JPH11296598A - System and method for predicting blood-sugar level and record medium where same method is recorded - Google Patents
System and method for predicting blood-sugar level and record medium where same method is recordedInfo
- Publication number
- JPH11296598A JPH11296598A JP9378398A JP9378398A JPH11296598A JP H11296598 A JPH11296598 A JP H11296598A JP 9378398 A JP9378398 A JP 9378398A JP 9378398 A JP9378398 A JP 9378398A JP H11296598 A JPH11296598 A JP H11296598A
- Authority
- JP
- Japan
- Prior art keywords
- data
- blood glucose
- glucose level
- time
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 239000008280 blood Substances 0.000 claims abstract description 235
- 210000004369 blood Anatomy 0.000 claims abstract description 226
- 238000005259 measurement Methods 0.000 claims abstract description 45
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 158
- 239000008103 glucose Substances 0.000 claims description 158
- 239000013598 vector Substances 0.000 claims description 114
- 238000013500 data storage Methods 0.000 claims description 3
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 abstract description 114
- 102000004877 Insulin Human genes 0.000 abstract description 57
- 108090001061 Insulin Proteins 0.000 abstract description 57
- 229940125396 insulin Drugs 0.000 abstract description 57
- 206010012601 diabetes mellitus Diseases 0.000 abstract description 19
- 230000006870 function Effects 0.000 description 20
- 238000005183 dynamical system Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 10
- 230000000739 chaotic effect Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 230000036962 time dependent Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 4
- 230000002641 glycemic effect Effects 0.000 description 4
- 230000003914 insulin secretion Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 101100508406 Caenorhabditis elegans ifa-1 gene Proteins 0.000 description 3
- 101100508408 Caenorhabditis elegans ifa-3 gene Proteins 0.000 description 3
- 101100508407 Caenorhabditis elegans mua-6 gene Proteins 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 208000013016 Hypoglycemia Diseases 0.000 description 2
- 101100321409 Rattus norvegicus Zdhhc23 gene Proteins 0.000 description 2
- 238000005311 autocorrelation function Methods 0.000 description 2
- 238000005291 chaos (dynamical) Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Artificial Intelligence (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Physiology (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Business, Economics & Management (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、糖尿病患者の血糖
値変化をコンピュータ処理によって予測する血糖値の予
測方法及び予測システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for predicting a blood sugar level of a diabetic patient by computer processing.
【0002】[0002]
【従来の技術】糖尿病患者の治療には、患者の血糖値を
基にインスリンの投与量を調整することが行われてい
る。血糖値管理には、患者自身又は医師が血糖値を測定
するのみとするオープンサークルでなされているか、血
糖値測定データを基に医師の感で1カ月か2週間に1回
の割合でインスリン投与量を調整するフィードバック法
が採られている。また、インスリン投与量は、インスリ
ンスケールを取り決め、日毎に調整することもある。2. Description of the Related Art In the treatment of a diabetic patient, the dosage of insulin is adjusted based on the blood sugar level of the patient. Blood glucose management is performed in an open circle in which the patient or the physician only measures the blood glucose level, or insulin is administered once a month or two weeks with the feeling of the physician based on the blood glucose measurement data. A feedback method of adjusting the amount is employed. Also, the insulin dose may be adjusted on a daily basis by negotiating an insulin scale.
【0003】[0003]
【発明が解決しようとする課題】糖尿病患者に対する医
師のインスリン療法の処置は、以下のいずれかにされて
いる。The treatment of a physician for insulin therapy for a diabetic patient is one of the following.
【0004】(1)血糖値測定データを基に、医師の経
験と感により月2回程度の周期でインスリン投与量を決
定する。(1) Based on the blood sugar level measurement data, an insulin dose is determined about twice a month based on the experience and feeling of a doctor.
【0005】(2)血糖値に対するインスリン投与量を
定めておき、このスケールに基づいて1〜3回/日で行
う。[0005] (2) An insulin dose for a blood glucose level is determined, and the test is performed once to three times a day based on this scale.
【0006】これら処置方法では、血糖値のコントロー
ルは、タイムラグの大きなフィードバックを伴うため血
糖値変化が不安定になる恐れがある。例えば、血糖値の
平均値を低下させるためにインスリン投与量を増加させ
ると、低血糖を招くことがある。逆に、インスリン投与
量を減らすと、血糖値が高くなり過ぎることがある。[0006] In these treatment methods, the control of the blood sugar level involves feedback with a large time lag, so that the blood sugar level change may become unstable. For example, increasing the insulin dose to lower the average blood glucose level may result in hypoglycemia. Conversely, reducing the insulin dose can cause blood sugar levels to be too high.
【0007】このような事情から、血糖値の測定データ
を基に、血糖値の適切なコントロール効果を得るための
インスリン投与量を決定するには、タイムラグのない血
糖値コントロールにより、血糖値の日毎の変化を小さく
しながら長期的には適正な範囲に収めることが要望され
る。[0007] Under such circumstances, in order to determine an insulin dose for obtaining an appropriate blood sugar level control effect based on blood sugar level measurement data, blood glucose level control without a time lag requires daily measurement of blood glucose level. It is demanded to keep the change within a proper range in the long term while minimizing the change in the temperature.
【0008】本発明の目的は、医師が適正なインスリン
投与量を決定するための支援情報がタイムラグ無しに得
られるよう、血糖値の測定データを基に日毎の血糖値を
予測できるようにした血糖値予測システム及び血糖値予
測方法並びにその方法を記録した記録媒体を提供するこ
とにある。[0008] An object of the present invention is to provide a blood glucose level that can predict a daily blood glucose level based on blood glucose level measurement data so that a doctor can obtain support information for determining an appropriate insulin dose without a time lag. It is an object of the present invention to provide a value prediction system, a blood glucose level prediction method, and a recording medium on which the method is recorded.
【0009】[0009]
【課題を解決するための手段】本発明は、血糖コントロ
ールの不安定性について分析し、これに基づいて血糖値
の経時的振る舞いにカオス現象の存在を解明し、局所フ
ァジィ再構成法により現在の血糖値から近未来(明日以
降)の血糖値を予測できるようにしたものである。これ
ら事項を以下に説明する。なお、局所ファジィ再構成法
による近未来の予測については、本願発明者等は、既に
提案している(特開平7−239838号公報)。DISCLOSURE OF THE INVENTION The present invention analyzes the instability of blood glucose control, elucidates the existence of chaos in the behavior of blood glucose over time based on this analysis, and uses the local fuzzy reconstruction method to analyze the current blood glucose. The blood sugar level in the near future (after tomorrow) can be predicted from the value. These matters will be described below. The near future prediction by the local fuzzy reconstruction method has already been proposed by the present inventors (Japanese Patent Laid-Open No. 7-239838).
【0010】(血糖値の経時的振る舞いとカオス現象)
血糖値データの解析対象とした糖尿病患者は、インスリ
ン依存型(IDDM)5症例、非依存型(NIDDM)
5症例である。これら患者の最短1年半から最長10年
に及び1日間隔の時系列測定データを対象とした。図2
は、良好な血糖コントロールを示す1つのNIDDM症
例と2つのIDDM症例の時系列データの一部を示す。(Time-dependent behavior of blood sugar level and chaos phenomenon)
Diabetes patients whose blood glucose data were analyzed were insulin-dependent (IDDM) 5 cases and non-dependent (NIDDM)
Five cases. The time series measurement data of these patients for a minimum of one and a half years to a maximum of ten years was measured at daily intervals. FIG.
Shows part of the time-series data of one NIDDM case and two IDDM cases showing good glycemic control.
【0011】臨床的にコントロールの指標として用いら
れるのは、HbA1Cの%であるが、これは臨床的には大
まかに過去1〜2カ月の血糖コントロール状態の平均を
示すとされている。図2のデータになる症例1はHbA
1Cが5〜6%、症例2はHbA1Cが5〜6%、症例3は
HbA1Cが9〜10%で、経過中コントロール状態がほ
ぼ一定していた。The percentage of HbA 1C that is used clinically as a control index is the clinically approximated average of glycemic control over the past 1-2 months. Case 1 which becomes the data of FIG. 2 is HbA
1C was 5-6%, Case 2 was 5-6% HbA 1C , Case 3 was 9-10% HbA 1C , and the control state was almost constant during the course.
【0012】症例1は、インスリン非依存型糖尿病で内
因性インスリン分泌を介して血糖調節機能が不十分なが
ら残存していると考えられる。症例2及び3は、インス
リン依存型糖尿病でインスリン分泌能が0に近く、内因
性インスリンによる血糖調節機能が0に近いと考えられ
る。Case 1 is considered to be non-insulin-dependent diabetes mellitus, and the blood glucose control function via the endogenous insulin secretion is insufficient but remaining. Cases 2 and 3 are considered to have insulin-dependent diabetes with insulin secretion capacity close to 0 and blood sugar regulation function by endogenous insulin close to 0.
【0013】これら3つの症例のデータをFFT(Fa
stFourierTransform)でスペクトル
解析を行うと、広い帯域で周波数成分が現れていた。ま
た、自己相関関数をとると、時間の増大とともにほぼ0
に収束した。また、最大リヤプノフ指数は正であり、3
つの症例はカオス性を示していた。[0013] The data of these three cases was converted to FFT (Fa
When spectrum analysis was performed using (stFourierTransform), frequency components appeared in a wide band. In addition, when the autocorrelation function is taken, almost 0
Converged. The maximum Lyapunov exponent is positive and 3
One case was chaotic.
【0014】次に、この3つの症例について3次元空間
上に射影されたアトラクタを図3に示す。アトラクタ
は、症例1では円柱状、症例2では三角錐状、症例3で
は球状を示している。各フラクタル次元は、症例1が
2.27に対して、症例2では2.73、さらに症例3で
は3.54となり、アトラクタの形状が複雑化するにつ
れてフラクタル次元が増大することを示している。Next, the attractors projected onto the three-dimensional space for these three cases are shown in FIG. The attractor shows a columnar shape in Case 1, a triangular pyramid shape in Case 2, and a spherical shape in Case 3. Each fractal dimension is 2.27 in case 1, 2.73 in case 2, and 3.54 in case 3, indicating that the fractal dimension increases as the shape of the attractor becomes more complicated.
【0015】これら3つの症例は、HbA1Cによるコン
トロールレベルの評価で症例1の円柱と症例2の三角錐
は良好(good control)で同じ程度であ
り、そのアトラクタの形状の差異はIDDMとNIDD
Mの自己血糖調節能力差に起因していると思われる。In these three cases, the cylinder of case 1 and the triangular pyramid of case 2 were good and the same degree in the evaluation of the control level by HbA 1C , and the attractors differed in shape between IDDM and NIDD.
This is probably due to the difference in M's ability to regulate blood sugar.
【0016】症例2の三角錐と症例3の球ではどちらも
IDDMであり、同様の持続インスリン皮下注入療法
(CSII)にてコントロールしており、コントロール
レベルが良好(good control)対不十分
(poor control)と異なっていた。Both the pyramidal pyramid of Case 2 and the sphere of Case 3 are IDDM and are controlled by the same continuous insulin subcutaneous infusion therapy (CSII), and the control level is good (good control) or insufficient (poor). control).
【0017】他のすべてのDM症例に関しても同様の検
討を行ったがすべての症例がカオスを示し、アトラクタ
形状はこの3種のいずれかあるいは混合した形状であっ
た。The same examination was performed for all other DM cases, but all cases showed chaos, and the attractor shape was any one of these three types or a mixed shape.
【0018】この3つの形のアトラクタもデータ数を変
化させ、いろいろな方向から観測すると、実際は図4に
示すようなスパイラル形状を基本とし、このスパイラル
がおそらく3つか4つの少数のパラメータとノイズによ
って三角錐や円柱、球等に形を変えるものと考えられ
る。These three types of attractors also change the number of data, and when observed from various directions, are actually based on a spiral shape as shown in FIG. 4, and this spiral is probably based on three or four small parameters and noise. It is thought to change into a triangular pyramid, cylinder, sphere, etc.
【0019】なお、そのパラメータは内因性インスリン
を介した血糖コントロール能力の残存やコントロールレ
ベルに存在していることが他の多くの症例からも推測さ
れた。It has been inferred from many other cases that the parameters are present in the residual or control level of the ability to control blood glucose through endogenous insulin.
【0020】以上のように、糖尿病患者の血糖値の経時
的振る舞いは、一見では不規則な現象、つまり偶然性に
支配された非決定論的な現象に見えるが、決定論的にそ
の挙動を決定できる現象、つまり決定論的カオス現象で
あることを解明することができた。As described above, the time-dependent behavior of the blood glucose level of a diabetic patient appears at first glance to be an irregular phenomenon, that is, a nondeterministic phenomenon governed by chance, but its behavior can be determined deterministically. I was able to elucidate the phenomenon, a deterministic chaotic phenomenon.
【0021】(局所再構成法による血糖値の予測)決定
論的カオス現象では、非線形な決定論的規則性を推定で
きれば、ある時点の観測データからカオスの「初期値に
対する鋭敏な依存性」により、決定論的因果性を失うま
での近未来のデータを予測することが可能となる。(Prediction of Blood Sugar Level by Local Reconstruction Method) In the deterministic chaos phenomenon, if nonlinear deterministic regularity can be estimated, the "sensitive sensitivity to the initial value" of chaos is obtained from observation data at a certain point in time. Thus, it is possible to predict data in the near future until losing deterministic causality.
【0022】このような決定論的カオス現象に対する近
未来の予測は、「1本の観測時系列データから、元の力
学系の状態空間とアトラクタを再構成する」というタケ
ンスの理論に基づいている。この理論の概要は、以下の
通りである。The near future prediction for such a deterministic chaotic phenomenon is based on Takens' theory that "the state space and attractors of the original dynamical system are reconstructed from one observation time series data". . The outline of this theory is as follows.
【0023】観測されたある時系列データy(t)か
ら、ベクトル(y(t),y(t−τ),y(t−2
τ),y(t−(n−1)τ)をつくる(τは遅れ時
間)。このベクトルは、n次元再構成状態空間Rnの一
点を示すことになる。From the observed time series data y (t), vectors (y (t), y (t−τ), y (t−2)
τ), y (t− (n−1) τ) (where τ is the delay time). This vector would indicate a point n-dimensional reconstructed state space R n.
【0024】したがって、tを変化させると、このn次
元再構成状態空間に軌道を描くことができる。もしも、
対象システムが決定論的力学系であって、観測時系列デ
ータがこの力学系の状態空間から一次元ユークリッド空
間RへのC1連続写像に対応した観測系を介して得られ
たものと仮定すれば、この再構成軌道は、nを十分大き
くとれば、元の決定論系の埋め込み(embeddin
g)になっている。Therefore, by changing t, a trajectory can be drawn in this n-dimensional reconstructed state space. If,
A target system deterministic dynamical system, the observed time series data assuming that obtained through the observation system corresponding to C 1 continuous function from the state space of the dynamical system into a one-dimensional Euclidean space R For this reconstruction trajectory, if n is sufficiently large, the embedding of the original deterministic system (embeddin
g).
【0025】つまり、力学系に何らかのアトラクタが現
れているならば、再構成状態空間にはこのアトラクタの
位相構造を保存したアトラクタが再現されることにな
る。nは通常「埋め込み次元」と呼ばれるが、再構成の
操作が「埋め込み」であるためには、この次元nは元の
力学系の状態空間の次元をmとしたとき、下記の式が成
立すれば十分であることが証明されている。That is, if any attractor appears in the dynamical system, an attractor that preserves the phase structure of the attractor is reproduced in the reconstructed state space. n is usually referred to as “embedded dimension”. In order for the reconstruction operation to be “embedded”, when the dimension of the state space of the original dynamical system is m, the following equation is satisfied. Has proven to be sufficient.
【0026】[0026]
【数1】n≧2m+1 但し、これは十分条件であって、データによっては2m
+1未満でも埋め込みである場合がある。さらに、n>
2d(但し、dは元の力学系のアトラクタのボックスカ
ウント次元)であれば、再構成の操作が1対1写像であ
ることも示されている。## EQU1 ## However, this is a sufficient condition, and depending on data, 2 m
Embedding may be performed even if the value is less than +1. Further, n>
If 2d (where d is the box count dimension of the attractor of the original dynamical system), it is also shown that the reconstruction operation is a one-to-one mapping.
【0027】前記のように、血糖値の変化が決定論的カ
オス現象であることから、血糖値の時系列データをタケ
ンスの埋め込み定理に基づいて、再構成状態空間とアト
ラクタの再構成を行い、さらにこのアトラクタを基に近
未来の血糖値を予測できることになる。As described above, since the change in the blood sugar level is a deterministic chaotic phenomenon, the time series data of the blood sugar level is reconstructed on the basis of the Taken's embedding theorem and the reconstruction state space and the attractor. Further, it is possible to predict the blood sugar level in the near future based on this attractor.
【0028】具体的には、図5の(a)に示すように、
等サンプリング間隔で観測された血糖値の時系列データ
y(t)を、タケンスの埋め込み定理を用いて埋め込み
次元n、遅れ時間τでn次元の状態空間に埋め込むとい
う再構成を行い、次式のベクトルが得られる。More specifically, as shown in FIG.
Reconstruction is performed by embedding the time-series data y (t) of the blood glucose level observed at equal sampling intervals into an n-dimensional state space with an embedding dimension n and a delay time τ using Takens' embedding theorem. The vector is obtained.
