packets already included in the aggregation.
After the alteration has been recommended, the process 900 proceeds to decision block 926 wherein it is determined if the recommendation is accepted. In some embodiments, and in response to the alteration recommendation, the content delivery network 100 can receive a response from the user-supervisor via the supervisor device 110 either accepting are refusing the recommendation. If the alteration recommendation is not accepted, then the process 900 advances to block 922 and proceeds as outlined above. If the alteration recommendation is accepted, then the aggregation can be altered per the recommendation as indicated in block 928 and the process 900 can return to block 904 and proceed as outlined above. This updated aggregation can be provided to the user via a user device 106 if after repeating steps 904-919, it is determined that the combined aggregation data of the updated aggregation corresponds to the sub-cohort data.
With reference now to FIG. 10 , a flowchart illustrating one embodiment of a process 1000 for generating an aggregation database is shown. This can involve the receipt of a group of data packets and the selection of a subgroup of those data packets for inclusion in the aggregation database. In some embodiments, data packets are included in the aggregation database based on one or several attributes of the data packets such as, for example, difficulty, differentiation, and a randomness factor. In some embodiments, the aggregation database can be customized for an aggregation based on one or several desired attributes of the aggregation, thus, when the aggregation database is created, the aggregation can contain a set of data packets that are suitable for use in the aggregation.
The process 1000 can be performed by the content distribution network 100 and/or one or several components thereof. The process 1000 begins at block 1002, wherein a group, also referred to herein as a set, of data packets is received. In some embodiments, the set of questions can be received from the content library database 303. After the data packets have been retrieved, the process 1000 proceeds to block 1004, wherein the data packet user data is retrieved. In some embodiments, the data packet user data can be retrieved simultaneous with the retrieval of the data packets, and can be retrieved from the content library database 303.
After the data packet user data has been retrieved, the process 1000 proceeds to block 1006, wherein a data packet attribute is determined for some or all of the retrieved data packets. This data packet attribute can be, for example, a difficulty, skill level, differentiation level, randomness level, a rate of data acceptance, or the like. In some embodiments, these data packet attributes can be determined, for example, from one or more of one or several data acceptance curves 600 for a data packet, and/or from one or several data packet curves 700.
After the data packet attribute has been determined, the process 1000 proceeds to block 1008, wherein one or several quality thresholds are retrieved. In some embodiments, the quality threshold can be based on desired attributes for an aggregation such as can be specified as discussed above via a GUI on the supervisor device 110. These quality thresholds can be stored in one of the databases such as, for example, content library database 303. After the quality threshold is retrieved, the process 1000 proceeds to block 1010, wherein the quality thresholds are compared with the data packet attributes determined in block 1006.
After the quality thresholds are compared to the data packet attributes, the process 1000 proceeds to decision block 1012, wherein it is determined if the randomness attribute of the data packet exceeds the quality threshold for randomness. In some embodiments, this comparison can determine whether the data packet is too likely to receive a desired response based on randomness, and particularly based on guessing. If the randomness attribute exceeds the quality attribute for randomness, then the process 1000 proceeds to block 1014 and the data packet is excluded from the aggregation database and an indicator of excessive randomness is provided to the user-supervisor and/or is stored in the content library database 303.
If it is determined that the randomness attribute does not exceed the quality attribute for randomness, then the process 1000 proceeds to decision block 1016, wherein it is determined if the differentiation attribute exceeds the quality threshold for differentiation. In some embodiments, this can determine whether the data packet sufficiently differentiates between skill levels. If the differentiation level does not exceed the threshold for differentiation, the data packet has insufficient differentiation and the process 1000 proceeds to block 1018, and the data packet is excluded from the aggregation database and an indicator of insufficient differentiation is provided to the user-supervisor and/or is stored in the content library database 303.
If it is determined that the differentiation attribute exceeds the quality attribute for differentiation and that the data packet has sufficient differentiation, then the process 1000 proceeds decision block 1020, wherein it is determine if the difficulty attribute of the data packet is acceptable, or inacceptable as either being too high or too low vis-à-vis the quality threshold for difficulty. If it is determined that the difficulty level of the data packet is too high, then the process 1000 proceeds to block 1022 and the data packet is excluded from the aggregation database and an indicator of excessive difficulty is provided to the user-supervisor and/or is stored in the content library database 303. Similarly, if it is determined that the difficulty of the data packet is too low, then the process 1000 proceeds to block 1024 and the data packet is excluded from the aggregation database and an indicator of inadequate difficulty is provided to the user-supervisor and/or is stored in the content library database 303.
If it is determined that the difficulty of the data packet matches the quality threshold for difficulty, then the process 1000 proceeds to block 1026 and an indicator of acceptability is associated with the data packet, for example, in the content library database 303. The process 1000 then proceeds to block 1028, wherein the data packet is stored in the aggregation database in, for example, the content library database. In some embodiments, process 1000 can be repeated until all of the data packets retrieved in block 1002 have been evaluated and either included in, or excluded from the aggregation database. In some embodiments, the data packets in the aggregation database can then be selected according to one or both of processes 800 and 900 in creating the aggregation.
A number of variations and modifications of the disclosed embodiments can also be used. Specific details are given in the above description to provide a thorough understanding of the embodiments. However, it is understood that the embodiments may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
Implementation of the techniques, blocks, steps and means described above may be done in various ways. For example, these techniques, blocks, steps and means may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described above, and/or a combination thereof.
Also, it is noted that the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a swim diagram, a data flow diagram, a structure diagram, or a block diagram. Although a depiction may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed, but could have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
Furthermore, embodiments may be implemented by hardware, software, scripting languages, firmware, middleware, microcode, hardware description languages, and/or any combination thereof. When implemented in software, firmware, middleware, scripting language, and/or microcode, the program code or code segments to perform the necessary tasks may be stored in a machine readable medium such as a storage medium. A code segment or machine-executable instruction may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a script, a class, or any combination of instructions, data structures, and/or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, and/or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. Any machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in a memory. Memory may be implemented within the processor or external to the processor. As used herein the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other storage medium and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
Moreover, as disclosed herein, the term “storage medium” may represent one or more memories for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information. The term “machine-readable medium” includes, but is not limited to portable or fixed storage devices, optical storage devices, and/or various other storage mediums capable of storing that contain or carry instruction(s) and/or data.
While the principles of the disclosure have been described above in connection with specific apparatuses and methods, it is to be clearly understood that this description is made only by way of example and not as limitation on the scope of the disclosure.
Claims (19)
1. A system for generating an updated assignment, the system comprising:
a memory comprising:
a content library database comprising a plurality of data packets, wherein the plurality of data packets comprise a plurality of delivery data packets and a plurality of assessment data packets, the assessment data packets including one or more questions; and
a user profile database, wherein the user profile database includes information identifying a cohort of users, and wherein the user profile database includes information identifying plurality of at least one attribute of each of the users in the cohort of users;
a server configured to:
receive aggregation information identifying a plurality of delivery data packets and one or more of the plurality of assessment data packets including the one or more questions;
receive data of the plurality of data packets from the content library database;
identify a recipient cohort, wherein the recipient cohort comprises a group of users of the cohort of users designated to receive the assignment via a plurality of user devices;
generate a plurality of sub-cohorts by dividing the recipient cohort into smaller groups of users, wherein the users in each of the sub-cohorts share a common attribute;
generate sub-cohort data identifying a first data acceptance rate, wherein the sub-cohort data can be generated for each of the sub-cohorts from data of users in that sub-cohort;
generate combined aggregation data characterizing the aggregation as a whole;
generate the updated assignment by removing at least one question from the assignment to match a difficulty of the assignment to a skill level of the recipient cohort; and
provide the updated assignment to the users in one or more of the sub-cohorts.
2. The system of claim 1 , wherein the data of the plurality of data packets comprises data packet user data and data packet metadata.
3. The system of claim 1 , further comprising the plurality of user devices connected to the server via a communication network.