【0029】[0029]
【数2】x(t)=(y(t),y(t−τ),…,y
(t−(n−1)τ) 但し、t=((n−1)τ+1)〜Y Y:時系列データy(t)のデータ数 この操作を多数のy(t)データに対し繰り返し行う
と、n次元再構成状態空間に有限個数のデータベクトル
からなるなめらかな多様体を構成することができる。図
5の(b)は、3次元再構成状態空間へ埋め込んだ場合
のアトラクタの軌道を示す。X (t) = (y (t), y (t−τ),..., Y
(T− (n−1) τ) where t = ((n−1) τ + 1) to YY: the number of time-series data y (t) This operation is repeated for a large number of y (t) data. And a smooth manifold consisting of a finite number of data vectors in the n-dimensional reconstructed state space. FIG. 5B shows the trajectory of the attractor when embedded in the three-dimensional reconstruction state space.
【0030】このアトラクタの軌道について、最新に計
測された血糖値の時系列データを含むデータベクトル
と、その近傍のデータベクトルの軌道を用いて現時点の
データベクトルの近未来の軌道を推定し、sステップ先
のデータベクトルを求めることができる。つまり、現時
点の血糖値データベクトルとその近傍データベクトルか
ら、現時点の血糖値データから近未来(明日以降)の血
糖値の予測値を求めることができる。これが局所再構成
になる。With respect to the trajectory of this attractor, the near future trajectory of the current data vector is estimated by using the data vector including the time series data of the blood glucose level measured most recently and the trajectory of the data vector in the vicinity thereof. The data vector at the step destination can be obtained. That is, from the current blood glucose level data vector and its neighboring data vector, a predicted value of the blood glucose level in the near future (after tomorrow) can be obtained from the current blood glucose level data. This is a local reconstruction.
【0031】すなわち、図6に示すように、最新のデー
タによって得られたデータベクトルz(T)をn次元再
構成状態空間にプロットし、その近傍のデータベクトル
をx(i)とすると、これらのデータx(i)は過去の
データであるため、sステップ先の状態x(i+s)は
既知である。これを利用し、現時点のデータベクトルz
(T)のsステップ先の予測値z(T+s)を予測する
ことができる。そして、予測値z(T+s)から元の時
系列データのsステップ先の予測値y(t+s)を求め
ることができる。That is, as shown in FIG. 6, a data vector z (T) obtained by the latest data is plotted in an n-dimensional reconstructed state space, and a data vector in the vicinity thereof is x (i). Since the data x (i) is past data, the state x (i + s) s steps ahead is known. Using this, the current data vector z
A predicted value z (T + s) s steps ahead of (T) can be predicted. Then, a predicted value y (t + s) s steps ahead of the original time-series data can be obtained from the predicted value z (T + s).
【0032】(局所ファジィ再構成法による血糖値の予
測)前記の局所再構成法による予測において、状態x
(i)のsステップ後の状態x(i+s)への変化は、
決定論に従ったダイナミクスに基づいていると考えられ
る。そして、このダイナミクスはx(i)とx(i+
s)を用いて次のように言語的表現で表すことができ
る。但し、i∈N(z(T))、N(z(T))はz
(T)の近傍x(i)のインデックスiの集合。(Prediction of blood glucose level by local fuzzy reconstruction method) In the prediction by the local reconstruction method, the state x
The change to the state x (i + s) after s steps of (i) is
It is thought to be based on deterministic dynamics. The dynamics are x (i) and x (i +
Using s), it can be expressed in a linguistic expression as follows. Where i∈N (z (T)) and N (z (T)) are z
A set of indices i of neighborhood x (i) of (T).
【0033】[0033]
【数3】 x(T):n次元再構成状態空間におけるz(T)の近
傍のデータベクトルを表す集合 x(T+s):x(T)のsステップ後のデータベクト
ルを表す集合 x(i)はz(T)の近傍のデータベクトルであるから、ス
テップsがカオスの「初期値に対する鋭敏な依存性」に
より、決定論的因果性を失う以前であれば、状態z(T)
から状態z(T+s)のダイナミクスを、状態x(i)から状
態x(i+s)のダイナミクスと近似的に等価であると仮定
することができる。(Equation 3) x (T): a set representing data vectors near z (T) in the n-dimensional reconstructed state space x (T + s): a set representing data vectors after s steps of x (T) x (i) is z ( Since the data vector is in the vicinity of T), if the step s is before the loss of deterministic causality due to the "sensitive dependence on the initial value" of chaos, the state z (T)
From, it can be assumed that the dynamics of state z (T + s) are approximately equivalent to the dynamics of states x (i) through x (i + s).
【0034】n次元再構成状態空間に埋め込まれたアト
ラクタが、なめらかな多様体であるとき、z(T)からz
(T+s)へのベクトル距離は、z(T)からx(i)へのベク
トル距離によって影響される。すなわち、z(T)から近
いx(i)の軌道ほどz(T)からz(T+s)への軌道におよ
ぼす影響が大きく、遠いほどその影響が小さいと考える
ことができる。When the attractor embedded in the n-dimensional reconstructed state space is a smooth manifold, z (T) to z
The vector distance to (T + s) is affected by the vector distance from z (T) to x (i). In other words, it can be considered that the closer to the trajectory of x (i) from z (T), the larger the effect on the trajectory from z (T) to z (T + s), and the farther the trajectory is, the smaller the effect.
【0035】ところで、By the way,
【0036】[0036]
【数4】 x(i)=(y(i), y(i−τ),…,y(i−(n−1)τ)) x(i+s)=(y(i+s), y(i+s−τ),…,y(i+s−(n−1τ)) …(1) であるので、n次元再構成状態空間におけるj軸に注目
すると式(1)は、X (i) = (y (i), y (i−τ),..., Y (i− (n−1) τ)) x (i + s) = (y (i + s), y (i + s) −τ),..., Y (i + s− (n−1τ)) (1) Therefore, focusing on the j-axis in the n-dimensional reconstructed state space, the expression (1) becomes
【0037】[0037]
【数5】 IF aj(T) is yj(i) THEN aj(T+s) is y(i+s) (j=1〜n) …(2) ここで、 aj(T):z(T)の近傍値x(i)のn次元再構成状態空間
におけるj軸成分 aj(T+s):x(i+s)のn次元再構成状態空間におけ
るj軸成分 n:埋め込み次元数 と表すことができる。## EQU00005 ## IF aj (T) is yj (i) THEN aj (T + s) is y (i + s) (j = 1 to n) (2) where aj (T): a neighborhood value of z (T) The j-axis component of x (i) in the n-dimensional reconstruction state space aj (T + s): the j-axis component of x (i + s) in the n-dimensional reconstruction state space n: embedding dimension number
【0038】また、z(T)からz(T+s)への軌道は、
z(T)からx(i)へのベクトル距離によって影響される
が、このベクトルの軌跡であるアトラクタはなめらかな
多様体であるので、この影響は非線形な形で表される。
よって、その影響を非線形化するために、式(2)をファ
ジィ関数により表現すると、The trajectory from z (T) to z (T + s) is
Although affected by the vector distance from z (T) to x (i), this effect is expressed in a non-linear manner since the attractor that is the trajectory of this vector is a smooth manifold.
Therefore, in order to make the effect nonlinear, if Expression (2) is expressed by a fuzzy function,
【0039】[0039]
【数6】 IF aj(T) is y'j(i) THEN aj(T+s) is y'j(i+s) ただし(j=1〜n) …(3) なお、通常は関数y(i)をファジィ化する場合には
「〜」記号を用いるが、ここでは「'」記号を用いる。## EQU00006 ## IF aj (T) is y'j (i) THEn aj (T + s) is y'j (i + s) where (j = 1 to n) (3) Normally, the function y (i) is In the case of fuzzy conversion, the symbol "~" is used. Here, the symbol "'" is used.
【0040】また、Also,
【0041】[0041]
【数7】z(T)=(y(T), y(T−τ),…,y(T−
(n−1)τ)) であるので、z(T)のn次元再構成状態空間におけるj
軸成分はyj(T)となる。よって、データベクトルz(T)
のsステップ後のデータベクトルz(T+s)の予測値を
z”(T+s)とすると、そのj軸成分は、式(3)のaj
(T)にyj(T)を代入しファジィ推論をすることによ
り、aj(T+s)として求めることができる。この方法を
「局所ファジィ再構成 (Local Fuzzy Reconstruction)
法」と呼ぶことにする。(7) z (T) = (y (T), y (T−τ),..., Y (T−
(n-1) τ)), so that j (T) in the n-dimensional reconstructed state space
The axis component is yj (T). Therefore, the data vector z (T)
If the predicted value of the data vector z (T + s) after s steps is z ″ (T + s), the j-axis component is aj in equation (3).
By substituting yj (T) for (T) and performing fuzzy inference, it can be obtained as aj (T + s). This method is called "Local Fuzzy Reconstruction"
I will call it the law.
【0042】以下に具体的な例として、埋め込み次元n
=3、遅れ時間τ=4、近傍に含まれるデータベクトル
数N=3の場合について説明する。As a specific example, the embedding dimension n
= 3, the delay time τ = 4, and the number N of data vectors included in the vicinity N = 3.
【0043】各々のデータベクトルを、Each data vector is represented by
【0044】[0044]
【数8】 z(T)=(y1(T), y2(T−4), y3(T−8)) x(a)=(y1(a), y2(a−4), y3(a−8)) x(b)=(y1(b), y2(b−4), y3(b−8)) x(c)=(y1(c), y2(c−4), y3(c−8)) z"(T+s)=(y1(T+s), y2(T+s−4), y3(T+s−8)) x(a+s)=(y1(a+s), y2(a+s−4), y3(a+s−8)) x(b+s)=(y1(b+s), y2(b+s−4), y3(b+s−8)) x(c+s)=(y1(c+s), y2(c+s−4), y3(c+s−8)) とすると、式(3)で示されるファジィルールは、式(4)
(5)(6)のように表される。(8) z (T) = (y1 (T), y2 (T-4), y3 (T-8)) x (a) = (y1 (a), y2 (a-4), y3 (a) -8)) x (b) = (y1 (b), y2 (b-4), y3 (b-8)) x (c) = (y1 (c), y2 (c-4), y3 (c −8)) z ″ (T + s) = (y1 (T + s), y2 (T + s−4), y3 (T + s−8)) x (a + s) = (y1 (a + s), y2 (a + s−4), y3 ( a + s-8)) x (b + s) = (y1 (b + s), y2 (b + s-4), y3 (b + s-8)) x (c + s) = (y1 (c + s), y2 (c + s-4), y3 ( c + s-8)), the fuzzy rule expressed by the equation (3) is obtained by the equation (4)
(5) and (6).
【0045】再構成状態空間の第1軸については、For the first axis of the reconstructed state space,
【0046】[0046]
【数9】 IF a1(T) is y'1(a) THEN a1(T+s) is y'1(a+s) IF a1(T) is y'1(b) THEN a1(T+s) is y'1(b+s) IF a1(T) is y'1(c) THEN a1(T+s) is y'1(c+s) …(4) 再構成状態空間の第2軸については、IF a1 (T) is y′1 (a) THEN a1 (T + s) is y′1 (a + s) IF a1 (T) is y′1 (b) THEN a1 (T + s) is y′1 ( b + s) IF a1 (T) is y′1 (c) THEN a1 (T + s) is y′1 (c + s) (4) For the second axis of the reconstructed state space,
【0047】[0047]
【数10】 IF a2(T) is y'2(a−4) THEN a2(T+s) is y'2(a+s−4) IF a2(T) is y'2(b−4) THEN a2(T+s) is y'2(b+s−4) IF a2(T) is y'2(c−4) THEN a2(T+s) is y'2(c+s−4) …(5) 再構成状態空間の第3軸については、## EQU10 ## IF a2 (T) is y'2 (a-4) THEN a2 (T + s) is y'2 (a + s-4) IF a2 (T) is y'2 (b-4) THEN a2 (T + s ) is y'2 (b + s-4) IF a2 (T) is y'2 (c-4) THEN a2 (T + s) is y'2 (c + s-4) ... (5) The third axis of the reconstructed state space about,
【0048】[0048]
【数11】 IF a3(T) is y'3(a−8) THEN a3(T+s) is y'3(a+s−8) IF a3(T) is y'3(b−8) THEN a3(T+s) is y'3(b+s−8) IF a3(T) is y'3(c−8) THEN a3(T+s) is y'3(c+s−8) …(6) また、メンバーシップ関数はx(a)、x(b)、x(c)は
z(T)を中心とした近傍のデータベクトルであるのでフ
ァジィルール(4)(5)(6)の前件部における再構成状態
空間の各軸のメンバーシップ関数は図7のようになる。## EQU11 ## IF a3 (T) is y'3 (a-8) THEN a3 (T + s) is y'3 (a + s-8) IF a3 (T) is y'3 (b-8) THEN a3 (T + s ) is y'3 (b + s-8) IF a3 (T) is y'3 (c-8) THEN a3 (T + s) is y'3 (c + s-8) ... (6) Also, the membership function is x ( Since a), x (b), and x (c) are data vectors near z (T), each of the reconstructed state spaces in the antecedent of the fuzzy rules (4), (5), and (6) The membership function of the axis is as shown in FIG.
【0049】なお、後件部のメンバーシップ関数は、台
集合を有限範囲に限定することができないため、クリス
プ表現とする。Since the membership function of the consequent part cannot limit the table set to a finite range, it is expressed in a crisp expression.
【0050】以上のファジィルールおよびメンバーシッ
プ関数で表現されたダイナミクスに対し、a1(T)=y
1(T)、a2(T)=y2(T)、a3(T)=y2(T)を入
力データとしてファジィ推論を行うと、For the dynamics expressed by the fuzzy rules and the membership functions, a1 (T) = y
When fuzzy inference is performed using 1 (T), a2 (T) = y2 (T), and a3 (T) = y2 (T) as input data,
【0051】[0051]
【数12】 y”1(T+s) =a1(T+s) y”2(T+s−4)=a2(T+s) y”3(T+s−8)=a3(T+s) …(7) となり、元の時系列データy1(T)のsステップ先の予
測値y”1(T+s)はa1(T+s)として求められる。Y′1 (T + s) = a1 (T + s) y ″ 2 (T + s−4) = a2 (T + s) y ″ 3 (T + s−8) = a3 (T + s) (7) The predicted value y ″ 1 (T + s) s steps ahead of the series data y1 (T) is obtained as a1 (T + s).
【0052】以上のように、ファジィ推論の持つ内挿能
力、局所的近似能力を用いることで予測値z(T+s)
を求め、このz(T+s)からsステップ先の時系列の
予測値y(t+s)を求めることができる。As described above, the prediction value z (T + s) is obtained by using the interpolation capability and the local approximation capability of the fuzzy inference.
, And a time-series predicted value y (t + s) s steps ahead can be obtained from z (T + s).
【0053】この局所ファジィ再構成法による予測を血
糖値の予測に適用するには、血糖値の時系列データを多
次元状態空間に埋め込んで構成するアトラクタ上から現
時点の血糖値のデータベクトルz(T)と、ユークリッ
ド距離を測度として近いものを選択した過去の近傍デー
タベクトルx(i)及びデータベクトルx(i)からs
ステップ先のデータベクトルx(i+s)を求め、これ
らデータベクトルからz(T)のsステップ先の予測値
z(T+s)を求め、これを時系列化した予測血糖値y
(t+s)として求める。In order to apply the prediction by the local fuzzy reconstruction method to the prediction of the blood glucose level, the current blood glucose level data vector z () is obtained from an attractor constructed by embedding the blood glucose level time-series data in a multidimensional state space. T) and s from the past neighboring data vector x (i) and the data vector x (i) in which the nearest one is selected using the Euclidean distance as a measure.
The data vector x (i + s) at the step destination is obtained, the predicted value z (T + s) at the s step destination of z (T) is obtained from these data vectors, and the time-series predicted blood glucose value y is obtained.
It is obtained as (t + s).
【0054】(局所ファジィ再構成法による予測実験)
本願発明者等は、血糖値測定データからカオス理論を用
いて現時点から血糖値の経時的振る舞いが予測できるこ
とを実験で確認した。(Prediction experiment by local fuzzy reconstruction method)
The inventors of the present application have confirmed by experiments that it is possible to predict the time-dependent behavior of the blood glucose level from the present time using the chaos theory from the blood glucose level measurement data.
【0055】この実験は、局所ファジィ再構成法を用い
たコンピュータソフトにより、各症例の1日先の血糖予
測を行い、実測値と比較した結果に図8のものを得るこ
とができた。同図は、症例1の予測結果であり、平均2
0mg/dl以下の誤差で予測可能であり、十分に臨床
使用可能な精度を得ることができた。他の症例に関して
も同様に良好な予測結果を得ることができた。In this experiment, the blood glucose of each case was predicted one day ahead by computer software using the local fuzzy reconstruction method, and the results shown in FIG. 8 were obtained as a result of comparison with the measured values. The figure shows the prediction results for Case 1 with an average of 2
Prediction was possible with an error of 0 mg / dl or less, and sufficient clinically usable accuracy was obtained. Good prediction results were obtained for other cases as well.
【0056】この予測結果から、臨床的には予測値があ
るレベル以上と以下のとき、その時点で効くインスリン
量を少量変化させる適正なプログラミングを作ることに
より、タイムラグの無い最良の血糖コントロールシステ
ムを構築できる可能性もある。From this prediction result, when the predicted value is clinically above or below a certain level, by making appropriate programming to change the amount of insulin effective at that point in a small amount, the best blood glucose control system without time lag can be obtained. There is a possibility that it can be built.