4. The system of claim 1 , wherein the combined aggregation data identifies a second data acceptance rate.
5. The system of claim 4 , wherein the server is further configured to identify the at least one data packet for removal by determining a difference between the second data acceptance rate to the first data acceptance rate to the, and comparing the difference to a threshold.
6. The system of claim 5 , wherein generating the updated assignment further comprises including at least one new data packet in the assignment.
7. The system of claim 6 , wherein the at least one new data packet is selected for inclusion in the updated assignment based on a degree of in minimizing the difference between the second data acceptance rate and the first data acceptance rate.
8. The system of claim 6 , wherein the at least one new data packet is selected for inclusion in the updated assignment based on a degree of optimizing the difference between the second data acceptance rate and the first data acceptance rate.
9. The system of claim 5 , wherein the server is further configured to rank the one or more questions based on degree to which the one or more questions contribute to the difference between the second data acceptance rate to the first data acceptance rate and remove the at least one question contributing the most to the difference.
10. The system of claim 1 , wherein the combined aggregation data identifies a difficulty.
11. A method for generating an updated assignment, the method comprising:
receiving an assignment identifying a plurality of delivery data packets and a plurality of assessment data packets, wherein the plurality of assessment data packets includes at least one question, and wherein the plurality of delivery data packets and the plurality of assessment data packets are stored in a content library database;
receiving with a server data of the plurality of delivery and assessment data packets from the content library database, wherein the data identifies one or several attributes of the delivery data packets and the assessment data packets in the assignment;
identifying with the server a recipient cohort, wherein the recipient cohort comprises a group of users designated to receive the assignment via a plurality of user devices;
generating with the server a plurality of sub-cohorts by dividing the recipient cohort into smaller groups of users, wherein the users in each of the sub-cohorts share a common attribute;
generating sub-cohort data identifying a first data acceptance rate, wherein the sub-cohort data can be generated for each of the sub-cohorts from data of users in that sub-cohort;
generating with the server combined assignment data characterizing the aggregation as a whole;
generating with the server the updated assignment by removing at least one question from the assignment to match a difficulty of the assignment to a skill level of the recipient cohort; and
providing with the server the updated assignment to the users in one or more of the sub-cohorts via the plurality of user devices connected to the server by a communication network.
12. The method of claim 11 , wherein the data comprises data packet user data and data packet metadata.
13. The method of claim 11 , wherein the combined aggregation data identifies a second data acceptance rate.
14. The method of claim 13 , further comprising identifying the at least one data packet for removal by determining a difference between the second data acceptance rate to the first data acceptance rate, and comparing the difference to a threshold.
15. The method of claim 14 , wherein generating the updated assignment further comprises including at least one new data packer in the assignment.
16. The method of claim 15 , wherein the at least one new data packet is selected for inclusion in the updated assignment based on a degree of minimizing the difference between the second data acceptance rate and the first data acceptance rate.
17. The method of claim 15 , wherein the at least one new data packet is selected for inclusion in the updated assignment based on a degree of optimizing the difference between the second data acceptance rate and the first data acceptance rate.
18. The method of claim 14 , further comprising ranking questions of the at least one question based on degree to which the questions contribute to the difference between the second data acceptance rate to the first data acceptance rate and removing the at least one question contributing the most to the difference.