【0057】以上までのことから、本発明は、以下の血
糖値の予測システム及び血糖値の予測方法並びにその方
法を記録した記録媒体を特徴とするものである。As described above, the present invention is characterized by the following blood glucose level prediction system, blood glucose level prediction method, and recording medium recording the method.
【0058】(血糖値の予測システム)血糖値測定デー
タを時系列データとして血糖値時系列ファイルに格納す
る時系列測定データ保存手段と、前記血糖値時系列ファ
イルに格納された時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定するダイナミ
クス推定部と、前記推定したダイナミクスを多次元状態
空間に埋め込むための埋め込み次元nと遅れ時間τをパ
ラメータとして格納するパラメータ保存手段と、前記血
糖値時系列ファイルに格納される血糖値と、これに対応
する前記パラメータを基に、局所ファジィ再構成法によ
り近未来の血糖値を予測して予測血糖値ファイルに格納
する血糖値予測・保存手段と、前記各ファイルのデータ
を表示できる表示手段と、を備えたことを特徴とする。(Blood Sugar Level Prediction System) A time series measurement data storage means for storing blood sugar level measurement data as time series data in a blood glucose level time series file, and a time series data stored in the blood glucose level time series file. A dynamics estimating unit for estimating dynamics that can best represent topological properties, parameter embedding means for embedding the estimated dynamics in a multidimensional state space, and a parameter storing means for storing a delay time τ as parameters, Based on the blood glucose level stored in the blood glucose level time series file and the corresponding parameters, a blood glucose level prediction / storing to predict the near future blood glucose level by the local fuzzy reconstruction method and store the predicted blood glucose level in the predicted blood glucose level file Means, and display means for displaying data of each file.
【0059】(血糖値の予測方法)最新及び過去の血糖
値測定データy(t)を時系列データとして用意し、前
記時系列データをタケテンスの埋め込み定理により多次
元状態空間に埋め込むことでアトラクタを構成し、最新
の血糖値測定データy(T)を含む前記アトラクタ上の
データベクトルz(T)を選択し、前記データベクトル
z(T)の近傍空間を通過する別の軌道上にある複数の
近傍データベクトルx(i)をユークリッド距離を測度
として近いものを選択し、前記アトラクタ上から前記デ
ータベクトルx(i)の予測しようとするsステップ先
のデータベクトルx(i+s)を選択し、前記データベ
クトルz(T),x(i),x(i+s)を用いて局所
ファジィ再構成法によりデータベクトルz(T)のsス
テップ先の予測値z(T+s)を推論し、前記予測値z
(T+s)からsステップ先の予測血糖値y(T+s)
を求めることを特徴とする。(Prediction method of blood glucose level) The latest and past blood glucose level measurement data y (t) are prepared as time-series data, and the time-series data is embedded in a multidimensional state space by the Taketens embedding theorem, whereby the attractor can be used. And selecting a data vector z (T) on the attractor containing the latest blood glucose measurement data y (T), and selecting a plurality of data vectors on another trajectory passing through a space near the data vector z (T). Selecting a nearby data vector x (i) that is close to the Euclidean distance as a measure, selecting a data vector x (i + s) s steps ahead of the data vector x (i) to be predicted from the attractor, Predicted value s steps ahead of data vector z (T) by local fuzzy reconstruction using data vector z (T), x (i), x (i + s) (T + s) infers, the predicted value z
Predicted blood sugar value y (T + s) s steps ahead from (T + s)
Is obtained.
【0060】(血糖値の予測方法を記録した記録媒体)
最新及び過去の血糖値測定データy(t)を時系列デー
タとして収集・記録する手順と、前記時系列データをタ
ケテンスの埋め込み定理により多次元状態空間に埋め込
むことでアトラクタを構成する手順と、最新の血糖値測
定データy(T)を含む前記アトラクタ上のデータベク
トルz(T)を選択する手順と、前記データベクトルz
(T)の近傍空間を通過する別の軌道上にある複数の近
傍データベクトルx(i)をユークリッド距離を測度と
して近いものを選択する手順と、前記アトラクタ上から
前記データベクトルx(i)の予測しようとするsステ
ップ先のデータベクトルx(i+s)を選択する手順
と、前記データベクトルz(T),x(i),x(i+
s)を用いて局所ファジィ再構成法によりデータベクト
ルz(T)のsステップ先の予測値z(T+s)を推論
する手順と、前記予測値z(T+s)からsステップ先
の予測血糖値y(T+s)を求める手順と、をコンピュ
ータに実行させるプログラムとして、該コンピュータが
読み取り可能な記録媒体に記録したことを特徴とする。(Recording medium on which blood glucose level prediction method is recorded)
A procedure for collecting and recording the latest and past blood glucose level measurement data y (t) as time-series data, a procedure for embedding the time-series data in a multidimensional state space by embedding the Takentens theorem, Selecting a data vector z (T) on the attractor including the blood glucose level measurement data y (T);
A procedure of selecting a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of (T) as a measure using a Euclidean distance as a measure, and a step of selecting the data vector x (i) from the attractor. A procedure for selecting a data vector x (i + s) s steps ahead to be predicted; and a procedure for selecting the data vectors z (T), x (i), x (i +
s) using a local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and a predicted blood glucose value y s steps ahead from the predicted value z (T + s) The procedure for obtaining (T + s) is recorded on a computer-readable recording medium as a program for causing a computer to execute the procedure.
【0061】[0061]
【発明の実施の形態】図1は、本発明の実施形態を示す
システム構成図である。自己測定血糖値入力部1は、糖
尿病患者が日毎に自己測定した血糖値をインターネッ
ト、PHS、パソコン通信、ポケベル、FAX等の通信
手段を使って医療センター等に伝送する。FIG. 1 is a system configuration diagram showing an embodiment of the present invention. The self-measured blood sugar level input unit 1 transmits a blood sugar level self-measured daily by a diabetic patient to a medical center or the like using communication means such as the Internet, PHS, personal computer communication, pager, and FAX.
【0062】血糖値時系列ファイル2は、医療センター
等のコンピュータシステムの外部記憶装置として設けら
れ、血糖値入力部1から伝送されてきた自己測定血糖値
データを患者別の時系列データとして保存しておく。The blood glucose level time series file 2 is provided as an external storage device of a computer system such as a medical center, and stores self-measured blood glucose level data transmitted from the blood glucose level input unit 1 as time series data for each patient. Keep it.
【0063】ダイナミクス推定部3は、ファイル2に格
納される患者別の時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定する。The dynamics estimating unit 3 estimates dynamics that can best represent the topological properties of the patient-specific time-series data stored in the file 2.
【0064】このダイナミクスの推定は、多次元状態空
間に埋め込むためのパラメータ、すなわち患者別ファイ
ルの前半を埋め込むための初期値として1ステップ先を
予測し、次に前半+1のデータを既知とした場合の1ス
テップ先を予測する。この処理をデータがなくなるまで
繰り返したときの予測値と実測血糖値の相関係数が最も
高い場合の「埋め込み次元n」と「遅れ時間τ」として
求める。This dynamics estimation is performed by predicting one step ahead as a parameter for embedding in the multidimensional state space, that is, an initial value for embedding the first half of the patient-specific file, and then assuming that the first half + 1 data is known. Is predicted one step ahead. When the correlation coefficient between the predicted value and the actually measured blood glucose level when this process is repeated until there is no more data is the highest, “embedded dimension n” and “delay time τ” are obtained.
【0065】このダイナミクス推定は、ある一定量の自
己測定値が収集された場合と、ダイナミクスの変化(例
えば、患者の血糖値変化がpoor controlか
らfair controlやgood contro
lに移行)により予測誤差がある値より大きくなった場
合に実行される。The dynamics estimation is performed when a certain amount of self-measurement value is collected and when a change in the dynamics (for example, a change in the blood glucose level of the patient is changed from poor control to fair control or good control).
This is executed when the prediction error becomes larger than a certain value due to (shift to 1).
【0066】最適埋め込みパラメータファイル4は、ダ
イナミクス推定部3で求めた「埋め込み次元n」と「遅
れ時間τ」を患者別のパラメータとして保存しておく。The optimum embedding parameter file 4 stores “embedding dimension n” and “delay time τ” obtained by the dynamics estimating unit 3 as parameters for each patient.
【0067】血糖値予測部5は、血糖値時系列ファイル
2に格納される患者別の血糖値測定データと、それに対
応する最適埋め込みパラメータをパラメータファイル4
から取り出し、局所ファジィ再構成法により1〜nステ
ップ先の血糖値を予測する。The blood glucose level predicting section 5 stores the blood glucose level measurement data for each patient stored in the blood glucose level time-series file 2 and the optimum embedding parameters corresponding to the data.
And predicts the blood glucose level 1 to n steps ahead by the local fuzzy reconstruction method.
【0068】この血糖値予測は、時系列データをタケテ
ンスの埋め込み定理により多次元状態空間に埋め込むこ
とでアトラクタを構成し、最新の血糖値測定データy
(T)を含むアトラクタ上のデータベクトルz(T)を
選択し、このデータベクトルz(T)の近傍空間を通過
する別の軌道上にある複数の近傍データベクトルx
(i)をユークリッド距離を測度として近いものを選択
し、アトラクタ上からデータベクトルx(i)の予測し
ようとするsステップ先のデータベクトルx(i+s)
を選択し、データベクトルz(T),x(i),x(i
+s)を用いて局所ファジィ再構成法によりデータベク
トルz(T)のsステップ先の予測値z(T+s)を推
論し、この予測値z(T+s)からsステップ先の予測
血糖値y(T+s)を求める。In this blood glucose level prediction, an attractor is constructed by embedding time-series data in a multidimensional state space by the Takentens embedding theorem, and the latest blood glucose level measurement data y
A data vector z (T) on the attractor including (T) is selected, and a plurality of neighboring data vectors x on another trajectory passing through the neighboring space of the data vector z (T).
(I) is selected using the Euclidean distance as a measure, and a data vector x (i + s) s steps ahead of the data vector x (i) to be predicted from the attractor.
And the data vectors z (T), x (i), x (i
+ S) using the local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and predict a blood glucose value y (T + s) s steps ahead from this predicted value z (T + s). ).
【0069】予測血糖値ファイル6は、血糖値予測部5
で予測した血糖値データを患者別に保存しておく。The predicted blood sugar level file 6 is stored in the blood sugar level predicting section 5.
Save the blood glucose level data predicted in the above for each patient.
【0070】インスリン投与量入力部7は、糖尿病患者
が実際に投与したインスリン量をインターネット、PH
S、パソコン通信、ポケベル、FAX等の通信手段を使
って医療センター等に伝送する。The insulin dose input section 7 is used to input the amount of insulin actually administered by the diabetic patient via the Internet, PH, or the like.
The data is transmitted to a medical center or the like using communication means such as S, personal computer communication, pager, and facsimile.
【0071】インスリン投与量時系列ファイル8は、医
療センター等のコンピュータシステムの外部記憶装置と
して設けられ、インスリン投与量入力部7から伝送され
てきたインスリン投与量データを患者別の時系列データ
として保存しておく。The insulin dose time-series file 8 is provided as an external storage device of a computer system such as a medical center, and stores the insulin dose data transmitted from the insulin dose input unit 7 as patient-specific time-series data. Keep it.
【0072】表示部9は、血糖値時系列ファイル2と予
測血糖値ファイル6及びインスリン投与量時系列ファイ
ル8から検索した患者別の各データを表示し、医師に対
して糖尿病医療に必要な支援情報として与える。この表
示は、患者の現在の血糖値や近未来の予測血糖値、現在
までのインスリン投与量の履歴情報の他に、必要に応じ
て予測確信度や誤差範囲等の医療支援に必要な情報表示
にされる。The display unit 9 displays each data for each patient retrieved from the blood sugar level time-series file 2, the predicted blood sugar level file 6, and the insulin dose time-series file 8, and provides the doctor with necessary support for diabetes care. Give as information. This display shows the current blood glucose level of the patient, the predicted blood glucose level in the near future, the history information of the insulin dose up to the present, and the information necessary for medical support such as the prediction confidence level and error range as necessary. To be.
【0073】以上のシステム構成により、従来の医師の
経験や感等によるインスリン投与治療に代えて、患者個
人別の血糖値変化のダイナミクスを基にした予測血糖値
から医師が適正なインスリン投与量を判断することが可
能となり、タイムラグのない血糖値コントロールによ
り、血糖値の日毎の変化を小さくしながら長期的には適
正な範囲に収めることが可能となる。With the above system configuration, instead of the conventional insulin administration treatment based on the experience and feeling of the doctor, the doctor can determine the appropriate insulin dose from the predicted blood glucose level based on the dynamics of the blood glucose level change for each individual patient. The determination can be made, and the blood sugar level control without a time lag makes it possible to keep the blood sugar level within an appropriate range in the long term while reducing the daily change.
【0074】また、患者は自己測定データを積極的に利
用すること、及び医師は予測血糖値を基にした日毎の指
示を患者に提供することが可能となり、自己血糖値測定
に対する患者のモチベーションの向上が期待できる。In addition, the patient can actively use the self-measurement data, and the doctor can provide the patient with a daily instruction based on the predicted blood glucose level, thereby increasing the motivation of the patient for the self-blood glucose level measurement. Improvement can be expected.
【0075】[0075]
【発明の効果】以上のとおり、本発明によれば、血糖値
の経時的振る舞いがカオス現象であることに着目し、血
糖値の測定時系列データから局所ファジィ再構成法によ
り現在の血糖値から近未来(明日以降)の血糖値を予測
するようにしたため、医師が適正なインスリン投与量を
決定するための支援情報がタイムラグ無しに得られる効
果がある。As described above, according to the present invention, attention is paid to the fact that the time-dependent behavior of the blood glucose level is a chaotic phenomenon, and the local fuzzy reconstruction method is used to calculate the current blood glucose level from the blood glucose level measurement time series data. Since the blood sugar level in the near future (after tomorrow) is predicted, there is an effect that support information for a doctor to determine an appropriate insulin dose can be obtained without a time lag.
【図1】本発明の実施形態を示す血糖値予測システム構
成図。FIG. 1 is a configuration diagram of a blood sugar level prediction system showing an embodiment of the present invention.
【図2】糖尿病患者の時系列データの一部。FIG. 2 is a part of time series data of a diabetic patient.
【図3】3次元空間に射影されたアトラクタの例。FIG. 3 is an example of an attractor projected onto a three-dimensional space.
【図4】3次元空間上のアトラクタ形状の詳細図。FIG. 4 is a detailed view of an attractor shape in a three-dimensional space.
【図5】時系列データのn次元再構成空間への埋め込み
の説明図。FIG. 5 is an explanatory diagram of embedding time-series data in an n-dimensional reconstruction space.
【図6】局所再構成法によるx(T)からx(T+s)
へのダイナミクスの説明図。FIG. 6 shows x (T + s) from x (T) by the local reconstruction method.
FIG.
【図7】局所ファジィ再構成法における前件部メンバー
シップ関数例。FIG. 7 is an example of an antecedent membership function in the local fuzzy reconstruction method.
【図8】症例1の予測結果。FIG. 8 shows prediction results of Case 1.
1…自己測定血糖値入力部 2…血糖値時系列ファイル 3…ダイナミクス推定部 4…最適埋め込みパラメータファイル 5…血糖値予測部 6…予測血糖値ファイル 7…インスリン投与量入力部 8…インスリン投与量時系列ファイル 9…表示部 Reference Signs List 1 self-monitoring blood sugar level input unit 2 blood sugar level time-series file 3 dynamics estimation unit 4 optimal embedding parameter file 5 blood sugar level prediction unit 6 predicted blood sugar level file 7 insulin dose input unit 8 insulin dose Time series file 9 ... Display
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年7月31日[Submission date] July 31, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【書類名】 明細書[Document Name] Statement
【発明の名称】 血糖値の予測システム及び予測方法並
びにこの方法を記録した記録媒体Patent application title: Blood glucose predicting system and predicting method, and recording medium recording this method
【特許請求の範囲】[Claims]
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、糖尿病患者の血糖
値変化をコンピュータ処理によって予測する血糖値の予
測方法及び予測システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for predicting a blood sugar level of a diabetic patient by computer processing.
【0002】[0002]
【従来の技術】糖尿病患者の治療には、患者の血糖値を
基にインスリンの投与量を調整することが行われてい
る。血糖値管理には、患者自身又は医師が血糖値を測定
するのみとするオープンサークルでなされているか、血
糖値測定データを基に医師の感で1カ月か2週間に1回
の割合でインスリン投与量を調整するフィードバック法
が採られている。また、インスリン投与量は、インスリ
ンスケールを取り決め、日毎に調整することもある。2. Description of the Related Art In the treatment of a diabetic patient, the dosage of insulin is adjusted based on the blood sugar level of the patient. Blood glucose management is performed in an open circle in which the patient or the physician only measures the blood glucose level, or insulin is administered once a month or two weeks with the feeling of the physician based on the blood glucose measurement data. A feedback method of adjusting the amount is employed. Also, the insulin dose may be adjusted on a daily basis by negotiating an insulin scale.
【0003】[0003]
【発明が解決しようとする課題】糖尿病患者に対する医
師のインスリン療法の処置は、以下のいずれかにされて
いる。The treatment of a physician for insulin therapy for a diabetic patient is one of the following.