19. The method of claim 11 , wherein the combined assignment data identifies a difficulty.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/927,115 US10218630B2 (en) | 2014-10-30 | 2015-10-29 | System and method for increasing data transmission rates through a content distribution network |
US15/236,103 US10333857B1 (en) | 2014-10-30 | 2016-08-12 | Systems and methods for data packet metadata stabilization |
US15/360,597 US10110486B1 (en) | 2014-10-30 | 2016-11-23 | Automatic determination of initial content difficulty |
US15/360,657 US10116563B1 (en) | 2014-10-30 | 2016-11-23 | System and method for automatically updating data packet metadata |
US15/668,635 US10735402B1 (en) | 2014-10-30 | 2017-08-03 | Systems and method for automated data packet selection and delivery |
US16/121,010 US10965595B1 (en) | 2014-10-30 | 2018-09-04 | Automatic determination of initial content difficulty |
US16/420,938 US11601374B2 (en) | 2014-10-30 | 2019-05-23 | Systems and methods for data packet metadata stabilization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462072910P | 2014-10-30 | 2014-10-30 | |
US14/927,115 US10218630B2 (en) | 2014-10-30 | 2015-10-29 | System and method for increasing data transmission rates through a content distribution network |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/927,170 Continuation-In-Part US10318499B2 (en) | 2014-10-30 | 2015-10-29 | Content database generation |
US14/927,145 Continuation-In-Part US10027740B2 (en) | 2014-10-30 | 2015-10-29 | System and method for increasing data transmission rates through a content distribution network with customized aggregations |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/928,152 Continuation-In-Part US9667321B2 (en) | 2014-10-30 | 2015-10-30 | Predictive recommendation engine |
US15/236,103 Continuation-In-Part US10333857B1 (en) | 2014-10-30 | 2016-08-12 | Systems and methods for data packet metadata stabilization |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160127248A1 US20160127248A1 (en) | 2016-05-05 |
US10218630B2 true US10218630B2 (en) | 2019-02-26 |
Family
ID=55853948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/927,115 Active US10218630B2 (en) | 2014-10-30 | 2015-10-29 | System and method for increasing data transmission rates through a content distribution network |
Country Status (1)
Country | Link |
---|---|
US (1) | US10218630B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10516691B2 (en) | 2013-03-12 | 2019-12-24 | Pearson Education, Inc. | Network based intervention |
US9928383B2 (en) * | 2014-10-30 | 2018-03-27 | Pearson Education, Inc. | Methods and systems for network-based analysis, intervention, and anonymization |
US10735402B1 (en) | 2014-10-30 | 2020-08-04 | Pearson Education, Inc. | Systems and method for automated data packet selection and delivery |
CN107004006A (en) | 2014-10-30 | 2017-08-01 | 培生教育公司 | The generation of content data base |
US10110486B1 (en) | 2014-10-30 | 2018-10-23 | Pearson Education, Inc. | Automatic determination of initial content difficulty |
US10116563B1 (en) | 2014-10-30 | 2018-10-30 | Pearson Education, Inc. | System and method for automatically updating data packet metadata |
US10333857B1 (en) | 2014-10-30 | 2019-06-25 | Pearson Education, Inc. | Systems and methods for data packet metadata stabilization |
US9819760B2 (en) * | 2015-02-03 | 2017-11-14 | Microsoft Technology Licensing, Llc | Method and system for accelerated on-premise content delivery |
US10614368B2 (en) | 2015-08-28 | 2020-04-07 | Pearson Education, Inc. | System and method for content provisioning with dual recommendation engines |
US10043133B2 (en) | 2016-04-08 | 2018-08-07 | Pearson Education, Inc. | Systems and methods of event-based content provisioning |
US10789316B2 (en) | 2016-04-08 | 2020-09-29 | Pearson Education, Inc. | Personalized automatic content aggregation generation |