【0004】(1)血糖値測定データを基に、医師の経
験と感により月2回程度の周期でインスリン投与量を決
定する。(1) Based on the blood sugar level measurement data, an insulin dose is determined about twice a month based on the experience and feeling of a doctor.
【0005】(2)血糖値に対するインスリン投与量を
定めておき、このスケールに基づいて1〜3回/日で行
う。[0005] (2) An insulin dose for a blood glucose level is determined, and the test is performed once to three times a day based on this scale.
【0006】これら処置方法では、血糖値のコントロー
ルは、タイムラグの大きなフィードバックを伴うため血
糖値変化が不安定になる恐れがある。例えば、血糖値の
平均値を低下させるためにインスリン投与量を増加させ
ると、低血糖を招くことがある。逆に、インスリン投与
量を減らすと、血糖値が高くなり過ぎることがある。[0006] In these treatment methods, the control of the blood sugar level involves feedback with a large time lag, so that the blood sugar level change may become unstable. For example, increasing the insulin dose to lower the average blood glucose level may result in hypoglycemia. Conversely, reducing the insulin dose can cause blood sugar levels to be too high.
【0007】このような事情から、血糖値の測定データ
を基に、血糖値の適切なコントロール効果を得るための
インスリン投与量を決定するには、タイムラグのない血
糖値コントロールにより、血糖値の日毎の変化を小さく
しながら長期的には適正な範囲に収めることが要望され
る。[0007] Under such circumstances, in order to determine an insulin dose for obtaining an appropriate blood sugar level control effect based on blood sugar level measurement data, blood glucose level control without a time lag requires daily measurement of blood glucose level. It is demanded to keep the change within a proper range in the long term while minimizing the change in the temperature.
【0008】本発明の目的は、医師が適正なインスリン
投与量を決定するための支援情報がタイムラグ無しに得
られるよう、血糖値の測定データを基に日毎の血糖値を
予測できるようにした血糖値予測システム及び血糖値予
測方法並びにその方法を記録した記録媒体を提供するこ
とにある。[0008] An object of the present invention is to provide a blood glucose level that can predict a daily blood glucose level based on blood glucose level measurement data so that a doctor can obtain support information for determining an appropriate insulin dose without a time lag. It is an object of the present invention to provide a value prediction system, a blood glucose level prediction method, and a recording medium on which the method is recorded.
【0009】[0009]
【課題を解決するための手段】本発明は、血糖コントロ
ールの不安定性について分析し、これに基づいて血糖値
の経時的振る舞いにカオス現象の存在を解明し、局所フ
ァジィ再構成法により現在の血糖値から近未来(明日以
降)の血糖値を予測できるようにしたものである。これ
ら事項を以下に説明する。なお、局所ファジィ再構成法
による近未来の予測については、本願発明者等は、既に
提案している(特開平7−239838号公報)。DISCLOSURE OF THE INVENTION The present invention analyzes the instability of blood glucose control, elucidates the existence of chaos in the behavior of blood glucose over time based on this analysis, and uses the local fuzzy reconstruction method to analyze the current blood glucose. The blood sugar level in the near future (after tomorrow) can be predicted from the value. These matters will be described below. The near future prediction by the local fuzzy reconstruction method has already been proposed by the present inventors (Japanese Patent Laid-Open No. 7-239838).
【0010】(血糖値の経時的振る舞いとカオス現象)
血糖値データの解析対象とした糖尿病患者は、インスリ
ン依存型(IDDM)5症例、非依存型(NIDDM)
5症例である。これら患者の最短1年半から最長10年
に及び1日間隔の時系列測定データを対象とした。図2
は、良好な血糖コントロールを示す1つのNIDDM症
例と2つのIDDM症例の時系列データの一部を示す。(Time-dependent behavior of blood sugar level and chaos phenomenon)
Diabetes patients whose blood glucose data were analyzed were insulin-dependent (IDDM) 5 cases and non-dependent (NIDDM)
Five cases. The time series measurement data of these patients for a minimum of one and a half years to a maximum of ten years was measured at daily intervals. FIG.
Shows part of the time-series data of one NIDDM case and two IDDM cases showing good glycemic control.
【0011】臨床的にコントロールの指標として用いら
れるのは、HbAlcの%であるが、これは臨床的には
大まかに過去1〜2カ月の血糖コントロール状態の平均
を示すとされている。図2のデータになる症例1はHb
Alcが5〜6%、症例2はHbAlcが5〜6%、症
例3はHbAlcが9〜10%で、経過中コントロール
状態がほぼ一定していた。[0011] Clinically used as an indicator of control is the% of HbAlc , which is clinically considered to roughly represent the average of glycemic control over the past one to two months. Case 1 which becomes the data of FIG. 2 is Hb
A lc 5 to 6% Case 2 HbA lc 5 to 6% Case 3 in HbA lc is 9-10%, during the course control state has been nearly constant.
【0012】症例1は、インスリン非依存型糖尿病で内
因性インスリン分泌を介して血糖調節機能が不十分なが
ら残存していると考えられる。症例2及び3は、インス
リン依存型糖尿病でインスリン分泌能が0に近く、内因
性インスリンによる血糖調節機能が0に近いと考えられ
る。Case 1 is considered to be non-insulin-dependent diabetes mellitus, and the blood glucose control function via the endogenous insulin secretion is insufficient but remaining. Cases 2 and 3 are considered to have insulin-dependent diabetes with insulin secretion capacity close to 0 and blood sugar regulation function by endogenous insulin close to 0.
【0013】これら3つの症例のデータをFFT(Fa
st Fourier Transform)でスペク
トル解析を行うと、広い帯域で周波数成分が現れてい
た。また、自己相関関数をとると、時間の増大とともに
ほぼ0に収束した。また、最大リヤプノフ指数は正であ
り、3つの症例はカオスである可能性を示していた。[0013] The data of these three cases was converted to FFT ( Fa
When the spectrum analysis was performed using the “ st Fourier Transform” , frequency components appeared in a wide band. In addition, when the autocorrelation function was taken, it converged to almost 0 with an increase in time. The maximum Lyapunov exponent is positive, three cases showed the potential to be chaotic.
【0014】次に、この3つの症例について3次元空間
上に射影されたアトラクタを図3に示す。アトラクタ
は、症例1では円柱状、症例2では三角錐状、症例3で
は球状を示している。各フラクタル次元は、症例1が
2.27に対して、症例2では2.73、さらに症例3
では3.54となり、アトラクタの形状が複雑化するに
つれてフラクタル次元が増大することを示している。Next, the attractors projected onto the three-dimensional space for these three cases are shown in FIG. The attractor shows a columnar shape in Case 1, a triangular pyramid shape in Case 2, and a spherical shape in Case 3. Each fractal dimension is 2.27 in Case 1, 2.73 in Case 2, and Case 3
Is 3.54, which indicates that the fractal dimension increases as the shape of the attractor increases.
【0015】これら3つの症例は、HbAlcによるコ
ントロールレベルの評価で症例1の円柱と症例2の三角
錐は良好(good control)で同じ程度であ
り、そのアトラクタの形状の差異はIDDMとNIDD
Mの自己血糖調節能力差に起因していると思われる。[0015] These three cases, triangular pyramid HbA lc cylinder and case 2 in Case 1 in the evaluation of the control level by the the same extent in good (good Control), the difference in shape of the attractor IDDM and NIDD
This is probably due to the difference in M's ability to regulate blood sugar.
【0016】症例2の三角錐と症例3の球ではどちらも
IDDMであり、同様の持続インスリン皮下注入療法
(CSII)にてコントロールしており、コントロール
レベルが良好(good control)対不十分
(poor control)と異なっていた。Both the pyramidal pyramid of Case 2 and the sphere of Case 3 are IDDM and are controlled by the same continuous insulin subcutaneous infusion therapy (CSII), and the control level is good (good control) or insufficient (poor). control).
【0017】他のすべてのDM症例に関しても同様の検
討を行ったがすべての症例がカオス性を示し、アトラク
タ形状はこの3種のいずれかあるいは混合した形状であ
った。The same examination was performed for all other DM cases, but all cases showed chaos, and the attractor shape was any of these three types or a mixed shape.
【0018】この3つの形のアトラクタもデータ数を変
化させ、いろいろな方向から観測すると、実際は図4に
示すようなスパイラル形状を基本とし、このスパイラル
がおそらく3つか4つの少数のパラメータとノイズによ
って三角錐や円柱、球等に形を変えるものと考えられ
る。These three types of attractors also change the number of data, and when observed from various directions, they are actually based on a spiral shape as shown in FIG. 4, and this spiral is probably based on three or four small parameters and noise. It is thought to change into a triangular pyramid, cylinder, sphere, etc.
【0019】なお、そのパラメータは内因性インスリン
を介した血糖コントロール能力の残存やコントロールレ
ベルに存在していることが他の多くの症例からも推測さ
れた。It has been inferred from many other cases that the parameters are present in the residual or control level of the ability to control blood glucose through endogenous insulin.
【0020】以上のように、糖尿病患者の血糖値の経時
的振る舞いは、一見では不規則な現象、つまり偶然性に
支配された非決定論的な現象に見えるが、決定論的にそ
の挙動を決定できる現象、つまり決定論的カオス現象で
あることを解明することができた。As described above, the time-dependent behavior of the blood glucose level of a diabetic patient appears to be an irregular phenomenon, that is, a nondeterministic phenomenon governed by chance, but its behavior can be determined deterministically. I was able to elucidate the phenomenon, a deterministic chaotic phenomenon.
【0021】(局所再構成法による血糖値の予測)決定
論的カオス現象では、非線形な決定論的規則性を推定で
きれば、ある時点の観測データからカオスの「初期値に
対する鋭敏な依存性」により、決定論的因果性を失うま
での近未来のデータを予測することが可能となる。(Prediction of Blood Sugar Level by Local Reconstruction Method) In the deterministic chaos phenomenon, if nonlinear deterministic regularity can be estimated, the "sensitive sensitivity to the initial value" of chaos is obtained from observation data at a certain point in time. Thus, it is possible to predict data in the near future until losing deterministic causality.
【0022】このような決定論的カオス現象に対する近
未来の予測は、「1本の観測時系列データから、元の力
学系の状態空間にアトラクタを再構成する」というタケ
ンスの理論に基づいている。この理論の概要は、以下の
通りである。The near future prediction for such a deterministic chaotic phenomenon is based on Takens' theory that "attractors are reconstructed from one observed time series data into the state space of the original dynamical system". . The outline of this theory is as follows.
【0023】観測されたある時系列データy(t)か
ら、ベクトル(y(t),y(t−τ),y(t−2
τ),y(t−(n−1)τ))をつくる(τは遅れ時
間)。このベクトルは、n次元再構成状態空間Rnの一
点を示すことになる。From the observed time series data y (t), vectors (y (t), y (t−τ), y (t−2)
τ), y (t− (n−1) τ)) (τ is a delay time). This vector indicates one point of the n-dimensional reconstructed state space R n .
【0024】したがって、tを変化させると、このn次
元再構成状態空間に軌道を描くことができる。もしも、
対象システムが決定論的力学系であって、観測時系列デ
ータがこの力学系の状態空間から一次元ユークリッド空
間RへのC1連続写像に対応した観測系を介して得られ
たものと仮定すれば、この再構成軌道は、nを十分大き
くとれば、元の決定論系の埋め込み(embeddin
g)になっている。Therefore, by changing t, a trajectory can be drawn in this n-dimensional reconstructed state space. If,
A target system deterministic dynamical system, the observed time series data assuming that obtained through the observation system corresponding to C 1 continuous function from the state space of the dynamical system into a one-dimensional Euclidean space R For this reconstruction trajectory, if n is sufficiently large, the embedding of the original deterministic system (embeddin
g).
【0025】つまり、力学系に何らかのアトラクタが現
れているならば、再構成状態空間にはこのアトラクタの
位相構造を保存したアトラクタが再現されることにな
る。nは通常「埋め込み次元」と呼ばれるが、再構成の
操作が「埋め込み」であるためには、この次元nは元の
力学系の状態空間の次元をmとしたとき、下記の式が成
立すれば十分であることが証明されている。That is, if any attractor appears in the dynamical system, an attractor that preserves the phase structure of the attractor is reproduced in the reconstructed state space. n is usually referred to as “embedded dimension”. In order for the reconstruction operation to be “embedded”, when the dimension of the state space of the original dynamical system is m, the following equation is satisfied. Has proven to be sufficient.
【0026】[0026]
【数1】n≧2m+1 但し、これは十分条件であって、データによっては2m
+1未満でも埋め込みである場合がある。さらに、n>
2d(但し、dは元の力学系のアトラクタのボックスカ
ウント次元)であれば、再構成の操作が1対1写像であ
ることも示されている。## EQU1 ## However, this is a sufficient condition, and depending on data, 2 m
Embedding may be performed even if the value is less than +1. Further, n>
If 2d (where d is the box count dimension of the attractor of the original dynamical system), it is also shown that the reconstruction operation is a one-to-one mapping.
【0027】前記のように、血糖値の変化が決定論的カ
オス現象であることから、血糖値の時系列データをタケ
ンスの埋め込み定理に基づいて、再構成状態空間にアト
ラクタの再構成を行い、さらにこのアトラクタを基に近
未来の血糖値を予測できることになる。As described above, since the change in the blood glucose level is a deterministic chaotic phenomenon, the time series data of the blood glucose level is stored in the reconstruction state space based on Taken's embedding theorem. Reconstruction is performed, and a blood glucose level in the near future can be predicted based on the attractor.
【0028】具体的には、図5の(a)に示すように、
等サンプリング間隔で観測された血糖値の時系列データ
y(t)を、タケンスの埋め込み定理を用いて埋め込み
次元n)遅れ時間τでn次元の状態空間に埋め込むとい
う再構成を行い、次式のベクトルが得られる。More specifically, as shown in FIG.
Reconstruction is performed by embedding the time-series data y (t) of the blood glucose level observed at equal sampling intervals into an n-dimensional state space with an embedding dimension n) delay time τ using the Taken's embedding theorem. The vector is obtained.
【0029】[0029]
【数2】x(t)=(y(t),y(t−τ),…,y
(t−(n−1)τ) 但し、t=1〜L L:時系列データy(t)のデータ数 この操作を多数のy(t)データに対し繰り返し行う
と、n次元再構成状態空間に有限個数のデータベクトル
からなるなめらかな多様体を構成することができる。図
5の(b)は、3次元再構成状態空間へ埋め込んだ場合
のアトラクタの軌道を示す。X (t) = (y (t), y (t−τ),..., Y
(T− (n−1) τ) where t = 1 to L L: the number of data of the time-series data y (t) When this operation is repeatedly performed on a large number of y (t) data, an n-dimensional reconstruction state is obtained. A smooth manifold composed of a finite number of data vectors can be constructed in space. FIG. 5B shows the trajectory of the attractor when embedded in the three-dimensional reconstruction state space.
【0030】このアトラクタの軌道について、最新に計
測された血糖値の時系列データを含むデータベクトル
と、その近傍のデータベクトルの軌道を用いて現時点の
データベクトルの近未来の軌道を推定し、sステップ先
のデータベクトルを求めることができる。つまり、現時
点の血糖値データベクトルとその近傍データベクトルか
ら、現時点の血糖値データから近未来(明日以降)の血
糖値の予測値を求めることができる。 With respect to the trajectory of this attractor, the near future trajectory of the current data vector is estimated by using the data vector including the time series data of the blood glucose level measured most recently and the trajectory of the data vector in the vicinity thereof. The data vector at the step destination can be obtained. That is, from the current blood glucose level data vector and its neighboring data vector, a predicted value of the blood glucose level in the near future (after tomorrow) can be obtained from the current blood glucose level data .
【0031】すなわち、図6に示すように、最新のデー
タによって得られたデータベクトルz(T)をn次元再
構成状態空間にプロットし、その近傍のデータベクトル
をx(i)とすると、これらのデータx(i)は過去の
データであるため、sステップ先の状態x(i+s)は
既知である。これを利用し、現時点のデータベクトルz
(T)のsステップ先の予測値z(T+s)を予測する
ことができる。そして、予測値z(T+s)から元の時
系列データのsステップ先の予測値y(t+s)を求め
ることができる。That is, as shown in FIG. 6, a data vector z (T) obtained by the latest data is plotted in an n-dimensional reconstructed state space, and a data vector in the vicinity thereof is x (i). Since the data x (i) is past data, the state x (i + s) s steps ahead is known. Using this, the current data vector z
A predicted value z (T + s) s steps ahead of (T) can be predicted. Then, a predicted value y (t + s) s steps ahead of the original time-series data can be obtained from the predicted value z (T + s).
【0032】(局所ファジィ再構成法による血糖値の予
測)前記の局所再構成法による予測において、状態x
(i)のsステップ後の状態x(i+s)への変化は、
決定論に従ったダイナミクスに基づいていると考えられ
る。そして、このダイナミクスはx(i)とx(i+
s)を用いて次のように言語的表現で表すことができ
る。但し、i∈N(z(T))、N(z(T))はz
(T)の近傍x(i)のインデックスiの集合。(Prediction of blood glucose level by local fuzzy reconstruction method) In the prediction by the local reconstruction method, the state x
The change to the state x (i + s) after s steps of (i) is
It is thought to be based on deterministic dynamics. The dynamics are x (i) and x (i +
Using s), it can be expressed in a linguistic expression as follows. Where i∈N (z (T)) and N (z (T)) are z
A set of indices i of neighborhood x (i) of (T).
【0033】[0033]
【数3】 IF x(T) is x(i) THEN x(T+s) is x(i+s) …(1) x(T):n次元再構成状態空間におけるz(T)の近
傍のデータベクトルを表す集合 x(T+s):x(T)のsステップ後のデータベクト
ルを表す集合 x(i)はz(T)の近傍のデータベクトルであるか
ら、ステップsがカオスの「初期値に対する鋭敏な依存
性」により、決定論的因果性を失う以前であれば、状態
z(T)から状態z(T+s)のダイナミクスを、状態
x(i)から状態x(i+s)のダイナミクスと近似的
に等価であると仮定することができる。## EQU00003 ## IF x (T) is x (i) THEN x (T + s) is x (i + s) (1) x (T): A data vector near z (T) in the n-dimensional reconstructed state space. Set x (T + s): set x (i) representing a data vector after s steps of x (T) Since x (i) is a data vector in the vicinity of z (T), step s is “sensitive to chaos” Dependency ", before loss of deterministic causality, approximates the dynamics from state z (T) to state z (T + s) with the dynamics from state x (i) to state x (i + s) It can be assumed that
【0034】n次元再構成状態空間に埋め込まれたアト
ラクタが、なめらかな多様体であるとき、z(T)から
z(T+s)への軌道は、z(T)からx(i)へのベ
クトル距離によって影響される。すなわち、z(T)か
ら近いx(i)の軌道ほどz(T)からz(T+s)へ
の軌道におよぼす影響が大きく、遠いほどその影響が小
さいと考えることができる。When the attractor embedded in the n-dimensional reconstruction state space is a smooth manifold, the trajectory from z (T) to z (T + s) is the vector from z (T) to x (i). Affected by distance. That is, it can be considered that the closer to the trajectory of x (i) from z (T), the larger the effect on the trajectory from z (T) to z (T + s), and the farther the trajectory is, the smaller the effect.
【0035】ところで、By the way,
【0036】[0036]
【数4】 x(i)=(y(i),y(i−τ),…,y(i−(n−1)τ)) x(i+s)=(y(i+s),y(i+s−τ),…,y(i+s−(n− 1) τ))…(2) であるので、n次元再構成状態空間におけるj軸に注目
すると式(1)は、X (i) = (y (i), y (i−τ),..., Y (i− (n−1) τ)) x (i + s) = (y (i + s), y (i + s) −τ),..., Y (i + s− (n− 1) τ))... ( 2 ) Therefore, focusing on the j-axis in the n-dimensional reconstructed state space, the equation (1) becomes
【0037】[0037]
【数5】 IF aj(T)is yj(i)THEN aj(T+s)is y(i+ s)(j=1〜n) …(3) ここで、 aj(T):z(T)の近傍値x(i)のn次元再構成
状態空間におけるj軸成分 aj(T+s):x(i+s)のn次元再構成状態空間
におけるj軸成分 n:埋め込み次元数 と表すことができる。## EQU00005 ## IF aj (T) is yj (i) THEN aj (T + s) isy (i + s) (j = 1 to n) ( 3 ) where aj (T): neighborhood of z (T) J-axis component in the n-dimensional reconstruction state space of the value x (i) aj (T + s): j-axis component in the n-dimensional reconstruction state space of x (i + s) n: embedding dimension number
【0038】また、z(T)からz(T+s)への軌道
は、z(T)からx(i)へのベクトル距離によって影
響されるが、このベクトルの軌跡であるアトラクタはな
めらかな多様体であるので、この影響は非線形な形で表
される。よって、その影響を非線形化するために、式
(3)をファジィ関数により表現すると、The trajectory from z (T) to z (T + s) is affected by the vector distance from z (T) to x (i). The trajectory of this vector is a smooth manifold. Therefore, this effect is expressed in a nonlinear form. Therefore, in order to make the influence nonlinear, if Expression ( 3 ) is expressed by a fuzzy function,
【0039】[0039]
【数6】 IF aj(T) is y’j(i) THEN aj(T+s) is y’j(i+s) ただし(j=1〜n) …(4) なお、通常は関数y(i)をファジィ化する場合には
「〜」記号を用いるが、ここでは「’」記号を用いる。## EQU00006 ## IF aj (T) is y'j (i) THEN aj (T + s) is y'j (i + s) (j = 1 to n) ( 4 ) Normally, the function y (i) is In the case of fuzzy conversion, the symbol "~" is used. Here, the symbol "'" is used.
【0040】また、Also,
【0041】[0041]
【数7】z(T)=(y(T), y(T−τ),…,
y(T−(n−1)τ)) であるので、z(T)のn次元再構成状態空間における
j軸成分はyj(T)となる。よって、データベクトル
z(T)のsステップ後のデータベクトルz(T+s)
の予測値をz”(T+s)とすると、そのj軸成分は、
式(4)のaj(T)にyj(T)を代入しファジィ推
論をすることにより、aj(T+s)として求めること
ができる。この方法を「局所ファジィ再構成(Loca
l FuzzyReconstruction)法」と
呼ぶ。(7) z (T) = (y (T), y (T−τ),...
y (T− (n−1) τ)), the j-axis component of z (T) in the n-dimensional reconstructed state space is yj (T). Therefore, the data vector z (T + s) after s steps of the data vector z (T)
Is assumed to be z ″ (T + s), its j-axis component is
By substituting yj (T) for aj (T) in equation ( 4 ) and performing fuzzy inference, it can be obtained as aj (T + s). This method is referred to as “local fuzzy reconstruction (Loca
l FuzzyReconstruction method)
Call .
【0042】以下に具体的な例として、埋め込み次元n
=3、遅れ時間τ=4、近傍に含まれるデータベクトル
数N=3の場合について説明する。As a specific example, the embedding dimension n
= 3, the delay time τ = 4, and the number N of data vectors included in the vicinity N = 3.
【0043】各々のデータベクトルを、Each data vector is represented by
【0044】[0044]
【数8】 z(T)=(y1(T), y2(T−4), y3(T−8)) x(a)=(y1(a), y2(a−4), y3(a−8)) x(b)=(y1(b), y2(b−4), y3(b−8)) x(c)=(y1(c), y2(c−4), y3(c−8)) z”(T+s)=(y1(T+s), y2(T+s−4), y3(T+ s−8)) x(a+s)=(y1(a+s), y2(a+s−4), y3(a+s −8)) x(b+s)=(y1(b+s), y2(b+s−4), y3(b+s −8)) x(c+s)=(y1(c+s), y2(c+s−4), y3(c+s −8)) とすると、式(4)で示されるファジィルールは、式
(5)(6)(7)のように表される。(8) z (T) = (y1 (T), y2 (T-4), y3 (T-8)) x (a) = (y1 (a), y2 (a-4), y3 (a) -8)) x (b) = (y1 (b), y2 (b-4), y3 (b-8)) x (c) = (y1 (c), y2 (c-4), y3 (c) −8)) z ″ (T + s) = (y1 (T + s), y2 (T + s−4), y3 (T + s−8)) x (a + s) = (y1 (a + s), y2 (a + s−4), y3 (A + s-8)) x (b + s) = (y1 (b + s), y2 (b + s-4), y3 (b + s-8)) x (c + s) = (y1 (c + s), y2 (c + s-4), y3 (C + s-8)), the fuzzy rule expressed by the equation ( 4 ) is expressed by the equation
(5), (6), and (7) .
【0045】再構成状態空間の第1軸については、For the first axis of the reconstructed state space,
【0046】[0046]
【数9】 IFa1(T)is y’1(a)THEN a1(T+s)is y’1 (a+s) IFa1(T)is y’1(b)THEN a1(T+s)is y’1 (b+s) IFa1(T)is y’1(c)THEN a1(T+s)is y’1 (c+s) …(5) 再構成状態空間の第2軸については、## EQU9 ## IFa1 (T) is y'1 (a) THEN a1 (T + s) is y'1 (a + s) IFa1 (T) is y'1 (b) THEn a1 (T + s) is y'1 (b + s) IFa1 (T) is y′1 (c) THEN a1 (T + s) is y′1 (c + s) ( 5 ) For the second axis of the reconstructed state space,
【0047】[0047]
【数10】 IFa2(T)is y’2(a−4)THEN a2(T+s)is y ’2(a+s−4) IFa2(T)is y’2(b−4)THEN a2(T+s)is y ’2(b+s−4) IFa2(T)is y’2(c−4)THEN a2(T+s)is y ’2(c+s−4) …(6) 再構成状態空間の第3軸については、## EQU10 ## IFa2 (T) is y'2 (a-4) THEN a2 (T + s) is y'2 (a + s-4) IFa2 (T) is y'2 (b-4) THEN a2 (T + s) is y′2 (b + s−4) IFa2 (T) is y′2 (c−4) THEN a2 (T + s) is y′2 (c + s−4) ( 6 ) For the third axis of the reconstructed state space,
【0048】[0048]
【数11】 IFa3(T)is y’3(a−8)THEN a3(T+s)is y ’3(a+s−8) IFa3(T)is y’3(b−8)THEN a3(T+s)is y ’3(b+s−8) IFa3(T)is y’3(c−8)THEN a3(T+s)is y ’3(c+s−8) …(7) また、メンバーシップ関数はx(a)、x(b)、x
(c)はz(T)を中心とした近傍のデータベクトルで
あるのでファジィルール(5)(6)(7)の前件部に
おける再構成状態空間の各軸のメンバーシップ関数は図
7のようになる。IFa3 (T) is y'3 (a-8) THEN a3 (T + s) isy'3 (a + s-8) IFa3 (T) is y'3 (b-8) THEN a3 (T + s) is y′3 (b + s−8) IFa3 (T) is y′3 (c−8) THEN a3 (T + s) is y′3 (c + s−8) ( 7 ) Also, the membership function is x (a), x (b), x
Since (c) is a data vector near z (T), the membership function of each axis of the reconstructed state space in the antecedent of the fuzzy rules (5), (6) and (7) is shown in FIG. Become like
【0049】なお、後件部のメンバーシップ関数は、台
集合を有限範囲に限定することができないため、クリス
プ表現とする。Since the membership function of the consequent part cannot limit the table set to a finite range, it is expressed in a crisp expression.
【0050】以上のファジィルールおよびメンバーシッ
プ関数で表現されたダイナミクスに対し、a1(T)=
y1(T)、a2(T)=y2(T)、a3(T)=y
3(T)を入力データとしてファジィ推論を行うと、For the dynamics expressed by the above fuzzy rules and membership functions, a1 (T) =
y1 (T), a2 (T) = y2 (T), a3 (T) = y
When fuzzy inference is performed using 3 (T) as input data,
【0051】[0051]
【数12】 y”1(T+s)=a1(T+s) y”2(T+s−4)=a2(T+s) y”3(T+s−8)=a3(T+s) …(8) となり、元の時系列データy1(T)のsステップ先の
予測値y”1(T+s)はa1(T+s)として求めら
れる。Y′1 (T + s) = a1 (T + s) y ″ 2 (T + s−4) = a2 (T + s) y ″ 3 (T + s−8) = a3 (T + s) ( 8 ) The predicted value y ″ 1 (T + s) s steps ahead of the series data y1 (T) is obtained as a1 (T + s).
【0052】以上のように、ファジィ推論の持つ内挿能
力、局所的近似能力を用いることで予測値z(T+s)
を求め、このz(T+s)からsステップ先の時系列の
予測値y(t+s)を求めることができる。As described above, the prediction value z (T + s) is obtained by using the interpolation capability and the local approximation capability of the fuzzy inference.
, And a time-series predicted value y (t + s) s steps ahead can be obtained from z (T + s).
【0053】この局所ファジィ再構成法による予測を血
糖値の予測に適用するには、血糖値の時系列データを多
次元状態空間に埋め込んで構成するアトラクタ上から現
時点の血糖値のデータベクトルz(T)と、ユークリッ
ド距離を測度として近いものを複数個選択した過去の近
傍データベクトルx(i)及びデータベクトルx(i)
からsステップ先のデータベクトルx(i+s)を求
め、これらデータベクトルからz(T)のsステップ先
の予測値z(T+s)を求め、これを時系列化した予測
血糖値y(t+s)として求める。In order to apply the prediction by the local fuzzy reconstruction method to the prediction of the blood glucose level, the current blood glucose level data vector z () is obtained from an attractor constructed by embedding the blood glucose level time-series data in a multidimensional state space. T), a past neighboring data vector x (i) and a data vector x (i) in which a plurality of close Euclidean distances are selected as measures.
To obtain a data vector x (i + s) s steps ahead, and a predicted value z (T + s) s steps ahead of z (T) from these data vectors, which is used as a time-series predicted blood glucose value y (t + s). Ask.
【0054】(局所ファジィ再構成法による予測実験)
本願発明者等は、血糖値測定データからカオス理論を用
いて現時点から血糖値の経時的振る舞いが予測できるこ
とを実験で確認した。(Prediction experiment by local fuzzy reconstruction method)
The inventors of the present application have confirmed by experiments that it is possible to predict the time-dependent behavior of the blood glucose level from the present time using the chaos theory from the blood glucose level measurement data.
【0055】この実験は、局所ファジィ再構成法を用い
たコンピュータソフトにより、各症例の1日先の血糖予
測を行い、実測値と比較した結果に図8のものを得るこ
とができた。同図は、症例1の予測結果であり、平均2
0mg/dl以下の誤差で予測可能であり、十分に臨床
使用可能な精度を得ることができた。他の症例に関して
も同様に良好な予測結果を得ることができた。In this experiment, the blood glucose of each case was predicted one day ahead by computer software using the local fuzzy reconstruction method, and the results shown in FIG. 8 were obtained as a result of comparison with the measured values. The figure shows the prediction results for Case 1 with an average of 2
Prediction was possible with an error of 0 mg / dl or less, and sufficient clinically usable accuracy was obtained. Good prediction results were obtained for other cases as well.
【0056】この予測結果から、臨床的には予測値があ
るレベル以上と以下のとき、その時点で効くインスリン
量を少量変化させる適正なプログラミングを作ることに
より、タイムラグの無い最良の血糖コントロールシステ
ムを構築できる可能性もある。From this prediction result, when the predicted value is clinically higher or lower than a certain level, by making appropriate programming to change the amount of insulin effective at that point in a small amount, the best blood glucose control system without time lag can be obtained. There is a possibility that it can be built.
【0057】以上までのことから、本発明は、以下の血
糖値の予測システム及び血糖値の予測方法並びにその方
法を記録した記録媒体を特徴とするものである。As described above, the present invention is characterized by the following blood glucose level prediction system, blood glucose level prediction method, and recording medium recording the method.
【0058】(血糖値の予測システム)血糖値測定デー
タを時系列データとして血糖値時系列ファイルに格納す
る時系列測定データ保存手段と、前記血糖値時系列ファ
イルに格納された時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定するダイナミ
クス推定部と、前記推定したダイナミクスを多次元状態
空間に埋め込むための埋め込み次元nと遅れ時間τをパ
ラメータとして格納するパラメータ保存手段と、前記血
糖値時系列ファイルに格納される血糖値と、これに対応
する前記パラメータを基に、局所ファジィ再構成法によ
り近未来の血糖値を予測して予測血糖値ファイルに格納
する血糖値予測・保存手段と、前記各ファイルのデータ
を表示できる表示手段と、を備えたことを特徴とする。(Blood Sugar Level Prediction System) A time series measurement data storage means for storing blood sugar level measurement data as time series data in a blood glucose level time series file, and a time series data stored in the blood glucose level time series file. A dynamics estimating unit for estimating dynamics that can best represent topological properties, parameter embedding means for embedding the estimated dynamics in a multidimensional state space, and a parameter storing means for storing a delay time τ as parameters, Based on the blood glucose level stored in the blood glucose level time series file and the corresponding parameters, a blood glucose level prediction / storing to predict the near future blood glucose level by the local fuzzy reconstruction method and store the predicted blood glucose level in the predicted blood glucose level file Means, and display means for displaying data of each file.
【0059】(血糖値の予測方法)最新及び過去の血糖
値測定データy(t)を時系列データとして用意し、前
記時系列データをタケンスの埋め込み定理により多次元
状態空間に埋め込むことでアトラクタを構成し、最新の
血糖値測定データy(T)を含む前記アトラクタ上のデ
ータベクトルz(T)を選択し、前記データベクトルz
(T)の近傍空間を通過する別の軌道上にある複数の近
傍データベクトルx(i)をユークリッド距離を測度と
して近いものを選択し、前記アトラクタ上から前記デー
タベクトルx(i)の予測しようとするsステップ先の
データベクトルx(i+s)を選択し、前記データベク
トルz(T),x(i),x(i+s)を用いて局所フ
ァジィ再構成法によりデータベクトルz(T)のsステ
ップ先の予測値z(T+s)を推論し、前記予測値z
(T+s)からsステップ先の予測血糖値y(T+s)
を求めることを特徴とする。(Prediction method of blood sugar level) The latest and past blood sugar level measurement data y (t) are prepared as time-series data, and the time-series data is embedded in a multidimensional state space by the Taken 's embedding theorem, whereby the attractor can be used. And selecting a data vector z (T) on said attractor containing the latest blood glucose measurement data y (T),
A plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of (T) are selected using Euclidean distance as a measure, and the data vector x (i) will be predicted from the attractor. The data vector x (i + s) at the s-step ahead is selected, and s of the data vector z (T) is determined by the local fuzzy reconstruction method using the data vectors z (T), x (i), and x (i + s). Infer the predicted value z (T + s) at the step destination, and calculate the predicted value z
Predicted blood sugar value y (T + s) s steps ahead from (T + s)
Is obtained.