US10642848B2 (en) | 2016-04-08 | 2020-05-05 | Pearson Education, Inc. | Personalized automatic content aggregation generation |
US11188841B2 (en) | 2016-04-08 | 2021-11-30 | Pearson Education, Inc. | Personalized content distribution |
US11011068B2 (en) * | 2017-03-31 | 2021-05-18 | Pearson Education, Inc. | Systems and methods for automated response data sensing-based next content presentation |
CN115250295A (en) * | 2021-04-26 | 2022-10-28 | 北京字跳网络技术有限公司 | A media content processing method, apparatus, device and storage medium |
US20240257253A1 (en) * | 2023-01-31 | 2024-08-01 | Truist Bank | Computing system for controlling transmission of placement packets to device connected over a communication channel using machine learning |
Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020184020A1 (en) | 2001-03-13 | 2002-12-05 | Nec Corporation | Speech recognition apparatus |
US6772202B2 (en) | 2001-11-28 | 2004-08-03 | Gamespy Industries, Inc. | Queuing system, method and computer program product for network data transfer |
US20050234763A1 (en) | 2004-04-16 | 2005-10-20 | Pinto Stephen K | Predictive model augmentation by variable transformation |
US20060040247A1 (en) | 2004-08-23 | 2006-02-23 | Jonathan Templin | Method for estimating examinee attribute parameters in cognitive diagnosis models |
US20060117077A1 (en) | 2003-05-26 | 2006-06-01 | Harri Kiiveri | Method for identifying a subset of components of a system |
US20060199165A1 (en) | 2005-03-03 | 2006-09-07 | Christopher Crowhurst | Apparatuses, methods and systems to deploy testing facilities on demand |
US20060204040A1 (en) | 2005-03-07 | 2006-09-14 | Freeman William T | Occluding contour detection and storage for digital photography |
US20060212386A1 (en) | 2005-03-15 | 2006-09-21 | Willey Dawn M | Credit scoring method and system |
US20060286533A1 (en) | 2005-02-22 | 2006-12-21 | Hansen Eric G | Method and system for designing adaptive, diagnostic assessments |
US7184844B2 (en) | 2002-12-20 | 2007-02-27 | General Electric Company | Central site architecture for remote service delivery |
US7240235B2 (en) | 2002-03-13 | 2007-07-03 | Intel Corporation | Journaling technique for write transactions to mass storage |
US20070172808A1 (en) | 2006-01-26 | 2007-07-26 | Let's Go Learn, Inc. | Adaptive diagnostic assessment engine |
US20080015793A1 (en) | 2006-05-25 | 2008-01-17 | Shahar Ben-Menahem | Analyzing Information Gathered Using Multiple Analytical Techniques |
US20080319829A1 (en) | 2004-02-20 | 2008-12-25 | Herbert Dennis Hunt | Bias reduction using data fusion of household panel data and transaction data |
US20090037398A1 (en) | 2001-06-29 | 2009-02-05 | Microsoft Corporation | System and methods for inferring informational goals and preferred level of detail of answers |
US20090268830A1 (en) | 2006-05-18 | 2009-10-29 | Koninklijke Philips Electronics, N.V. | System and method for detecting temporarily unused bandwidth in the rf spectrum |
WO2009149262A1 (en) | 2008-06-04 | 2009-12-10 | Us Biomedical Information Systems, Inc. | Methods and systems for creating and editing a graph data structure |
US20100010878A1 (en) | 2004-04-16 | 2010-01-14 | Fortelligent, Inc. | Predictive model development |
US7653739B1 (en) | 2007-04-27 | 2010-01-26 | Hewlett-Packard Development Company, L.P. | Controlling transfer of access to data |
US20100120422A1 (en) | 2005-06-28 | 2010-05-13 | Microsoft Corporation | Positioning service utilizing existing radio base stations |
US20100190142A1 (en) | 2009-01-28 | 2010-07-29 | Time To Know Ltd. | Device, system, and method of automatic assessment of pedagogic parameters |
US20110087877A1 (en) | 2009-10-08 | 2011-04-14 | Compriva Communications Privacy Solutions, Inc. | System, device and method for securely transferring data across a network |
US20110283355A1 (en) | 2010-05-12 | 2011-11-17 | Microsoft Corporation | Edge computing platform for delivery of rich internet applications |
US20120130515A1 (en) | 2009-05-01 | 2012-05-24 | Homsi Kristopher L | Athletic performance rating system |
US20120130514A1 (en) | 2009-04-16 | 2012-05-24 | Nike International Ltd. | Athletic performance rating system |
US8249868B2 (en) | 2010-06-14 | 2012-08-21 | Google Inc. | Speech and noise models for speech recognition |
US20120265783A1 (en) | 2007-03-16 | 2012-10-18 | Expanse Networks, Inc. | Attribute Method and System |
US20130163837A1 (en) | 2010-03-31 | 2013-06-27 | Isis Innovation Limited | System and Method for Image Sequence Processing |
US20130226839A1 (en) | 2012-02-27 | 2013-08-29 | Xerox Corporation | Robust bayesian matrix factorization and recommender systems using same |
US20130266925A1 (en) | 2012-01-30 | 2013-10-10 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Embedded Conversational Agent-Based Kiosk for Automated Interviewing |
US20130288222A1 (en) * | 2012-04-27 | 2013-10-31 | E. Webb Stacy | Systems and methods to customize student instruction |
US20140141888A1 (en) | 2012-10-16 | 2014-05-22 | Plaor, Inc. | Methods and Systems for Using Mini-Games to Form a Hierarchical Social Network |
US20140157371A1 (en) * | 2012-12-05 | 2014-06-05 | Chegg, Inc. | Authenticated Access to Accredited Testing Services |
US20150134694A1 (en) | 2011-09-06 | 2015-05-14 | Shl Group Ltd | Analytics |
US9043433B2 (en) | 2010-07-26 | 2015-05-26 | Seven Networks, Inc. | Mobile network traffic coordination across multiple applications |
US20150269941A1 (en) | 2014-03-21 | 2015-09-24 | Wells Fargo Bank, N.A. | Fraud detection |
US20150317582A1 (en) | 2014-05-01 | 2015-11-05 | Microsoft Corporation | Optimizing task recommendations in context-aware mobile crowdsourcing |
US20150316383A1 (en) | 2012-12-03 | 2015-11-05 | Navisens, Inc. | Systems and methods for estimating the motion of an object |
US20150332372A1 (en) | 2014-05-19 | 2015-11-19 | Baynote, Inc. | System and Method for Context-Aware Recommendation through User Activity Change Detection |
US20150347508A1 (en) | 2014-06-02 | 2015-12-03 | Microsoft Corporation | Partial result classification |
US20150356420A1 (en) | 2014-06-04 | 2015-12-10 | International Business Machines Corporation | Rating Difficulty of Questions |
US20160127010A1 (en) | 2014-10-31 | 2016-05-05 | Pearson Education, Inc. | Predictive recommendation engine |
US20160180733A1 (en) | 2014-12-18 | 2016-06-23 | Christopher P. Foley, JR. | Systems and methods for testing, evaluating and providing feedback to students |
US20160247411A1 (en) * | 2013-10-16 | 2016-08-25 | Abdo Shabah Md Inc. | System and method for learning |
US20170004269A1 (en) | 2015-06-30 | 2017-01-05 | BWW Holdings, Ltd. | Systems and methods for estimating mental health assessment results |
-
2015
- 2015-10-29 US US14/927,115 patent/US10218630B2/en active Active
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020184020A1 (en) | 2001-03-13 | 2002-12-05 | Nec Corporation | Speech recognition apparatus |
US20090037398A1 (en) | 2001-06-29 | 2009-02-05 | Microsoft Corporation | System and methods for inferring informational goals and preferred level of detail of answers |
US6772202B2 (en) | 2001-11-28 | 2004-08-03 | Gamespy Industries, Inc. | Queuing system, method and computer program product for network data transfer |
US7240235B2 (en) | 2002-03-13 | 2007-07-03 | Intel Corporation | Journaling technique for write transactions to mass storage |
US7184844B2 (en) | 2002-12-20 | 2007-02-27 | General Electric Company | Central site architecture for remote service delivery |
US20060117077A1 (en) | 2003-05-26 | 2006-06-01 | Harri Kiiveri | Method for identifying a subset of components of a system |
US20080319829A1 (en) | 2004-02-20 | 2008-12-25 | Herbert Dennis Hunt | Bias reduction using data fusion of household panel data and transaction data |