【0060】(血糖値の予測方法を記録した記録媒体)
最新及び過去の血糖値測定データy(t)を時系列デー
タとして収集・記録する手順と、前記時系列データをタ
ケンスの埋め込み定理により多次元状態空間に埋め込む
ことでアトラクタを構成する手順と、最新の血糖値測定
データy(T)を含む前記アトラクタ上のデータベクト
ルz(T)を選択する手順と、前記データベクトルz
(T)の近傍空間を通過する別の軌道上にある複数の近
傍データベクトルx(i)をユークリッド距離を測度と
して近いものを選択する手順と、前記アトラクタ上から
前記データベクトルx(i)の予測しようとするsステ
ップ先のデータベクトルx(i+s)を選択する手順
と、前記データベクトルz(T),x(i),x(i+
s)を用いて局所ファジィ再構成法によりデータベクト
ルz(T)のsステップ先の予測値z(T+s)を推論
する手順と、前記予測値z(T+s)からsステップ先
の予測血糖値y(T+s)を求める手順と、をコンピュ
ータに実行させるプログラムとして、該コンピュータが
読み取り可能な記録媒体に記録したことを特徴とする。(Recording medium on which blood glucose level prediction method is recorded)
Data and procedures for collecting and recording the latest and past blood glucose measurement data y (t) is a time-series data, the time-series data
A procedure for configuring an attractor by embedding in a multidimensional state space according to the Kens 's embedding theorem, a procedure for selecting a data vector z (T) on the attractor including the latest blood glucose level measurement data y (T), Vector z
A procedure of selecting a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of (T) as a measure using a Euclidean distance as a measure, and a step of selecting the data vector x (i) from the attractor. A procedure for selecting a data vector x (i + s) s steps ahead to be predicted; and a procedure for selecting the data vectors z (T), x (i), x (i +
s) using a local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and a predicted blood glucose value y s steps ahead from the predicted value z (T + s) The procedure for obtaining (T + s) is recorded on a computer-readable recording medium as a program for causing a computer to execute the procedure.
【0061】[0061]
【発明の実施の形態】図1は、本発明の実施形態を示す
システム構成図である。自己測定血糖値入力部1は、糖
尿病患者が日毎に自己測定した血糖値をインターネッ
ト、PHS、パソコン通信、ポケベル、FAX等の通信
手段を使って医療センター等に伝送する。FIG. 1 is a system configuration diagram showing an embodiment of the present invention. The self-measured blood sugar level input unit 1 transmits a blood sugar level self-measured daily by a diabetic patient to a medical center or the like using communication means such as the Internet, PHS, personal computer communication, pager, and FAX.
【0062】血糖値時系列ファイル2は、医療センター
等のコンピュータシステムの外部記憶装置として設けら
れ、血糖値入力部1から伝送されてきた自己測定血糖値
データを患者別の時系列データとして保存しておく。The blood glucose level time series file 2 is provided as an external storage device of a computer system such as a medical center, and stores self-measured blood glucose level data transmitted from the blood glucose level input unit 1 as time series data for each patient. Keep it.
【0063】ダイナミクス推定部3は、ファイル2に格
納される患者別の時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定する。The dynamics estimating unit 3 estimates dynamics that can best represent the topological properties of the patient-specific time-series data stored in the file 2.
【0064】このダイナミクスの推定は、多次元状態空
間に埋め込むためのパラメータ、すなわち患者別ファイ
ルの前半を埋め込むための初期値として1ステップ先を
予測し、次に前半+1のデータを既知とした場合の1ス
テップ先を予測する。この処理をデータがなくなるまで
繰り返したときの予測性能が最も良い場合の「埋め込み
次元n」と「遅れ時間τ」として求める。This dynamics estimation is performed by predicting one step ahead as a parameter for embedding in the multidimensional state space, that is, an initial value for embedding the first half of the patient-specific file, and then assuming that the first half + 1 data is known. Is predicted one step ahead. This processing is obtained as the “embedded dimension n” and the “delay time τ” when the prediction performance when the data is repeated until there is no more data is the best .
【0065】このダイナミクス推定は、ある一定量の自
己測定値が収集された場合と、ダイナミクスの変化(例
えば、患者の血糖値変化がpoor controlか
らfair controlやgood contro
lに移行)により予測性能が低下した場合に実行され
る。The dynamics estimation is performed when a certain amount of self-measurement value is collected and when a change in the dynamics (for example, a change in the blood glucose level of the patient is changed from poor control to fair control or good control).
This is executed when the predicted performance is reduced due to (shift to 1).
【0066】最適埋め込みパラメータファイル4は、ダ
イナミクス推定部3で求めた「埋め込み次元n」と「遅
れ時間τ」を患者別のパラメータとして保存しておく。The optimum embedding parameter file 4 stores “embedding dimension n” and “delay time τ” obtained by the dynamics estimating unit 3 as parameters for each patient.
【0067】血糖値予測部5は、血糖値時系列ファイル
2に格納される患者別の血糖値測定データと、それに対
応する最適埋め込みパラメータをパラメータファイル4
から取り出し、局所ファジィ再構成法により1〜nステ
ップ先の血糖値を予測する。The blood glucose level predicting section 5 stores the blood glucose level measurement data for each patient stored in the blood glucose level time-series file 2 and the optimum embedding parameters corresponding to the data.
And predicts the blood glucose level 1 to n steps ahead by the local fuzzy reconstruction method.
【0068】この血糖値予測は、時系列データをタケン
スの埋め込み定理により多次元状態空間に埋め込むこと
でアトラクタを構成し、最新の血糖値測定データy
(T)を含むアトラクタ上のデータベクトルz(T)を
選択し、このデータベクトルz(T)の近傍空間を通過
する別の軌道上にある複数の近傍データベクトルx
(i)をユークリッド距離を測度として近いものを選択
し、アトラクタ上からデータベクトルx(i)の予測し
ようとするsステップ先のデータベクトルx(i+s)
を選択し、データベクトルz(T),x(i),x(i
+s)を用いて局所ファジィ再構成法によりデータベク
トルz(T)のsステップ先の予測値z(T+s)を推
論し、この予測値z(T+s)からsステップ先の予測
血糖値y(T+s)を求める。This blood sugar level prediction is based on time series data .
The attractor is constructed by embedding in the multidimensional state space by the data embedding theorem, and the latest blood glucose measurement data y
A data vector z (T) on the attractor including (T) is selected, and a plurality of neighboring data vectors x on another trajectory passing through the neighboring space of the data vector z (T).
(I) is selected using the Euclidean distance as a measure, and a data vector x (i + s) s steps ahead of the data vector x (i) to be predicted from the attractor.
And the data vectors z (T), x (i), x (i
+ S) using the local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and predict a blood glucose value y (T + s) s steps ahead from this predicted value z (T + s). ).
【0069】予測血糖値ファイル6は、血糖値予測部5
で予測した血糖値データを患者別に保存しておく。The predicted blood sugar level file 6 is stored in the blood sugar level predicting section 5.
Save the blood glucose level data predicted in the above for each patient.
【0070】インスリン投与量入力部7は、糖尿病患者
が実際に投与したインスリン量をインターネット、PH
S、パソコン通信、ポケベル、FAX等の通信手段を使
って医療センター等に伝送する。The insulin dose input section 7 is used to input the amount of insulin actually administered by the diabetic patient via the Internet, PH, or the like.
The data is transmitted to a medical center or the like using communication means such as S, personal computer communication, pager, and facsimile.
【0071】インスリン投与量時系列ファイル8は、医
療センター等のコンピュータシステムの外部記憶装置と
して設けられ、インスリン投与量入力部7から伝送され
てきたインスリン投与量データを患者別の時系列データ
として保存しておく。The insulin dose time-series file 8 is provided as an external storage device of a computer system such as a medical center, and stores the insulin dose data transmitted from the insulin dose input unit 7 as patient-specific time-series data. Keep it.
【0072】表示部9は、血糖値時系列ファイル2と予
測血糖値ファイル6及びインスリン投与量時系列ファイ
ル8から検索した患者別の各データを表示し、医師に対
して糖尿病医療に必要な支援情報として与える。この表
示は、患者の現在の血糖値や近未来の予測血糖値、現在
までのインスリン投与量の履歴情報の他に、必要に応じ
て予測確信度や誤差範囲等の医療支援に必要な情報表示
にされる。The display unit 9 displays each data for each patient retrieved from the blood sugar level time-series file 2, the predicted blood sugar level file 6, and the insulin dose time-series file 8, and provides the doctor with necessary support for diabetes care. Give as information. This display shows the current blood glucose level of the patient, the predicted blood glucose level in the near future, the history information of the insulin dose up to the present, and the information necessary for medical support such as the prediction confidence level and error range as necessary. To be.
【0073】以上のシステム構成により、従来の医師の
経験や感等によるインスリン投与治療に代えて、患者個
人別の血糖値変化のダイナミクスを基にした予測血糖値
から医師が適正なインスリン投与量を判断することが可
能となり、タイムラグのない血糖値コントロールによ
り、血糖値の日毎の変化を小さくしながら長期的には適
正な範囲に収めることが可能となる。With the above system configuration, instead of the conventional insulin administration treatment based on the experience and feeling of the doctor, the doctor can determine the appropriate insulin dose from the predicted blood glucose level based on the dynamics of the blood glucose level change for each individual patient. The determination can be made, and the blood sugar level control without a time lag makes it possible to keep the blood sugar level within an appropriate range in the long term while reducing the daily change.
【0074】また、患者は自己測定データを積極的に利
用すること、及び医師は予測血糖値を基にした日毎の指
示を患者に提供することが可能となり、自己血糖値測定
に対する患者のモチベーションの向上が期待できる。In addition, the patient can actively use the self-measurement data, and the doctor can provide the patient with a daily instruction based on the predicted blood glucose level, thereby increasing the motivation of the patient for the self-blood glucose level measurement. Improvement can be expected.
【0075】[0075]
【発明の効果】以上のとおり、本発明によれば、血糖値
の経時的振る舞いがカオス現象であることに着目し、血
糖値の測定時系列データから局所ファジィ再構成法によ
り現在の血糖値から近未来(明日以降)の血糖値を予測
するようにしたため、医師が適正なインスリン投与量を
決定するための支援情報がタイムラグ無しに得られる効
果がある。As described above, according to the present invention, attention is paid to the fact that the time-dependent behavior of the blood glucose level is a chaotic phenomenon, and the local fuzzy reconstruction method is used to calculate the current blood glucose level from the blood glucose level measurement time series data. Since the blood sugar level in the near future (after tomorrow) is predicted, there is an effect that support information for a doctor to determine an appropriate insulin dose can be obtained without a time lag.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施形態を示す血糖値予測システム構
成図。FIG. 1 is a configuration diagram of a blood sugar level prediction system showing an embodiment of the present invention.
【図2】糖尿病患者の時系列データの一部。FIG. 2 is a part of time series data of a diabetic patient.
【図3】3次元空間に射影されたアトラクタの例。FIG. 3 is an example of an attractor projected onto a three-dimensional space.
【図4】3次元空間上のアトラクタ形状の詳細図。FIG. 4 is a detailed view of an attractor shape in a three-dimensional space.
【図5】時系列データのn次元再構成空間への埋め込み
の説明図。FIG. 5 is an explanatory diagram of embedding time-series data in an n-dimensional reconstruction space.
【図6】局所再構成法によるx(T)からx(T+s)
へのダイナミクスの説明図。FIG. 6 shows x (T + s) from x (T) by the local reconstruction method.
FIG.
【図7】局所ファジィ再構成法における前件部メンバー
シップ関数例。FIG. 7 is an example of an antecedent membership function in the local fuzzy reconstruction method.
【図8】症例1の予測結果。FIG. 8 shows prediction results of Case 1.
【符号の説明】 1…自己測定血糖値入力部 2…血糖値時系列ファイル 3…ダイナミクス推定部 4…最適埋め込みパラメータファイル 5…血糖値予測部 6…予測血糖値ファイル 7…インスリン投与量入力部 8…インスリン投与量時系列ファイル 9…表示部[Description of Signs] 1 ... Self-measured blood sugar level input unit 2 ... Blood sugar level time series file 3 ... Dynamics estimation unit 4 ... Optimal embedding parameter file 5 ... Blood sugar level prediction unit 6 ... Predicted blood sugar level file 7 ... Insulin dose input unit 8… Insulin dose time series file 9… Display
───────────────────────────────────────────────────── フロントページの続き (72)発明者 有田 清三郎 兵庫県神戸市西区竹の台6丁目6−2− 2804 (72)発明者 米田 正也 岡山県岡山市津高台2丁目2034−16 (72)発明者 五百旗頭 正 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seizaburo Arita 6-2-2804 Takenodai, Nishi-ku, Kobe City, Hyogo Prefecture (72) Inventor Masaya Yoneda 2-2034-16-1 Tsutakadai, Okayama City, Okayama Prefecture (72) Invention The person, Mr. Tadashi Hikami 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd.
Claims (3)
血糖値時系列ファイルに格納する時系列測定データ保存
手段と、 前記血糖値時系列ファイルに格納された時系列データの
持つ位相的性質を最も良く表すことができるダイナミク
スを推定するダイナミクス推定部と、 前記推定したダイナミクスを多次元状態空間に埋め込む
ための埋め込み次元nと遅れ時間τをパラメータとして
格納するパラメータ保存手段と、 前記血糖値時系列ファイルに格納される血糖値と、これ
に対応する前記パラメータを基に、局所ファジィ再構成
法により近未来の血糖値を予測して予測血糖値ファイル
に格納する血糖値予測・保存手段と、 前記各ファイルのデータを表示できる表示手段と、を備
えたことを特徴とする血糖値の予測システム。1. A time series measurement data storage means for storing blood glucose level measurement data as time series data in a blood glucose level time series file; and a topological property of the time series data stored in the blood glucose level time series file. A dynamics estimating unit for estimating dynamics that can be well represented; a parameter storage unit for storing an embedding dimension n and a delay time τ as parameters for embedding the estimated dynamics in a multidimensional state space; and the blood glucose level time series file. A blood glucose level prediction and storage unit that predicts a near future blood glucose level by a local fuzzy reconstruction method and stores the predicted blood glucose level in a predicted blood glucose level file, based on the blood glucose level stored therein and the corresponding parameter. A blood glucose level prediction system, comprising: display means for displaying file data.
(t)を時系列データとして用意し、 前記時系列データをタケテンスの埋め込み定理により多
次元状態空間に埋め込むことでアトラクタを構成し、 最新の血糖値測定データy(T)を含む前記アトラクタ
上のデータベクトルz(T)を選択し、 前記データベクトルz(T)の近傍空間を通過する別の
軌道上にある複数の近傍データベクトルx(i)をユー
クリッド距離を測度として近いものを選択し、 前記アトラクタ上から前記データベクトルx(i)の予
測しようとするsステップ先のデータベクトルx(i+
s)を選択し、 前記データベクトルz(T),x(i),x(i+s)
を用いて局所ファジィ再構成法によりデータベクトルz
(T)のsステップ先の予測値z(T+s)を推論し、 前記予測値z(T+s)からsステップ先の予測血糖値
y(T+s)を求めることを特徴とする血糖値の予測方
法。2. The latest and past blood glucose measurement data y
(T) is prepared as time-series data, and the time-series data is embedded in a multidimensional state space by the Takentens embedding theorem to form an attractor, and on the attractor including the latest blood glucose level measurement data y (T). Selecting a data vector z (T), selecting a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of the data vector z (T) and using the Euclidean distance as a measure, An s-step ahead data vector x (i +) for which the data vector x (i) is to be predicted from the attractor
s) and the data vectors z (T), x (i), x (i + s)
And the data vector z by the local fuzzy reconstruction method using
A method for predicting a blood glucose level, comprising inferring a predicted value z (T + s) s steps ahead of (T) and obtaining a predicted blood glucose level y (T + s) s steps ahead from the predicted value z (T + s).