US20100010878A1 (en) | 2004-04-16 | 2010-01-14 | Fortelligent, Inc. | Predictive model development |
US20050234763A1 (en) | 2004-04-16 | 2005-10-20 | Pinto Stephen K | Predictive model augmentation by variable transformation |
US8550822B2 (en) | 2004-08-23 | 2013-10-08 | Educational Testing Service | Method for estimating examinee attribute parameters in cognitive diagnosis models |
US20060040247A1 (en) | 2004-08-23 | 2006-02-23 | Jonathan Templin | Method for estimating examinee attribute parameters in cognitive diagnosis models |
US7828552B2 (en) | 2005-02-22 | 2010-11-09 | Educational Testing Service | Method and system for designing adaptive, diagnostic assessments |
US20060286533A1 (en) | 2005-02-22 | 2006-12-21 | Hansen Eric G | Method and system for designing adaptive, diagnostic assessments |
US20060199165A1 (en) | 2005-03-03 | 2006-09-07 | Christopher Crowhurst | Apparatuses, methods and systems to deploy testing facilities on demand |
US20060204040A1 (en) | 2005-03-07 | 2006-09-14 | Freeman William T | Occluding contour detection and storage for digital photography |
US20060212386A1 (en) | 2005-03-15 | 2006-09-21 | Willey Dawn M | Credit scoring method and system |
US20100120422A1 (en) | 2005-06-28 | 2010-05-13 | Microsoft Corporation | Positioning service utilizing existing radio base stations |
US20070172808A1 (en) | 2006-01-26 | 2007-07-26 | Let's Go Learn, Inc. | Adaptive diagnostic assessment engine |
US20090268830A1 (en) | 2006-05-18 | 2009-10-29 | Koninklijke Philips Electronics, N.V. | System and method for detecting temporarily unused bandwidth in the rf spectrum |
US20080015793A1 (en) | 2006-05-25 | 2008-01-17 | Shahar Ben-Menahem | Analyzing Information Gathered Using Multiple Analytical Techniques |
US20120265783A1 (en) | 2007-03-16 | 2012-10-18 | Expanse Networks, Inc. | Attribute Method and System |
US7653739B1 (en) | 2007-04-27 | 2010-01-26 | Hewlett-Packard Development Company, L.P. | Controlling transfer of access to data |
WO2009149262A1 (en) | 2008-06-04 | 2009-12-10 | Us Biomedical Information Systems, Inc. | Methods and systems for creating and editing a graph data structure |
US20100190142A1 (en) | 2009-01-28 | 2010-07-29 | Time To Know Ltd. | Device, system, and method of automatic assessment of pedagogic parameters |
US20120130514A1 (en) | 2009-04-16 | 2012-05-24 | Nike International Ltd. | Athletic performance rating system |
US20120130515A1 (en) | 2009-05-01 | 2012-05-24 | Homsi Kristopher L | Athletic performance rating system |
US20110087877A1 (en) | 2009-10-08 | 2011-04-14 | Compriva Communications Privacy Solutions, Inc. | System, device and method for securely transferring data across a network |
US20130163837A1 (en) | 2010-03-31 | 2013-06-27 | Isis Innovation Limited | System and Method for Image Sequence Processing |
US20110283355A1 (en) | 2010-05-12 | 2011-11-17 | Microsoft Corporation | Edge computing platform for delivery of rich internet applications |
US8249868B2 (en) | 2010-06-14 | 2012-08-21 | Google Inc. | Speech and noise models for speech recognition |
US8666740B2 (en) | 2010-06-14 | 2014-03-04 | Google Inc. | Speech and noise models for speech recognition |
US9043433B2 (en) | 2010-07-26 | 2015-05-26 | Seven Networks, Inc. | Mobile network traffic coordination across multiple applications |
US20150134694A1 (en) | 2011-09-06 | 2015-05-14 | Shl Group Ltd | Analytics |
US20130266925A1 (en) | 2012-01-30 | 2013-10-10 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Embedded Conversational Agent-Based Kiosk for Automated Interviewing |
US20130226839A1 (en) | 2012-02-27 | 2013-08-29 | Xerox Corporation | Robust bayesian matrix factorization and recommender systems using same |
US20130288222A1 (en) * | 2012-04-27 | 2013-10-31 | E. Webb Stacy | Systems and methods to customize student instruction |
US20140141888A1 (en) | 2012-10-16 | 2014-05-22 | Plaor, Inc. | Methods and Systems for Using Mini-Games to Form a Hierarchical Social Network |