(t)を時系列データとして収集・記録する手順と、 前記時系列データをタケテンスの埋め込み定理により多
次元状態空間に埋め込むことでアトラクタを構成する手
順と、 最新の血糖値測定データy(T)を含む前記アトラクタ
上のデータベクトルz(T)を選択する手順と、 前記データベクトルz(T)の近傍空間を通過する別の
軌道上にある複数の近傍データベクトルx(i)をユー
クリッド距離を測度として近いものを選択する手順と、 前記アトラクタ上から前記データベクトルx(i)の予
測しようとするsステップ先のデータベクトルx(i+
s)を選択する手順と、 前記データベクトルz(T),x(i),x(i+s)
を用いて局所ファジィ再構成法によりデータベクトルz
(T)のsステップ先の予測値z(T+s)を推論する
手順と、 前記予測値z(T+s)からsステップ先の予測血糖値
y(T+s)を求める手順と、をコンピュータに実行さ
せるプログラムとして、該コンピュータが読み取り可能
な記録媒体に記録したことを特徴とする血糖値予測方法
を記録した記録媒体。3. The latest and past blood glucose measurement data y
A procedure for collecting and recording (t) as time-series data; a procedure for configuring the attractor by embedding the time-series data in a multidimensional state space by the Takentens embedding theorem; And selecting a data vector z (T) on the attractor including: a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of the data vector z (T). A procedure for selecting a measure close to the measure, and a data vector x (i +) s steps ahead of the data vector x (i) to be predicted from the attractor.
s), and the data vector z (T), x (i), x (i + s)
And the data vector z by the local fuzzy reconstruction method using
A program for causing a computer to execute a procedure of inferring a predicted value z (T + s) s steps ahead of (T) and a procedure of calculating a predicted blood glucose level y (T + s) s steps ahead from the predicted value z (T + s). Recording method for predicting a blood sugar level, wherein the method is recorded on a computer-readable recording medium.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9378398A JPH11296598A (en) | 1998-04-07 | 1998-04-07 | System and method for predicting blood-sugar level and record medium where same method is recorded |
US09/174,258 US5971922A (en) | 1998-04-07 | 1998-10-16 | System and method for predicting blood glucose level |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9378398A JPH11296598A (en) | 1998-04-07 | 1998-04-07 | System and method for predicting blood-sugar level and record medium where same method is recorded |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11296598A true JPH11296598A (en) | 1999-10-29 |
Family
ID=14092022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9378398A Pending JPH11296598A (en) | 1998-04-07 | 1998-04-07 | System and method for predicting blood-sugar level and record medium where same method is recorded |
Country Status (2)
Country | Link |
---|---|
US (1) | US5971922A (en) |
JP (1) | JPH11296598A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004351184A (en) * | 2003-05-28 | 2004-12-16 | Yasuo Fujii | Ubiquitous health management support system |
JP2005267042A (en) * | 2004-03-17 | 2005-09-29 | Sysmex Corp | Diabetes mellitus medical care support system |
JP2005535885A (en) * | 2002-08-13 | 2005-11-24 | ユニヴァースティ オブ ヴァージニア パテント ファウンデイション | Method, system and computer program product for processing self-monitoring blood glucose (SMBG) data to promote diabetes self-management |
JPWO2006009199A1 (en) * | 2004-07-21 | 2008-05-01 | 松下電器産業株式会社 | Blood sugar level management system |
EP1995680A2 (en) | 2007-05-23 | 2008-11-26 | Sysmex Corporation | Medical diagnosis support computer system, computer program, and server computer |
JP2013503874A (en) * | 2009-09-01 | 2013-02-04 | ユニバーシティ オブ ヴァージニア パテント ファウンデーション | System, method and computer program product for regulation of insulin release (AID) in diabetes using a nominal open loop profile |
WO2012145616A3 (en) * | 2011-04-20 | 2013-02-14 | The Cleveland Clinic Foundation | Predictive modeling |
WO2014087768A1 (en) | 2012-12-04 | 2014-06-12 | Necシステムテクノロジー株式会社 | Blood-sugar level prediction device, measurement device, blood-sugar level prediction method, and computer-readable storage medium |
JP2019531522A (en) * | 2016-07-08 | 2019-10-31 | ノボ・ノルデイスク・エー/エス | Basal titration with adaptive target glucose value |
Families Citing this family (299)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8095340B2 (en) | 1992-11-17 | 2012-01-10 | Health Hero Network, Inc. | Home power management system |
AU1766201A (en) | 1992-11-17 | 2001-05-30 | Health Hero Network, Inc. | Method and system for improving adherence with a diet program or other medical regimen |
US20010011224A1 (en) | 1995-06-07 | 2001-08-02 | Stephen James Brown | Modular microprocessor-based health monitoring system |
US6968375B1 (en) | 1997-03-28 | 2005-11-22 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US7624028B1 (en) | 1992-11-17 | 2009-11-24 | Health Hero Network, Inc. | Remote health monitoring and maintenance system |
US5307263A (en) | 1992-11-17 | 1994-04-26 | Raya Systems, Inc. | Modular microprocessor-based health monitoring system |
US8078407B1 (en) | 1997-03-28 | 2011-12-13 | Health Hero Network, Inc. | System and method for identifying disease-influencing genes |
US5951300A (en) | 1997-03-10 | 1999-09-14 | Health Hero Network | Online system and method for providing composite entertainment and health information |
US7613590B2 (en) | 1992-11-17 | 2009-11-03 | Health Hero Network, Inc. | Modular microprocessor-based power tool system |
US9215979B2 (en) | 1992-11-17 | 2015-12-22 | Robert Bosch Healthcare Systems, Inc. | Multi-user remote health monitoring system |
US8078431B2 (en) | 1992-11-17 | 2011-12-13 | Health Hero Network, Inc. | Home power management system |
US5832448A (en) | 1996-10-16 | 1998-11-03 | Health Hero Network | Multiple patient monitoring system for proactive health management |
US5956501A (en) * | 1997-01-10 | 1999-09-21 | Health Hero Network, Inc. | Disease simulation system and method |
US8027809B2 (en) | 1992-11-17 | 2011-09-27 | Health Hero Network, Inc. | Home power management system |
US6330426B2 (en) | 1994-05-23 | 2001-12-11 | Stephen J. Brown | System and method for remote education using a memory card |
US7305348B1 (en) | 1996-02-20 | 2007-12-04 | Health Hero Network, Inc. | Aggregating and pooling health related information in a communication system with feedback |
US7584108B2 (en) | 1996-12-23 | 2009-09-01 | Health Hero Network, Inc. | Network media access control system for encouraging patient compliance with a treatment plan |
US6032119A (en) | 1997-01-16 | 2000-02-29 | Health Hero Network, Inc. | Personalized display of health information |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US8005690B2 (en) | 1998-09-25 | 2011-08-23 | Health Hero Network, Inc. | Dynamic modeling and scoring risk assessment |
CA2404262C (en) | 2000-03-29 | 2009-03-24 | University Of Virginia Patent Foundation | Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data |
US6543682B1 (en) | 2000-05-03 | 2003-04-08 | Nichole Glaser | Insulin-dose calculator disk |
WO2002100266A1 (en) * | 2000-06-13 | 2002-12-19 | Edward Henry Mathews | A dietary system: 'blood sugar predicting system' |
WO2002005702A2 (en) * | 2000-07-18 | 2002-01-24 | Healthetech, Inc. | Closed loop glycemic index system |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
EP1397068A2 (en) | 2001-04-02 | 2004-03-17 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US6704588B2 (en) | 2001-06-16 | 2004-03-09 | Rafat R. Ansari | Method and apparatus for the non-invasive measurement of blood glucose levels in humans |
US20030208113A1 (en) * | 2001-07-18 | 2003-11-06 | Mault James R | Closed loop glycemic index system |
US20030216628A1 (en) * | 2002-01-28 | 2003-11-20 | Bortz Jonathan David | Methods and systems for assessing glycemic control using predetermined pattern label analysis of blood glucose readings |
US9282925B2 (en) | 2002-02-12 | 2016-03-15 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US7497827B2 (en) | 2004-07-13 | 2009-03-03 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8260393B2 (en) | 2003-07-25 | 2012-09-04 | Dexcom, Inc. | Systems and methods for replacing signal data artifacts in a glucose sensor data stream |
US9247901B2 (en) | 2003-08-22 | 2016-02-02 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8010174B2 (en) | 2003-08-22 | 2011-08-30 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US6998247B2 (en) * | 2002-03-08 | 2006-02-14 | Sensys Medical, Inc. | Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers |
GB0206792D0 (en) * | 2002-03-22 | 2002-05-01 | Leuven K U Res & Dev | Normoglycemia |
CN101079082A (en) * | 2002-08-13 | 2007-11-28 | 弗吉尼亚大学专利基金会 | Method, system, and computer program product for the processing of self-monitoring blood glucose(AMBG)data to enhance diabetic self-management |
AU2003260191B2 (en) * | 2002-09-20 | 2009-10-01 | Neurotech Research Pty Limited | Condition analysis |
US7993108B2 (en) | 2002-10-09 | 2011-08-09 | Abbott Diabetes Care Inc. | Variable volume, shape memory actuated insulin dispensing pump |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
EP2386758A1 (en) | 2002-10-09 | 2011-11-16 | Abbott Diabetes Care Inc. | A method of pumping a predetermined dose of a medical fluid |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
WO2004061420A2 (en) | 2002-12-31 | 2004-07-22 | Therasense, Inc. | Continuous glucose monitoring system and methods of use |
US7260480B1 (en) | 2003-04-07 | 2007-08-21 | Health Hero Network, Inc. | Method and system for integrating feedback loops in medical knowledge development and healthcare management |
US7679407B2 (en) | 2003-04-28 | 2010-03-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
US7399276B1 (en) | 2003-05-08 | 2008-07-15 | Health Hero Network, Inc. | Remote health monitoring system |
US8066639B2 (en) | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
DE60315080T2 (en) * | 2003-06-27 | 2008-04-10 | Melvyn Jeremie Lafitte | METHOD AND DEVICE FOR EXTRACTING KAUSAL INFORMATION FROM A CHAOTIC TIME SERIES |
US8423113B2 (en) | 2003-07-25 | 2013-04-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8845536B2 (en) | 2003-08-01 | 2014-09-30 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8622905B2 (en) | 2003-08-01 | 2014-01-07 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7955261B2 (en) | 2003-08-01 | 2011-06-07 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8761856B2 (en) | 2003-08-01 | 2014-06-24 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US6931327B2 (en) | 2003-08-01 | 2005-08-16 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7519408B2 (en) | 2003-11-19 | 2009-04-14 | Dexcom, Inc. | Integrated receiver for continuous analyte sensor |
US7774145B2 (en) | 2003-08-01 | 2010-08-10 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US7591801B2 (en) | 2004-02-26 | 2009-09-22 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US8275437B2 (en) | 2003-08-01 | 2012-09-25 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8369919B2 (en) | 2003-08-01 | 2013-02-05 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8886273B2 (en) | 2003-08-01 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US8160669B2 (en) | 2003-08-01 | 2012-04-17 | Dexcom, Inc. | Transcutaneous analyte sensor |
US9135402B2 (en) | 2007-12-17 | 2015-09-15 | Dexcom, Inc. | Systems and methods for processing sensor data |
US20140121989A1 (en) | 2003-08-22 | 2014-05-01 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
DE10351728A1 (en) * | 2003-10-31 | 2005-06-30 | W.O.M. World Of Medicine Ag | Method and system for the diagnosis and / or monitoring of the cardiovascular system of a living being |
US7299082B2 (en) * | 2003-10-31 | 2007-11-20 | Abbott Diabetes Care, Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
USD914881S1 (en) | 2003-11-05 | 2021-03-30 | Abbott Diabetes Care Inc. | Analyte sensor electronic mount |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US8287453B2 (en) | 2003-12-05 | 2012-10-16 | Dexcom, Inc. | Analyte sensor |
US11633133B2 (en) | 2003-12-05 | 2023-04-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8423114B2 (en) | 2006-10-04 | 2013-04-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
ATE480761T1 (en) | 2003-12-05 | 2010-09-15 | Dexcom Inc | CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR |
US8532730B2 (en) | 2006-10-04 | 2013-09-10 | Dexcom, Inc. | Analyte sensor |
US8364231B2 (en) | 2006-10-04 | 2013-01-29 | Dexcom, Inc. | Analyte sensor |
EP1711791B1 (en) | 2003-12-09 | 2014-10-15 | DexCom, Inc. | Signal processing for continuous analyte sensor |
EP1718198A4 (en) | 2004-02-17 | 2008-06-04 | Therasense Inc | Method and system for providing data communication in continuous glucose monitoring and management system |
US8808228B2 (en) | 2004-02-26 | 2014-08-19 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
DE102004020160A1 (en) * | 2004-04-24 | 2005-11-10 | Roche Diagnostics Gmbh | Method and device for monitoring a concentration of an analyte in the living body of a human or animal |
WO2005106446A1 (en) * | 2004-04-30 | 2005-11-10 | Matsushita Electric Industrial Co., Ltd. | Blood sugar level measuring device |
CN100533429C (en) * | 2004-05-11 | 2009-08-26 | 希森美康株式会社 | Glucose and insulin concentration simulation system and recording medium |
EP1810185A4 (en) | 2004-06-04 | 2010-01-06 | Therasense Inc | Diabetes care host-client architecture and data management system |
US8565848B2 (en) | 2004-07-13 | 2013-10-22 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8886272B2 (en) | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US8452368B2 (en) | 2004-07-13 | 2013-05-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7783333B2 (en) | 2004-07-13 | 2010-08-24 | Dexcom, Inc. | Transcutaneous medical device with variable stiffness |
US7905833B2 (en) | 2004-07-13 | 2011-03-15 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7724242B2 (en) | 2004-08-06 | 2010-05-25 | Touchtable, Inc. | Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter |
US7719523B2 (en) | 2004-08-06 | 2010-05-18 | Touchtable, Inc. | Bounding box gesture recognition on a touch detecting interactive display |
US7728821B2 (en) * | 2004-08-06 | 2010-06-01 | Touchtable, Inc. | Touch detecting interactive display |
JP2008511374A (en) * | 2004-09-03 | 2008-04-17 | ノボ・ノルデイスク・エー/エス | System and method for estimating blood glucose concentration |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US20090105569A1 (en) | 2006-04-28 | 2009-04-23 | Abbott Diabetes Care, Inc. | Introducer Assembly and Methods of Use |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US7731657B2 (en) | 2005-08-30 | 2010-06-08 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US9743862B2 (en) | 2011-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Systems and methods for transcutaneously implanting medical devices |
US8571624B2 (en) | 2004-12-29 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for mounting a data transmission device in a communication system |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US9636450B2 (en) | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US8133178B2 (en) | 2006-02-22 | 2012-03-13 | Dexcom, Inc. | Analyte sensor |
AU2006226988B2 (en) | 2005-03-21 | 2011-12-01 | Abbott Diabetes Care, Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
US8109871B2 (en) * | 2005-05-06 | 2012-02-07 | Minntech Corporation | Endoscope integrity tester including context-sensitive compensation and methods of context-sensitive integrity testing |
US20070060791A1 (en) * | 2005-05-06 | 2007-03-15 | Melissa Kubach | Computer systems and software for operating an endoscope integrity tester |
JP2006313481A (en) * | 2005-05-09 | 2006-11-16 | Sysmex Corp | Function simulation system for organ of organism, and program therefor |
JP4756906B2 (en) * | 2005-05-11 | 2011-08-24 | シスメックス株式会社 | Biological simulation system and computer program |
JP4781710B2 (en) * | 2005-05-12 | 2011-09-28 | シスメックス株式会社 | Treatment effect prediction system and program thereof |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US7620437B2 (en) | 2005-06-03 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US20080314395A1 (en) | 2005-08-31 | 2008-12-25 | Theuniversity Of Virginia Patent Foundation | Accuracy of Continuous Glucose Sensors |
US9521968B2 (en) | 2005-09-30 | 2016-12-20 | Abbott Diabetes Care Inc. | Analyte sensor retention mechanism and methods of use |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US7756561B2 (en) | 2005-09-30 | 2010-07-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing rechargeable power in data monitoring and management systems |
US7583190B2 (en) | 2005-10-31 | 2009-09-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US8515518B2 (en) | 2005-12-28 | 2013-08-20 | Abbott Diabetes Care Inc. | Analyte monitoring |
EP1968432A4 (en) | 2005-12-28 | 2009-10-21 | Abbott Diabetes Care Inc | Medical device insertion |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US8160670B2 (en) | 2005-12-28 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent |
EP1830333A1 (en) * | 2006-01-27 | 2007-09-05 | Sysmex Corporation | Medical simulation system, computer system and computer program product |
US7736310B2 (en) | 2006-01-30 | 2010-06-15 | Abbott Diabetes Care Inc. | On-body medical device securement |
US8344966B2 (en) | 2006-01-31 | 2013-01-01 | Abbott Diabetes Care Inc. | Method and system for providing a fault tolerant display unit in an electronic device |
US7885698B2 (en) | 2006-02-28 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US7826879B2 (en) | 2006-02-28 | 2010-11-02 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
EP1991110B1 (en) | 2006-03-09 | 2018-11-07 | DexCom, Inc. | Systems and methods for processing analyte sensor data |
US7653425B2 (en) | 2006-08-09 | 2010-01-26 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US7618369B2 (en) | 2006-10-02 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US8219173B2 (en) | 2008-09-30 | 2012-07-10 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US8473022B2 (en) | 2008-01-31 | 2013-06-25 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US7801582B2 (en) | 2006-03-31 | 2010-09-21 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US8583205B2 (en) | 2008-03-28 | 2013-11-12 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US8346335B2 (en) | 2008-03-28 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US7630748B2 (en) | 2006-10-25 | 2009-12-08 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US8140312B2 (en) | 2007-05-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US8374668B1 (en) | 2007-10-23 | 2013-02-12 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US8478557B2 (en) | 2009-07-31 | 2013-07-02 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring system calibration accuracy |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
JP4918285B2 (en) * | 2006-05-24 | 2012-04-18 | シスメックス株式会社 | Biological organ function simulation system and program thereof |
WO2007143225A2 (en) | 2006-06-07 | 2007-12-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and method |
US8548544B2 (en) | 2006-06-19 | 2013-10-01 | Dose Safety | System, method and article for controlling the dispensing of insulin |
JP2010508091A (en) | 2006-10-26 | 2010-03-18 | アボット ダイアベティス ケア インコーポレイテッド | Method, system, and computer program product for detecting in real time a decrease in sensitivity of an analyte sensor |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US8121857B2 (en) | 2007-02-15 | 2012-02-21 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US20080199894A1 (en) | 2007-02-15 | 2008-08-21 | Abbott Diabetes Care, Inc. | Device and method for automatic data acquisition and/or detection |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
US9204827B2 (en) | 2007-04-14 | 2015-12-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
WO2008130897A2 (en) | 2007-04-14 | 2008-10-30 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in medical communication system |
CA2683962C (en) | 2007-04-14 | 2017-06-06 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
ES2817503T3 (en) | 2007-04-14 | 2021-04-07 | Abbott Diabetes Care Inc | Procedure and apparatus for providing data processing and control in a medical communication system |
US7768387B2 (en) | 2007-04-14 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
US8140142B2 (en) | 2007-04-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US9125548B2 (en) | 2007-05-14 | 2015-09-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8260558B2 (en) | 2007-05-14 | 2012-09-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8560038B2 (en) | 2007-05-14 | 2013-10-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10002233B2 (en) | 2007-05-14 | 2018-06-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US7996158B2 (en) | 2007-05-14 | 2011-08-09 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8103471B2 (en) | 2007-05-14 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8444560B2 (en) | 2007-05-14 | 2013-05-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8600681B2 (en) | 2007-05-14 | 2013-12-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
WO2008150917A1 (en) | 2007-05-31 | 2008-12-11 | Abbott Diabetes Care, Inc. | Insertion devices and methods |
US20080306434A1 (en) | 2007-06-08 | 2008-12-11 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
CN101686804B (en) | 2007-06-21 | 2013-05-08 | 雅培糖尿病护理公司 | Health monitor |
CA2690742C (en) | 2007-06-21 | 2018-05-15 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8160900B2 (en) | 2007-06-29 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US8834366B2 (en) | 2007-07-31 | 2014-09-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US7768386B2 (en) | 2007-07-31 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
EP4468309A3 (en) | 2007-10-09 | 2024-12-11 | DexCom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US8377031B2 (en) | 2007-10-23 | 2013-02-19 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US8216138B1 (en) | 2007-10-23 | 2012-07-10 | Abbott Diabetes Care Inc. | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
US8409093B2 (en) | 2007-10-23 | 2013-04-02 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US8417312B2 (en) | 2007-10-25 | 2013-04-09 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8290559B2 (en) | 2007-12-17 | 2012-10-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US20090164239A1 (en) | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Dynamic Display Of Glucose Information |
US9143569B2 (en) | 2008-02-21 | 2015-09-22 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US8396528B2 (en) | 2008-03-25 | 2013-03-12 | Dexcom, Inc. | Analyte sensor |
WO2009126942A2 (en) | 2008-04-10 | 2009-10-15 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
US8591410B2 (en) | 2008-05-30 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8924159B2 (en) | 2008-05-30 | 2014-12-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US7826382B2 (en) | 2008-05-30 | 2010-11-02 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
WO2010009172A1 (en) | 2008-07-14 | 2010-01-21 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US8622988B2 (en) | 2008-08-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Variable rate closed loop control and methods |
US9943644B2 (en) | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US20100057040A1 (en) | 2008-08-31 | 2010-03-04 | Abbott Diabetes Care, Inc. | Robust Closed Loop Control And Methods |
US8734422B2 (en) | 2008-08-31 | 2014-05-27 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US8986208B2 (en) | 2008-09-30 | 2015-03-24 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US9117015B2 (en) | 2008-12-23 | 2015-08-25 | Roche Diagnostics Operations, Inc. | Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device |
US8849458B2 (en) * | 2008-12-23 | 2014-09-30 | Roche Diagnostics Operations, Inc. | Collection device with selective display of test results, method and computer program product thereof |
US10456036B2 (en) | 2008-12-23 | 2019-10-29 | Roche Diabetes Care, Inc. | Structured tailoring |
US20120011125A1 (en) | 2008-12-23 | 2012-01-12 | Roche Diagnostics Operations, Inc. | Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device |
US9918635B2 (en) * | 2008-12-23 | 2018-03-20 | Roche Diabetes Care, Inc. | Systems and methods for optimizing insulin dosage |
US10437962B2 (en) * | 2008-12-23 | 2019-10-08 | Roche Diabetes Care Inc | Status reporting of a structured collection procedure |
KR20110097889A (en) | 2008-12-23 | 2011-08-31 | 에프. 호프만-라 로슈 아게 | Management methods and systems for the implementation, execution, data collection, and data analysis of structured collection procedures running on the collection device. |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8560082B2 (en) | 2009-01-30 | 2013-10-15 | Abbott Diabetes Care Inc. | Computerized determination of insulin pump therapy parameters using real time and retrospective data processing |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
WO2010111660A1 (en) | 2009-03-27 | 2010-09-30 | Dexcom, Inc. | Methods and systems for promoting glucose management |
US8497777B2 (en) | 2009-04-15 | 2013-07-30 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
US9226701B2 (en) | 2009-04-28 | 2016-01-05 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
WO2010129375A1 (en) | 2009-04-28 | 2010-11-11 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
EP2424426B1 (en) | 2009-04-29 | 2020-01-08 | Abbott Diabetes Care, Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
US8483967B2 (en) | 2009-04-29 | 2013-07-09 | Abbott Diabetes Care Inc. | Method and system for providing real time analyte sensor calibration with retrospective backfill |
US9184490B2 (en) | 2009-05-29 | 2015-11-10 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US8613892B2 (en) | 2009-06-30 | 2013-12-24 | Abbott Diabetes Care Inc. | Analyte meter with a moveable head and methods of using the same |
LT3689237T (en) | 2009-07-23 | 2021-09-27 | Abbott Diabetes Care, Inc. | Method of manufacturing and system for continuous analyte measurement |
ES2888427T3 (en) | 2009-07-23 | 2022-01-04 | Abbott Diabetes Care Inc | Real-time management of data related to the physiological control of glucose levels |
WO2011025549A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
US8993331B2 (en) | 2009-08-31 | 2015-03-31 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
WO2011026147A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte signal processing device and methods |
EP4070728A1 (en) | 2009-08-31 | 2022-10-12 | Abbott Diabetes Care, Inc. | Displays for a medical device |
BR112012004834A2 (en) * | 2009-09-02 | 2018-03-13 | Univ Virginia Patent Foundation | Track the likelihood of impending hypoglycemia in diabetes from blood glucose self-titration (smbg) data |
EP2482720A4 (en) | 2009-09-29 | 2014-04-23 | Abbott Diabetes Care Inc | Method and apparatus for providing notification function in analyte monitoring systems |
WO2011041531A1 (en) | 2009-09-30 | 2011-04-07 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
WO2011053881A1 (en) | 2009-10-30 | 2011-05-05 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
JP5083297B2 (en) * | 2009-11-18 | 2012-11-28 | セイコーエプソン株式会社 | Predictive blood sugar level calculating device, predictive blood sugar level calculating method and program |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
US9041730B2 (en) | 2010-02-12 | 2015-05-26 | Dexcom, Inc. | Receivers for analyzing and displaying sensor data |
WO2011112753A1 (en) | 2010-03-10 | 2011-09-15 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
CA3135001A1 (en) | 2010-03-24 | 2011-09-29 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US8532933B2 (en) | 2010-06-18 | 2013-09-10 | Roche Diagnostics Operations, Inc. | Insulin optimization systems and testing methods with adjusted exit criterion accounting for system noise associated with biomarkers |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US11213226B2 (en) | 2010-10-07 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods |
US10458973B2 (en) | 2010-12-22 | 2019-10-29 | Roche Diabetes Care, Inc. | Handheld diabetes management device with bolus calculator |
US9786024B2 (en) | 2010-12-22 | 2017-10-10 | Roche Diabetes Care, Inc. | Graphical user interface for a handheld diabetes management device with bolus calculator |
US20120173151A1 (en) | 2010-12-29 | 2012-07-05 | Roche Diagnostics Operations, Inc. | Methods of assessing diabetes treatment protocols based on protocol complexity levels and patient proficiency levels |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
CA3177983A1 (en) | 2011-02-28 | 2012-11-15 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
EP3825694B1 (en) | 2011-04-15 | 2023-10-25 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
US8766803B2 (en) | 2011-05-13 | 2014-07-01 | Roche Diagnostics Operations, Inc. | Dynamic data collection |
US8755938B2 (en) | 2011-05-13 | 2014-06-17 | Roche Diagnostics Operations, Inc. | Systems and methods for handling unacceptable values in structured collection protocols |
EP2720612B1 (en) | 2011-06-16 | 2019-02-06 | Abbott Diabetes Care, Inc. | Temperature-compensated analyte monitoring devices, systems, and methods thereof |
WO2013066873A1 (en) | 2011-10-31 | 2013-05-10 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
WO2013066849A1 (en) | 2011-10-31 | 2013-05-10 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US9980669B2 (en) | 2011-11-07 | 2018-05-29 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
US8710993B2 (en) | 2011-11-23 | 2014-04-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US9317656B2 (en) | 2011-11-23 | 2016-04-19 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
WO2013078426A2 (en) | 2011-11-25 | 2013-05-30 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
DE202012013757U1 (en) | 2011-12-11 | 2021-06-08 | Abbott Diabetes Care Inc. | Analyte sensor |
US9136939B2 (en) | 2011-12-29 | 2015-09-15 | Roche Diabetes Care, Inc. | Graphical user interface pertaining to a bolus calculator residing on a handheld diabetes management device |
US20140149329A1 (en) * | 2012-04-19 | 2014-05-29 | Stephen Shaw | Near real time blood glucose level forecasting |
EP3395252A1 (en) | 2012-08-30 | 2018-10-31 | Abbott Diabetes Care, Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
WO2014052136A1 (en) | 2012-09-26 | 2014-04-03 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9119529B2 (en) | 2012-10-30 | 2015-09-01 | Dexcom, Inc. | Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered |
US9833191B2 (en) | 2012-11-07 | 2017-12-05 | Bigfoot Biomedical, Inc. | Computer-based diabetes management |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US10130275B2 (en) | 2013-06-13 | 2018-11-20 | Dyansys, Inc. | Method and apparatus for autonomic nervous system sensitivity-point testing |
US10052257B2 (en) | 2013-06-13 | 2018-08-21 | Dyansys, Inc. | Method and apparatus for stimulative electrotherapy |
AU2014374361B9 (en) | 2013-12-31 | 2019-07-04 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
WO2015153482A1 (en) | 2014-03-30 | 2015-10-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
CA2950966C (en) | 2014-06-10 | 2019-07-09 | Bigfoot Biomedical, Inc. | Insulin delivery systems and methods |
US10565329B2 (en) | 2014-06-30 | 2020-02-18 | Evolving Machine Intelligence Pty Ltd | System and method for modelling system behaviour |
WO2016054079A1 (en) | 2014-09-29 | 2016-04-07 | Zyomed Corp. | Systems and methods for blood glucose and other analyte detection and measurement using collision computing |
US10674944B2 (en) | 2015-05-14 | 2020-06-09 | Abbott Diabetes Care Inc. | Compact medical device inserters and related systems and methods |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
JP6986007B2 (en) | 2015-07-10 | 2021-12-22 | アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. | Systems, devices and methods of dynamic glucose profile response to physiological parameters |
US9554738B1 (en) | 2016-03-30 | 2017-01-31 | Zyomed Corp. | Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing |
WO2018136898A1 (en) | 2017-01-23 | 2018-07-26 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
EP3600014A4 (en) | 2017-03-21 | 2020-10-21 | Abbott Diabetes Care Inc. | METHOD, DEVICE AND SYSTEM FOR PROVIDING THE DIAGNOSIS AND THERAPY OF DIABETIC CONDITIONS |
EP3618713B1 (en) | 2017-05-05 | 2021-12-15 | Eli Lilly and Company | Closed loop control of physiological glucose |
WO2019060991A1 (en) | 2017-09-26 | 2019-04-04 | Bio-Conscious Technologies Inc. | Physiological property forecasting |
CN107576703A (en) * | 2017-10-12 | 2018-01-12 | 天津科技大学 | A kind of domestic glucometer based on fuzzy system |
US20190120785A1 (en) | 2017-10-24 | 2019-04-25 | Dexcom, Inc. | Pre-connected analyte sensors |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
CN111542884B (en) | 2017-12-21 | 2024-03-15 | 益首药物治疗股份公司 | Closed loop control of physiological glucose |
CA3103479A1 (en) | 2018-06-22 | 2019-12-26 | Eli Lilly And Company | Insulin and pramlintide delivery systems, methods, and devices |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
EP4203819B1 (en) | 2020-08-31 | 2024-07-31 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
USD999913S1 (en) | 2020-12-21 | 2023-09-26 | Abbott Diabetes Care Inc | Analyte sensor inserter |
CN113317783B (en) * | 2021-04-20 | 2022-02-01 | 港湾之星健康生物(深圳)有限公司 | Multimode personalized longitudinal and transverse calibration method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4731726A (en) * | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US5251126A (en) * | 1990-10-29 | 1993-10-05 | Miles Inc. | Diabetes data analysis and interpretation method |
KR0142483B1 (en) * | 1994-02-28 | 1998-08-17 | 고지마 게이지 | Non-linear time sequential data predicting device |
-
1998
- 1998-04-07 JP JP9378398A patent/JPH11296598A/en active Pending
- 1998-10-16 US US09/174,258 patent/US5971922A/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005535885A (en) * | 2002-08-13 | 2005-11-24 | ユニヴァースティ オブ ヴァージニア パテント ファウンデイション | Method, system and computer program product for processing self-monitoring blood glucose (SMBG) data to promote diabetes self-management |
JP2004351184A (en) * | 2003-05-28 | 2004-12-16 | Yasuo Fujii | Ubiquitous health management support system |
JP4547173B2 (en) * | 2004-03-17 | 2010-09-22 | シスメックス株式会社 | Diabetes care support system |
JP2005267042A (en) * | 2004-03-17 | 2005-09-29 | Sysmex Corp | Diabetes mellitus medical care support system |
US7914449B2 (en) | 2004-03-17 | 2011-03-29 | Sysmex Corporation | Diagnostic support system for diabetes and storage medium |
JPWO2006009199A1 (en) * | 2004-07-21 | 2008-05-01 | 松下電器産業株式会社 | Blood sugar level management system |
EP1995680A2 (en) | 2007-05-23 | 2008-11-26 | Sysmex Corporation | Medical diagnosis support computer system, computer program, and server computer |
JP2013503874A (en) * | 2009-09-01 | 2013-02-04 | ユニバーシティ オブ ヴァージニア パテント ファウンデーション | System, method and computer program product for regulation of insulin release (AID) in diabetes using a nominal open loop profile |
WO2012145616A3 (en) * | 2011-04-20 | 2013-02-14 | The Cleveland Clinic Foundation | Predictive modeling |
WO2014087768A1 (en) | 2012-12-04 | 2014-06-12 | Necシステムテクノロジー株式会社 | Blood-sugar level prediction device, measurement device, blood-sugar level prediction method, and computer-readable storage medium |
US10123749B2 (en) | 2012-12-04 | 2018-11-13 | Nec Solution Innovators, Ltd. | Blood sugar level prediction device, measurement device, blood sugar level prediction method and computer-readable storage medium |
JP2019531522A (en) * | 2016-07-08 | 2019-10-31 | ノボ・ノルデイスク・エー/エス | Basal titration with adaptive target glucose value |
US11373746B2 (en) | 2016-07-08 | 2022-06-28 | Novo Nordisk A/S | Basal titration with adaptive target glucose level |
Also Published As
Publication number | Publication date |
---|---|
US5971922A (en) | 1999-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11296598A (en) | System and method for predicting blood-sugar level and record medium where same method is recorded | |
Chen et al. | Ethical machine learning in healthcare | |
Abdel-Basset et al. | A novel intelligent medical decision support model based on soft computing and IoT | |
Schmidt et al. | Cased-based reasoning for medical knowledge-based systems | |
US20220101967A1 (en) | Methods for automatic cohort selection in epidemiologic studies and clinical trials | |
Zohora et al. | Forecasting the risk of type ii diabetes using reinforcement learning | |
US20230157533A1 (en) | A computer-implemented system and method for assessing a level of activity of a disease or condition in a patient's eye | |
US20170270256A1 (en) | Determining disease state of a patient by mapping a topological module representing the disease, and using a weighted average of node data | |
Alharbi et al. | Prediction of dental implants using machine learning algorithms | |
CN114141379A (en) | Sleep disorder attribution analysis method, device and system based on knowledge graph | |
CN116682565B (en) | Digital medical information on-line monitoring method, terminal and medium | |
Giannoulis et al. | Designing and implementing a collaborative health knowledge system | |
CN113425248B (en) | Medical image evaluation method, device, equipment and computer storage medium | |
CN118748075A (en) | Decision optimization method for diagnosis and treatment large model based on interactive feedback | |
US11942226B2 (en) | Providing clinical practical guidelines | |
JP6881287B2 (en) | Data processing equipment, data processing method and data processing program | |
Eremeev et al. | Data collection and preparation of training samples for problem diagnosis of vision pathologies | |
Shahn et al. | G-computation and hierarchical models for estimating multiple causal effects from observational disease registries with irregular visits | |
EP4226280A1 (en) | Decentralized training method suitable for disparate training sets | |
US20240242803A1 (en) | Medical learning system, medical learning method, and storage medium | |
Murugesan et al. | Support vector machine the most fruitful algorithm for prognosticating heart disorder | |
Fiarni | Design of Knowledge Management System for Diabetic Complication Diseases | |
JP7662422B2 (en) | Thought state estimation device | |
Jakhmola et al. | A computational approach of data smoothening and prediction of diabetes dataset | |
US20230101650A1 (en) | Medical information processing apparatus, medical information processing method, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20031209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031209 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070417 |