US20150316383A1 (en) | 2012-12-03 | 2015-11-05 | Navisens, Inc. | Systems and methods for estimating the motion of an object |
US20140157371A1 (en) * | 2012-12-05 | 2014-06-05 | Chegg, Inc. | Authenticated Access to Accredited Testing Services |
US20160247411A1 (en) * | 2013-10-16 | 2016-08-25 | Abdo Shabah Md Inc. | System and method for learning |
US20150269941A1 (en) | 2014-03-21 | 2015-09-24 | Wells Fargo Bank, N.A. | Fraud detection |
US20150317582A1 (en) | 2014-05-01 | 2015-11-05 | Microsoft Corporation | Optimizing task recommendations in context-aware mobile crowdsourcing |
US20150332372A1 (en) | 2014-05-19 | 2015-11-19 | Baynote, Inc. | System and Method for Context-Aware Recommendation through User Activity Change Detection |
US20150347508A1 (en) | 2014-06-02 | 2015-12-03 | Microsoft Corporation | Partial result classification |
US20150356420A1 (en) | 2014-06-04 | 2015-12-10 | International Business Machines Corporation | Rating Difficulty of Questions |
US20160127010A1 (en) | 2014-10-31 | 2016-05-05 | Pearson Education, Inc. | Predictive recommendation engine |
US20160180733A1 (en) | 2014-12-18 | 2016-06-23 | Christopher P. Foley, JR. | Systems and methods for testing, evaluating and providing feedback to students |
US9805615B2 (en) | 2014-12-18 | 2017-10-31 | Christopher P. Foley, JR. | Systems and methods for testing, evaluating and providing feedback to students |
US20180005541A1 (en) | 2014-12-18 | 2018-01-04 | Christopher P. Foley, JR. | Systems and methods for testing, evaluating and providing feedback to students |
US20170004269A1 (en) | 2015-06-30 | 2017-01-05 | BWW Holdings, Ltd. | Systems and methods for estimating mental health assessment results |
Non-Patent Citations (1)
Title |
---|
International Search Report and Written Opinion dated Feb. 23, 2016, for International Application No. PCT/US2015/058467, 12 pages. |
Also Published As
Publication number | Publication date |
---|---|
US20160127248A1 (en) | 2016-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10290223B2 (en) | Predictive recommendation engine | |
US10218630B2 (en) | System and method for increasing data transmission rates through a content distribution network | |
US11372709B2 (en) | Automated testing error assessment system | |
US10027740B2 (en) | System and method for increasing data transmission rates through a content distribution network with customized aggregations | |
US10318499B2 (en) | Content database generation | |
US10938738B2 (en) | Resource allocation in distributed processing systems | |
US11238375B2 (en) | Data-enabled success and progression system | |
US10713225B2 (en) | Content database generation | |
US10516691B2 (en) | Network based intervention | |
US20150243180A1 (en) | Dynamic content manipulation engine | |
US20170005868A1 (en) | Automated network generation | |
US20160358495A1 (en) | Content refinement evaluation triggering | |
US20200211407A1 (en) | Content refinement evaluation triggering | |
US9911353B2 (en) | Dynamic content manipulation engine | |
US10868738B2 (en) | Method and system for automated multidimensional assessment generation and delivery | |
US11042571B2 (en) | Data redundancy maximization tool | |
US12027069B2 (en) | Method and system for automated multidimensional content selection and presentation | |
US10540601B2 (en) | System and method for automated Bayesian network-based intervention delivery | |
US20160364821A1 (en) | Forward-pruning depth-first recursion | |
US20190019097A1 (en) | Method and system for bayesian network-based standard or skill mastery determination using a collection of interim assessments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PEARSON EDUCATION, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GONZALEZ BRENES, JOSE PABLO;REEL/FRAME:037252/0498 Effective date: 20151207 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |