JPH11296598A - System and method for predicting blood-sugar level and record medium where same method is recorded - Google Patents

System and method for predicting blood-sugar level and record medium where same method is recorded

Info

Publication number
JPH11296598A
JPH11296598A JP9378398A JP9378398A JPH11296598A JP H11296598 A JPH11296598 A JP H11296598A JP 9378398 A JP9378398 A JP 9378398A JP 9378398 A JP9378398 A JP 9378398A JP H11296598 A JPH11296598 A JP H11296598A
Authority
JP
Japan
Prior art keywords
data
blood glucose
glucose level
time
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9378398A
Other languages
Japanese (ja)
Inventor
Seizaburo Arita
清三郎 有田
Masaya Yoneda
正也 米田
Tadashi Iokido
正 五百旗頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9378398A priority Critical patent/JPH11296598A/en
Priority to US09/174,258 priority patent/US5971922A/en
Publication of JPH11296598A publication Critical patent/JPH11296598A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the system and method for blood-sugar level prediction which are enabled to predict the level of sugar in the blood daily on the basis of measurement data on the level of sugar in the blood so as to a doctor can obtain support information for determining a proper insulin dosage without any time lag, and to provide the recording medium where the method is recorded. SOLUTION: Sugar-blood level measurement data on a diabetic are stored as sugar-blood level time-series data to a sugar-blood level time-series file 2 and a dynamics estimation part 3 stores an embedding dimension (n) and a delay time τ capable of representing phase properties most suitably that the sugar-blood level time-series data have to a parameter file 4; and a sugar-blood level prediction part 5 predicts the level of sugar in the blood of the near future by a local fuzzy reconstituting method on the basis of the sugar-blood level time-series data and parameters and stores it to a predicted sugar-blood level file 6, an inslin dosage time-series file 8 stores inslin doages as time-series data, and a display part 9 displays data of the respective files as information for determining an inslin dosage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、糖尿病患者の血糖
値変化をコンピュータ処理によって予測する血糖値の予
測方法及び予測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for predicting a blood sugar level of a diabetic patient by computer processing.

【0002】[0002]

【従来の技術】糖尿病患者の治療には、患者の血糖値を
基にインスリンの投与量を調整することが行われてい
る。血糖値管理には、患者自身又は医師が血糖値を測定
するのみとするオープンサークルでなされているか、血
糖値測定データを基に医師の感で1カ月か2週間に1回
の割合でインスリン投与量を調整するフィードバック法
が採られている。また、インスリン投与量は、インスリ
ンスケールを取り決め、日毎に調整することもある。
2. Description of the Related Art In the treatment of a diabetic patient, the dosage of insulin is adjusted based on the blood sugar level of the patient. Blood glucose management is performed in an open circle in which the patient or the physician only measures the blood glucose level, or insulin is administered once a month or two weeks with the feeling of the physician based on the blood glucose measurement data. A feedback method of adjusting the amount is employed. Also, the insulin dose may be adjusted on a daily basis by negotiating an insulin scale.

【0003】[0003]

【発明が解決しようとする課題】糖尿病患者に対する医
師のインスリン療法の処置は、以下のいずれかにされて
いる。
The treatment of a physician for insulin therapy for a diabetic patient is one of the following.

【0004】(1)血糖値測定データを基に、医師の経
験と感により月2回程度の周期でインスリン投与量を決
定する。
(1) Based on the blood sugar level measurement data, an insulin dose is determined about twice a month based on the experience and feeling of a doctor.

【0005】(2)血糖値に対するインスリン投与量を
定めておき、このスケールに基づいて1〜3回/日で行
う。
[0005] (2) An insulin dose for a blood glucose level is determined, and the test is performed once to three times a day based on this scale.

【0006】これら処置方法では、血糖値のコントロー
ルは、タイムラグの大きなフィードバックを伴うため血
糖値変化が不安定になる恐れがある。例えば、血糖値の
平均値を低下させるためにインスリン投与量を増加させ
ると、低血糖を招くことがある。逆に、インスリン投与
量を減らすと、血糖値が高くなり過ぎることがある。
[0006] In these treatment methods, the control of the blood sugar level involves feedback with a large time lag, so that the blood sugar level change may become unstable. For example, increasing the insulin dose to lower the average blood glucose level may result in hypoglycemia. Conversely, reducing the insulin dose can cause blood sugar levels to be too high.

【0007】このような事情から、血糖値の測定データ
を基に、血糖値の適切なコントロール効果を得るための
インスリン投与量を決定するには、タイムラグのない血
糖値コントロールにより、血糖値の日毎の変化を小さく
しながら長期的には適正な範囲に収めることが要望され
る。
[0007] Under such circumstances, in order to determine an insulin dose for obtaining an appropriate blood sugar level control effect based on blood sugar level measurement data, blood glucose level control without a time lag requires daily measurement of blood glucose level. It is demanded to keep the change within a proper range in the long term while minimizing the change in the temperature.

【0008】本発明の目的は、医師が適正なインスリン
投与量を決定するための支援情報がタイムラグ無しに得
られるよう、血糖値の測定データを基に日毎の血糖値を
予測できるようにした血糖値予測システム及び血糖値予
測方法並びにその方法を記録した記録媒体を提供するこ
とにある。
[0008] An object of the present invention is to provide a blood glucose level that can predict a daily blood glucose level based on blood glucose level measurement data so that a doctor can obtain support information for determining an appropriate insulin dose without a time lag. It is an object of the present invention to provide a value prediction system, a blood glucose level prediction method, and a recording medium on which the method is recorded.

【0009】[0009]

【課題を解決するための手段】本発明は、血糖コントロ
ールの不安定性について分析し、これに基づいて血糖値
の経時的振る舞いにカオス現象の存在を解明し、局所フ
ァジィ再構成法により現在の血糖値から近未来(明日以
降)の血糖値を予測できるようにしたものである。これ
ら事項を以下に説明する。なお、局所ファジィ再構成法
による近未来の予測については、本願発明者等は、既に
提案している(特開平7−239838号公報)。
DISCLOSURE OF THE INVENTION The present invention analyzes the instability of blood glucose control, elucidates the existence of chaos in the behavior of blood glucose over time based on this analysis, and uses the local fuzzy reconstruction method to analyze the current blood glucose. The blood sugar level in the near future (after tomorrow) can be predicted from the value. These matters will be described below. The near future prediction by the local fuzzy reconstruction method has already been proposed by the present inventors (Japanese Patent Laid-Open No. 7-239838).

【0010】(血糖値の経時的振る舞いとカオス現象)
血糖値データの解析対象とした糖尿病患者は、インスリ
ン依存型(IDDM)5症例、非依存型(NIDDM)
5症例である。これら患者の最短1年半から最長10年
に及び1日間隔の時系列測定データを対象とした。図2
は、良好な血糖コントロールを示す1つのNIDDM症
例と2つのIDDM症例の時系列データの一部を示す。
(Time-dependent behavior of blood sugar level and chaos phenomenon)
Diabetes patients whose blood glucose data were analyzed were insulin-dependent (IDDM) 5 cases and non-dependent (NIDDM)
Five cases. The time series measurement data of these patients for a minimum of one and a half years to a maximum of ten years was measured at daily intervals. FIG.
Shows part of the time-series data of one NIDDM case and two IDDM cases showing good glycemic control.

【0011】臨床的にコントロールの指標として用いら
れるのは、HbA1Cの%であるが、これは臨床的には大
まかに過去1〜2カ月の血糖コントロール状態の平均を
示すとされている。図2のデータになる症例1はHbA
1Cが5〜6%、症例2はHbA1Cが5〜6%、症例3は
HbA1Cが9〜10%で、経過中コントロール状態がほ
ぼ一定していた。
The percentage of HbA 1C that is used clinically as a control index is the clinically approximated average of glycemic control over the past 1-2 months. Case 1 which becomes the data of FIG. 2 is HbA
1C was 5-6%, Case 2 was 5-6% HbA 1C , Case 3 was 9-10% HbA 1C , and the control state was almost constant during the course.

【0012】症例1は、インスリン非依存型糖尿病で内
因性インスリン分泌を介して血糖調節機能が不十分なが
ら残存していると考えられる。症例2及び3は、インス
リン依存型糖尿病でインスリン分泌能が0に近く、内因
性インスリンによる血糖調節機能が0に近いと考えられ
る。
Case 1 is considered to be non-insulin-dependent diabetes mellitus, and the blood glucose control function via the endogenous insulin secretion is insufficient but remaining. Cases 2 and 3 are considered to have insulin-dependent diabetes with insulin secretion capacity close to 0 and blood sugar regulation function by endogenous insulin close to 0.

【0013】これら3つの症例のデータをFFT(Fa
stFourierTransform)でスペクトル
解析を行うと、広い帯域で周波数成分が現れていた。ま
た、自己相関関数をとると、時間の増大とともにほぼ0
に収束した。また、最大リヤプノフ指数は正であり、3
つの症例はカオス性を示していた。
[0013] The data of these three cases was converted to FFT (Fa
When spectrum analysis was performed using (stFourierTransform), frequency components appeared in a wide band. In addition, when the autocorrelation function is taken, almost 0
Converged. The maximum Lyapunov exponent is positive and 3
One case was chaotic.

【0014】次に、この3つの症例について3次元空間
上に射影されたアトラクタを図3に示す。アトラクタ
は、症例1では円柱状、症例2では三角錐状、症例3で
は球状を示している。各フラクタル次元は、症例1が
2.27に対して、症例2では2.73、さらに症例3で
は3.54となり、アトラクタの形状が複雑化するにつ
れてフラクタル次元が増大することを示している。
Next, the attractors projected onto the three-dimensional space for these three cases are shown in FIG. The attractor shows a columnar shape in Case 1, a triangular pyramid shape in Case 2, and a spherical shape in Case 3. Each fractal dimension is 2.27 in case 1, 2.73 in case 2, and 3.54 in case 3, indicating that the fractal dimension increases as the shape of the attractor becomes more complicated.

【0015】これら3つの症例は、HbA1Cによるコン
トロールレベルの評価で症例1の円柱と症例2の三角錐
は良好(good control)で同じ程度であ
り、そのアトラクタの形状の差異はIDDMとNIDD
Mの自己血糖調節能力差に起因していると思われる。
In these three cases, the cylinder of case 1 and the triangular pyramid of case 2 were good and the same degree in the evaluation of the control level by HbA 1C , and the attractors differed in shape between IDDM and NIDD.
This is probably due to the difference in M's ability to regulate blood sugar.

【0016】症例2の三角錐と症例3の球ではどちらも
IDDMであり、同様の持続インスリン皮下注入療法
(CSII)にてコントロールしており、コントロール
レベルが良好(good control)対不十分
(poor control)と異なっていた。
Both the pyramidal pyramid of Case 2 and the sphere of Case 3 are IDDM and are controlled by the same continuous insulin subcutaneous infusion therapy (CSII), and the control level is good (good control) or insufficient (poor). control).

【0017】他のすべてのDM症例に関しても同様の検
討を行ったがすべての症例がカオスを示し、アトラクタ
形状はこの3種のいずれかあるいは混合した形状であっ
た。
The same examination was performed for all other DM cases, but all cases showed chaos, and the attractor shape was any one of these three types or a mixed shape.

【0018】この3つの形のアトラクタもデータ数を変
化させ、いろいろな方向から観測すると、実際は図4に
示すようなスパイラル形状を基本とし、このスパイラル
がおそらく3つか4つの少数のパラメータとノイズによ
って三角錐や円柱、球等に形を変えるものと考えられ
る。
These three types of attractors also change the number of data, and when observed from various directions, are actually based on a spiral shape as shown in FIG. 4, and this spiral is probably based on three or four small parameters and noise. It is thought to change into a triangular pyramid, cylinder, sphere, etc.

【0019】なお、そのパラメータは内因性インスリン
を介した血糖コントロール能力の残存やコントロールレ
ベルに存在していることが他の多くの症例からも推測さ
れた。
It has been inferred from many other cases that the parameters are present in the residual or control level of the ability to control blood glucose through endogenous insulin.

【0020】以上のように、糖尿病患者の血糖値の経時
的振る舞いは、一見では不規則な現象、つまり偶然性に
支配された非決定論的な現象に見えるが、決定論的にそ
の挙動を決定できる現象、つまり決定論的カオス現象で
あることを解明することができた。
As described above, the time-dependent behavior of the blood glucose level of a diabetic patient appears at first glance to be an irregular phenomenon, that is, a nondeterministic phenomenon governed by chance, but its behavior can be determined deterministically. I was able to elucidate the phenomenon, a deterministic chaotic phenomenon.

【0021】(局所再構成法による血糖値の予測)決定
論的カオス現象では、非線形な決定論的規則性を推定で
きれば、ある時点の観測データからカオスの「初期値に
対する鋭敏な依存性」により、決定論的因果性を失うま
での近未来のデータを予測することが可能となる。
(Prediction of Blood Sugar Level by Local Reconstruction Method) In the deterministic chaos phenomenon, if nonlinear deterministic regularity can be estimated, the "sensitive sensitivity to the initial value" of chaos is obtained from observation data at a certain point in time. Thus, it is possible to predict data in the near future until losing deterministic causality.

【0022】このような決定論的カオス現象に対する近
未来の予測は、「1本の観測時系列データから、元の力
学系の状態空間とアトラクタを再構成する」というタケ
ンスの理論に基づいている。この理論の概要は、以下の
通りである。
The near future prediction for such a deterministic chaotic phenomenon is based on Takens' theory that "the state space and attractors of the original dynamical system are reconstructed from one observation time series data". . The outline of this theory is as follows.

【0023】観測されたある時系列データy(t)か
ら、ベクトル(y(t),y(t−τ),y(t−2
τ),y(t−(n−1)τ)をつくる(τは遅れ時
間)。このベクトルは、n次元再構成状態空間Rnの一
点を示すことになる。
From the observed time series data y (t), vectors (y (t), y (t−τ), y (t−2)
τ), y (t− (n−1) τ) (where τ is the delay time). This vector would indicate a point n-dimensional reconstructed state space R n.

【0024】したがって、tを変化させると、このn次
元再構成状態空間に軌道を描くことができる。もしも、
対象システムが決定論的力学系であって、観測時系列デ
ータがこの力学系の状態空間から一次元ユークリッド空
間RへのC1連続写像に対応した観測系を介して得られ
たものと仮定すれば、この再構成軌道は、nを十分大き
くとれば、元の決定論系の埋め込み(embeddin
g)になっている。
Therefore, by changing t, a trajectory can be drawn in this n-dimensional reconstructed state space. If,
A target system deterministic dynamical system, the observed time series data assuming that obtained through the observation system corresponding to C 1 continuous function from the state space of the dynamical system into a one-dimensional Euclidean space R For this reconstruction trajectory, if n is sufficiently large, the embedding of the original deterministic system (embeddin
g).

【0025】つまり、力学系に何らかのアトラクタが現
れているならば、再構成状態空間にはこのアトラクタの
位相構造を保存したアトラクタが再現されることにな
る。nは通常「埋め込み次元」と呼ばれるが、再構成の
操作が「埋め込み」であるためには、この次元nは元の
力学系の状態空間の次元をmとしたとき、下記の式が成
立すれば十分であることが証明されている。
That is, if any attractor appears in the dynamical system, an attractor that preserves the phase structure of the attractor is reproduced in the reconstructed state space. n is usually referred to as “embedded dimension”. In order for the reconstruction operation to be “embedded”, when the dimension of the state space of the original dynamical system is m, the following equation is satisfied. Has proven to be sufficient.

【0026】[0026]

【数1】n≧2m+1 但し、これは十分条件であって、データによっては2m
+1未満でも埋め込みである場合がある。さらに、n>
2d(但し、dは元の力学系のアトラクタのボックスカ
ウント次元)であれば、再構成の操作が1対1写像であ
ることも示されている。
## EQU1 ## However, this is a sufficient condition, and depending on data, 2 m
Embedding may be performed even if the value is less than +1. Further, n>
If 2d (where d is the box count dimension of the attractor of the original dynamical system), it is also shown that the reconstruction operation is a one-to-one mapping.

【0027】前記のように、血糖値の変化が決定論的カ
オス現象であることから、血糖値の時系列データをタケ
ンスの埋め込み定理に基づいて、再構成状態空間とアト
ラクタの再構成を行い、さらにこのアトラクタを基に近
未来の血糖値を予測できることになる。
As described above, since the change in the blood sugar level is a deterministic chaotic phenomenon, the time series data of the blood sugar level is reconstructed on the basis of the Taken's embedding theorem and the reconstruction state space and the attractor. Further, it is possible to predict the blood sugar level in the near future based on this attractor.

【0028】具体的には、図5の(a)に示すように、
等サンプリング間隔で観測された血糖値の時系列データ
y(t)を、タケンスの埋め込み定理を用いて埋め込み
次元n、遅れ時間τでn次元の状態空間に埋め込むとい
う再構成を行い、次式のベクトルが得られる。
More specifically, as shown in FIG.
Reconstruction is performed by embedding the time-series data y (t) of the blood glucose level observed at equal sampling intervals into an n-dimensional state space with an embedding dimension n and a delay time τ using Takens' embedding theorem. The vector is obtained.

【0029】[0029]

【数2】x(t)=(y(t),y(t−τ),…,y
(t−(n−1)τ) 但し、t=((n−1)τ+1)〜Y Y:時系列データy(t)のデータ数 この操作を多数のy(t)データに対し繰り返し行う
と、n次元再構成状態空間に有限個数のデータベクトル
からなるなめらかな多様体を構成することができる。図
5の(b)は、3次元再構成状態空間へ埋め込んだ場合
のアトラクタの軌道を示す。
X (t) = (y (t), y (t−τ),..., Y
(T− (n−1) τ) where t = ((n−1) τ + 1) to YY: the number of time-series data y (t) This operation is repeated for a large number of y (t) data. And a smooth manifold consisting of a finite number of data vectors in the n-dimensional reconstructed state space. FIG. 5B shows the trajectory of the attractor when embedded in the three-dimensional reconstruction state space.

【0030】このアトラクタの軌道について、最新に計
測された血糖値の時系列データを含むデータベクトル
と、その近傍のデータベクトルの軌道を用いて現時点の
データベクトルの近未来の軌道を推定し、sステップ先
のデータベクトルを求めることができる。つまり、現時
点の血糖値データベクトルとその近傍データベクトルか
ら、現時点の血糖値データから近未来(明日以降)の血
糖値の予測値を求めることができる。これが局所再構成
になる。
With respect to the trajectory of this attractor, the near future trajectory of the current data vector is estimated by using the data vector including the time series data of the blood glucose level measured most recently and the trajectory of the data vector in the vicinity thereof. The data vector at the step destination can be obtained. That is, from the current blood glucose level data vector and its neighboring data vector, a predicted value of the blood glucose level in the near future (after tomorrow) can be obtained from the current blood glucose level data. This is a local reconstruction.

【0031】すなわち、図6に示すように、最新のデー
タによって得られたデータベクトルz(T)をn次元再
構成状態空間にプロットし、その近傍のデータベクトル
をx(i)とすると、これらのデータx(i)は過去の
データであるため、sステップ先の状態x(i+s)は
既知である。これを利用し、現時点のデータベクトルz
(T)のsステップ先の予測値z(T+s)を予測する
ことができる。そして、予測値z(T+s)から元の時
系列データのsステップ先の予測値y(t+s)を求め
ることができる。
That is, as shown in FIG. 6, a data vector z (T) obtained by the latest data is plotted in an n-dimensional reconstructed state space, and a data vector in the vicinity thereof is x (i). Since the data x (i) is past data, the state x (i + s) s steps ahead is known. Using this, the current data vector z
A predicted value z (T + s) s steps ahead of (T) can be predicted. Then, a predicted value y (t + s) s steps ahead of the original time-series data can be obtained from the predicted value z (T + s).

【0032】(局所ファジィ再構成法による血糖値の予
測)前記の局所再構成法による予測において、状態x
(i)のsステップ後の状態x(i+s)への変化は、
決定論に従ったダイナミクスに基づいていると考えられ
る。そして、このダイナミクスはx(i)とx(i+
s)を用いて次のように言語的表現で表すことができ
る。但し、i∈N(z(T))、N(z(T))はz
(T)の近傍x(i)のインデックスiの集合。
(Prediction of blood glucose level by local fuzzy reconstruction method) In the prediction by the local reconstruction method, the state x
The change to the state x (i + s) after s steps of (i) is
It is thought to be based on deterministic dynamics. The dynamics are x (i) and x (i +
Using s), it can be expressed in a linguistic expression as follows. Where i∈N (z (T)) and N (z (T)) are z
A set of indices i of neighborhood x (i) of (T).

【0033】[0033]

【数3】 x(T):n次元再構成状態空間におけるz(T)の近
傍のデータベクトルを表す集合 x(T+s):x(T)のsステップ後のデータベクト
ルを表す集合 x(i)はz(T)の近傍のデータベクトルであるから、ス
テップsがカオスの「初期値に対する鋭敏な依存性」に
より、決定論的因果性を失う以前であれば、状態z(T)
から状態z(T+s)のダイナミクスを、状態x(i)から状
態x(i+s)のダイナミクスと近似的に等価であると仮定
することができる。
(Equation 3) x (T): a set representing data vectors near z (T) in the n-dimensional reconstructed state space x (T + s): a set representing data vectors after s steps of x (T) x (i) is z ( Since the data vector is in the vicinity of T), if the step s is before the loss of deterministic causality due to the "sensitive dependence on the initial value" of chaos, the state z (T)
From, it can be assumed that the dynamics of state z (T + s) are approximately equivalent to the dynamics of states x (i) through x (i + s).

【0034】n次元再構成状態空間に埋め込まれたアト
ラクタが、なめらかな多様体であるとき、z(T)からz
(T+s)へのベクトル距離は、z(T)からx(i)へのベク
トル距離によって影響される。すなわち、z(T)から近
いx(i)の軌道ほどz(T)からz(T+s)への軌道におよ
ぼす影響が大きく、遠いほどその影響が小さいと考える
ことができる。
When the attractor embedded in the n-dimensional reconstructed state space is a smooth manifold, z (T) to z
The vector distance to (T + s) is affected by the vector distance from z (T) to x (i). In other words, it can be considered that the closer to the trajectory of x (i) from z (T), the larger the effect on the trajectory from z (T) to z (T + s), and the farther the trajectory is, the smaller the effect.

【0035】ところで、By the way,

【0036】[0036]

【数4】 x(i)=(y(i), y(i−τ),…,y(i−(n−1)τ)) x(i+s)=(y(i+s), y(i+s−τ),…,y(i+s−(n−1τ)) …(1) であるので、n次元再構成状態空間におけるj軸に注目
すると式(1)は、
X (i) = (y (i), y (i−τ),..., Y (i− (n−1) τ)) x (i + s) = (y (i + s), y (i + s) −τ),..., Y (i + s− (n−1τ)) (1) Therefore, focusing on the j-axis in the n-dimensional reconstructed state space, the expression (1) becomes

【0037】[0037]

【数5】 IF aj(T) is yj(i) THEN aj(T+s) is y(i+s) (j=1〜n) …(2) ここで、 aj(T):z(T)の近傍値x(i)のn次元再構成状態空間
におけるj軸成分 aj(T+s):x(i+s)のn次元再構成状態空間におけ
るj軸成分 n:埋め込み次元数 と表すことができる。
## EQU00005 ## IF aj (T) is yj (i) THEN aj (T + s) is y (i + s) (j = 1 to n) (2) where aj (T): a neighborhood value of z (T) The j-axis component of x (i) in the n-dimensional reconstruction state space aj (T + s): the j-axis component of x (i + s) in the n-dimensional reconstruction state space n: embedding dimension number

【0038】また、z(T)からz(T+s)への軌道は、
z(T)からx(i)へのベクトル距離によって影響される
が、このベクトルの軌跡であるアトラクタはなめらかな
多様体であるので、この影響は非線形な形で表される。
よって、その影響を非線形化するために、式(2)をファ
ジィ関数により表現すると、
The trajectory from z (T) to z (T + s) is
Although affected by the vector distance from z (T) to x (i), this effect is expressed in a non-linear manner since the attractor that is the trajectory of this vector is a smooth manifold.
Therefore, in order to make the effect nonlinear, if Expression (2) is expressed by a fuzzy function,

【0039】[0039]

【数6】 IF aj(T) is y'j(i) THEN aj(T+s) is y'j(i+s) ただし(j=1〜n) …(3) なお、通常は関数y(i)をファジィ化する場合には
「〜」記号を用いるが、ここでは「'」記号を用いる。
## EQU00006 ## IF aj (T) is y'j (i) THEn aj (T + s) is y'j (i + s) where (j = 1 to n) (3) Normally, the function y (i) is In the case of fuzzy conversion, the symbol "~" is used. Here, the symbol "'" is used.

【0040】また、Also,

【0041】[0041]

【数7】z(T)=(y(T), y(T−τ),…,y(T−
(n−1)τ)) であるので、z(T)のn次元再構成状態空間におけるj
軸成分はyj(T)となる。よって、データベクトルz(T)
のsステップ後のデータベクトルz(T+s)の予測値を
z”(T+s)とすると、そのj軸成分は、式(3)のaj
(T)にyj(T)を代入しファジィ推論をすることによ
り、aj(T+s)として求めることができる。この方法を
「局所ファジィ再構成 (Local Fuzzy Reconstruction)
法」と呼ぶことにする。
(7) z (T) = (y (T), y (T−τ),..., Y (T−
(n-1) τ)), so that j (T) in the n-dimensional reconstructed state space
The axis component is yj (T). Therefore, the data vector z (T)
If the predicted value of the data vector z (T + s) after s steps is z ″ (T + s), the j-axis component is aj in equation (3).
By substituting yj (T) for (T) and performing fuzzy inference, it can be obtained as aj (T + s). This method is called "Local Fuzzy Reconstruction"
I will call it the law.

【0042】以下に具体的な例として、埋め込み次元n
=3、遅れ時間τ=4、近傍に含まれるデータベクトル
数N=3の場合について説明する。
As a specific example, the embedding dimension n
= 3, the delay time τ = 4, and the number N of data vectors included in the vicinity N = 3.

【0043】各々のデータベクトルを、Each data vector is represented by

【0044】[0044]

【数8】 z(T)=(y1(T), y2(T−4), y3(T−8)) x(a)=(y1(a), y2(a−4), y3(a−8)) x(b)=(y1(b), y2(b−4), y3(b−8)) x(c)=(y1(c), y2(c−4), y3(c−8)) z"(T+s)=(y1(T+s), y2(T+s−4), y3(T+s−8)) x(a+s)=(y1(a+s), y2(a+s−4), y3(a+s−8)) x(b+s)=(y1(b+s), y2(b+s−4), y3(b+s−8)) x(c+s)=(y1(c+s), y2(c+s−4), y3(c+s−8)) とすると、式(3)で示されるファジィルールは、式(4)
(5)(6)のように表される。
(8) z (T) = (y1 (T), y2 (T-4), y3 (T-8)) x (a) = (y1 (a), y2 (a-4), y3 (a) -8)) x (b) = (y1 (b), y2 (b-4), y3 (b-8)) x (c) = (y1 (c), y2 (c-4), y3 (c −8)) z ″ (T + s) = (y1 (T + s), y2 (T + s−4), y3 (T + s−8)) x (a + s) = (y1 (a + s), y2 (a + s−4), y3 ( a + s-8)) x (b + s) = (y1 (b + s), y2 (b + s-4), y3 (b + s-8)) x (c + s) = (y1 (c + s), y2 (c + s-4), y3 ( c + s-8)), the fuzzy rule expressed by the equation (3) is obtained by the equation (4)
(5) and (6).

【0045】再構成状態空間の第1軸については、For the first axis of the reconstructed state space,

【0046】[0046]

【数9】 IF a1(T) is y'1(a) THEN a1(T+s) is y'1(a+s) IF a1(T) is y'1(b) THEN a1(T+s) is y'1(b+s) IF a1(T) is y'1(c) THEN a1(T+s) is y'1(c+s) …(4) 再構成状態空間の第2軸については、IF a1 (T) is y′1 (a) THEN a1 (T + s) is y′1 (a + s) IF a1 (T) is y′1 (b) THEN a1 (T + s) is y′1 ( b + s) IF a1 (T) is y′1 (c) THEN a1 (T + s) is y′1 (c + s) (4) For the second axis of the reconstructed state space,

【0047】[0047]

【数10】 IF a2(T) is y'2(a−4) THEN a2(T+s) is y'2(a+s−4) IF a2(T) is y'2(b−4) THEN a2(T+s) is y'2(b+s−4) IF a2(T) is y'2(c−4) THEN a2(T+s) is y'2(c+s−4) …(5) 再構成状態空間の第3軸については、## EQU10 ## IF a2 (T) is y'2 (a-4) THEN a2 (T + s) is y'2 (a + s-4) IF a2 (T) is y'2 (b-4) THEN a2 (T + s ) is y'2 (b + s-4) IF a2 (T) is y'2 (c-4) THEN a2 (T + s) is y'2 (c + s-4) ... (5) The third axis of the reconstructed state space about,

【0048】[0048]

【数11】 IF a3(T) is y'3(a−8) THEN a3(T+s) is y'3(a+s−8) IF a3(T) is y'3(b−8) THEN a3(T+s) is y'3(b+s−8) IF a3(T) is y'3(c−8) THEN a3(T+s) is y'3(c+s−8) …(6) また、メンバーシップ関数はx(a)、x(b)、x(c)は
z(T)を中心とした近傍のデータベクトルであるのでフ
ァジィルール(4)(5)(6)の前件部における再構成状態
空間の各軸のメンバーシップ関数は図7のようになる。
## EQU11 ## IF a3 (T) is y'3 (a-8) THEN a3 (T + s) is y'3 (a + s-8) IF a3 (T) is y'3 (b-8) THEN a3 (T + s ) is y'3 (b + s-8) IF a3 (T) is y'3 (c-8) THEN a3 (T + s) is y'3 (c + s-8) ... (6) Also, the membership function is x ( Since a), x (b), and x (c) are data vectors near z (T), each of the reconstructed state spaces in the antecedent of the fuzzy rules (4), (5), and (6) The membership function of the axis is as shown in FIG.

【0049】なお、後件部のメンバーシップ関数は、台
集合を有限範囲に限定することができないため、クリス
プ表現とする。
Since the membership function of the consequent part cannot limit the table set to a finite range, it is expressed in a crisp expression.

【0050】以上のファジィルールおよびメンバーシッ
プ関数で表現されたダイナミクスに対し、a1(T)=y
1(T)、a2(T)=y2(T)、a3(T)=y2(T)を入
力データとしてファジィ推論を行うと、
For the dynamics expressed by the fuzzy rules and the membership functions, a1 (T) = y
When fuzzy inference is performed using 1 (T), a2 (T) = y2 (T), and a3 (T) = y2 (T) as input data,

【0051】[0051]

【数12】 y”1(T+s) =a1(T+s) y”2(T+s−4)=a2(T+s) y”3(T+s−8)=a3(T+s) …(7) となり、元の時系列データy1(T)のsステップ先の予
測値y”1(T+s)はa1(T+s)として求められる。
Y′1 (T + s) = a1 (T + s) y ″ 2 (T + s−4) = a2 (T + s) y ″ 3 (T + s−8) = a3 (T + s) (7) The predicted value y ″ 1 (T + s) s steps ahead of the series data y1 (T) is obtained as a1 (T + s).

【0052】以上のように、ファジィ推論の持つ内挿能
力、局所的近似能力を用いることで予測値z(T+s)
を求め、このz(T+s)からsステップ先の時系列の
予測値y(t+s)を求めることができる。
As described above, the prediction value z (T + s) is obtained by using the interpolation capability and the local approximation capability of the fuzzy inference.
, And a time-series predicted value y (t + s) s steps ahead can be obtained from z (T + s).

【0053】この局所ファジィ再構成法による予測を血
糖値の予測に適用するには、血糖値の時系列データを多
次元状態空間に埋め込んで構成するアトラクタ上から現
時点の血糖値のデータベクトルz(T)と、ユークリッ
ド距離を測度として近いものを選択した過去の近傍デー
タベクトルx(i)及びデータベクトルx(i)からs
ステップ先のデータベクトルx(i+s)を求め、これ
らデータベクトルからz(T)のsステップ先の予測値
z(T+s)を求め、これを時系列化した予測血糖値y
(t+s)として求める。
In order to apply the prediction by the local fuzzy reconstruction method to the prediction of the blood glucose level, the current blood glucose level data vector z () is obtained from an attractor constructed by embedding the blood glucose level time-series data in a multidimensional state space. T) and s from the past neighboring data vector x (i) and the data vector x (i) in which the nearest one is selected using the Euclidean distance as a measure.
The data vector x (i + s) at the step destination is obtained, the predicted value z (T + s) at the s step destination of z (T) is obtained from these data vectors, and the time-series predicted blood glucose value y is obtained.
It is obtained as (t + s).

【0054】(局所ファジィ再構成法による予測実験)
本願発明者等は、血糖値測定データからカオス理論を用
いて現時点から血糖値の経時的振る舞いが予測できるこ
とを実験で確認した。
(Prediction experiment by local fuzzy reconstruction method)
The inventors of the present application have confirmed by experiments that it is possible to predict the time-dependent behavior of the blood glucose level from the present time using the chaos theory from the blood glucose level measurement data.

【0055】この実験は、局所ファジィ再構成法を用い
たコンピュータソフトにより、各症例の1日先の血糖予
測を行い、実測値と比較した結果に図8のものを得るこ
とができた。同図は、症例1の予測結果であり、平均2
0mg/dl以下の誤差で予測可能であり、十分に臨床
使用可能な精度を得ることができた。他の症例に関して
も同様に良好な予測結果を得ることができた。
In this experiment, the blood glucose of each case was predicted one day ahead by computer software using the local fuzzy reconstruction method, and the results shown in FIG. 8 were obtained as a result of comparison with the measured values. The figure shows the prediction results for Case 1 with an average of 2
Prediction was possible with an error of 0 mg / dl or less, and sufficient clinically usable accuracy was obtained. Good prediction results were obtained for other cases as well.

【0056】この予測結果から、臨床的には予測値があ
るレベル以上と以下のとき、その時点で効くインスリン
量を少量変化させる適正なプログラミングを作ることに
より、タイムラグの無い最良の血糖コントロールシステ
ムを構築できる可能性もある。
From this prediction result, when the predicted value is clinically above or below a certain level, by making appropriate programming to change the amount of insulin effective at that point in a small amount, the best blood glucose control system without time lag can be obtained. There is a possibility that it can be built.

【0057】以上までのことから、本発明は、以下の血
糖値の予測システム及び血糖値の予測方法並びにその方
法を記録した記録媒体を特徴とするものである。
As described above, the present invention is characterized by the following blood glucose level prediction system, blood glucose level prediction method, and recording medium recording the method.

【0058】(血糖値の予測システム)血糖値測定デー
タを時系列データとして血糖値時系列ファイルに格納す
る時系列測定データ保存手段と、前記血糖値時系列ファ
イルに格納された時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定するダイナミ
クス推定部と、前記推定したダイナミクスを多次元状態
空間に埋め込むための埋め込み次元nと遅れ時間τをパ
ラメータとして格納するパラメータ保存手段と、前記血
糖値時系列ファイルに格納される血糖値と、これに対応
する前記パラメータを基に、局所ファジィ再構成法によ
り近未来の血糖値を予測して予測血糖値ファイルに格納
する血糖値予測・保存手段と、前記各ファイルのデータ
を表示できる表示手段と、を備えたことを特徴とする。
(Blood Sugar Level Prediction System) A time series measurement data storage means for storing blood sugar level measurement data as time series data in a blood glucose level time series file, and a time series data stored in the blood glucose level time series file. A dynamics estimating unit for estimating dynamics that can best represent topological properties, parameter embedding means for embedding the estimated dynamics in a multidimensional state space, and a parameter storing means for storing a delay time τ as parameters, Based on the blood glucose level stored in the blood glucose level time series file and the corresponding parameters, a blood glucose level prediction / storing to predict the near future blood glucose level by the local fuzzy reconstruction method and store the predicted blood glucose level in the predicted blood glucose level file Means, and display means for displaying data of each file.

【0059】(血糖値の予測方法)最新及び過去の血糖
値測定データy(t)を時系列データとして用意し、前
記時系列データをタケテンスの埋め込み定理により多次
元状態空間に埋め込むことでアトラクタを構成し、最新
の血糖値測定データy(T)を含む前記アトラクタ上の
データベクトルz(T)を選択し、前記データベクトル
z(T)の近傍空間を通過する別の軌道上にある複数の
近傍データベクトルx(i)をユークリッド距離を測度
として近いものを選択し、前記アトラクタ上から前記デ
ータベクトルx(i)の予測しようとするsステップ先
のデータベクトルx(i+s)を選択し、前記データベ
クトルz(T),x(i),x(i+s)を用いて局所
ファジィ再構成法によりデータベクトルz(T)のsス
テップ先の予測値z(T+s)を推論し、前記予測値z
(T+s)からsステップ先の予測血糖値y(T+s)
を求めることを特徴とする。
(Prediction method of blood glucose level) The latest and past blood glucose level measurement data y (t) are prepared as time-series data, and the time-series data is embedded in a multidimensional state space by the Taketens embedding theorem, whereby the attractor can be used. And selecting a data vector z (T) on the attractor containing the latest blood glucose measurement data y (T), and selecting a plurality of data vectors on another trajectory passing through a space near the data vector z (T). Selecting a nearby data vector x (i) that is close to the Euclidean distance as a measure, selecting a data vector x (i + s) s steps ahead of the data vector x (i) to be predicted from the attractor, Predicted value s steps ahead of data vector z (T) by local fuzzy reconstruction using data vector z (T), x (i), x (i + s) (T + s) infers, the predicted value z
Predicted blood sugar value y (T + s) s steps ahead from (T + s)
Is obtained.

【0060】(血糖値の予測方法を記録した記録媒体)
最新及び過去の血糖値測定データy(t)を時系列デー
タとして収集・記録する手順と、前記時系列データをタ
ケテンスの埋め込み定理により多次元状態空間に埋め込
むことでアトラクタを構成する手順と、最新の血糖値測
定データy(T)を含む前記アトラクタ上のデータベク
トルz(T)を選択する手順と、前記データベクトルz
(T)の近傍空間を通過する別の軌道上にある複数の近
傍データベクトルx(i)をユークリッド距離を測度と
して近いものを選択する手順と、前記アトラクタ上から
前記データベクトルx(i)の予測しようとするsステ
ップ先のデータベクトルx(i+s)を選択する手順
と、前記データベクトルz(T),x(i),x(i+
s)を用いて局所ファジィ再構成法によりデータベクト
ルz(T)のsステップ先の予測値z(T+s)を推論
する手順と、前記予測値z(T+s)からsステップ先
の予測血糖値y(T+s)を求める手順と、をコンピュ
ータに実行させるプログラムとして、該コンピュータが
読み取り可能な記録媒体に記録したことを特徴とする。
(Recording medium on which blood glucose level prediction method is recorded)
A procedure for collecting and recording the latest and past blood glucose level measurement data y (t) as time-series data, a procedure for embedding the time-series data in a multidimensional state space by embedding the Takentens theorem, Selecting a data vector z (T) on the attractor including the blood glucose level measurement data y (T);
A procedure of selecting a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of (T) as a measure using a Euclidean distance as a measure, and a step of selecting the data vector x (i) from the attractor. A procedure for selecting a data vector x (i + s) s steps ahead to be predicted; and a procedure for selecting the data vectors z (T), x (i), x (i +
s) using a local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and a predicted blood glucose value y s steps ahead from the predicted value z (T + s) The procedure for obtaining (T + s) is recorded on a computer-readable recording medium as a program for causing a computer to execute the procedure.

【0061】[0061]

【発明の実施の形態】図1は、本発明の実施形態を示す
システム構成図である。自己測定血糖値入力部1は、糖
尿病患者が日毎に自己測定した血糖値をインターネッ
ト、PHS、パソコン通信、ポケベル、FAX等の通信
手段を使って医療センター等に伝送する。
FIG. 1 is a system configuration diagram showing an embodiment of the present invention. The self-measured blood sugar level input unit 1 transmits a blood sugar level self-measured daily by a diabetic patient to a medical center or the like using communication means such as the Internet, PHS, personal computer communication, pager, and FAX.

【0062】血糖値時系列ファイル2は、医療センター
等のコンピュータシステムの外部記憶装置として設けら
れ、血糖値入力部1から伝送されてきた自己測定血糖値
データを患者別の時系列データとして保存しておく。
The blood glucose level time series file 2 is provided as an external storage device of a computer system such as a medical center, and stores self-measured blood glucose level data transmitted from the blood glucose level input unit 1 as time series data for each patient. Keep it.

【0063】ダイナミクス推定部3は、ファイル2に格
納される患者別の時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定する。
The dynamics estimating unit 3 estimates dynamics that can best represent the topological properties of the patient-specific time-series data stored in the file 2.

【0064】このダイナミクスの推定は、多次元状態空
間に埋め込むためのパラメータ、すなわち患者別ファイ
ルの前半を埋め込むための初期値として1ステップ先を
予測し、次に前半+1のデータを既知とした場合の1ス
テップ先を予測する。この処理をデータがなくなるまで
繰り返したときの予測値と実測血糖値の相関係数が最も
高い場合の「埋め込み次元n」と「遅れ時間τ」として
求める。
This dynamics estimation is performed by predicting one step ahead as a parameter for embedding in the multidimensional state space, that is, an initial value for embedding the first half of the patient-specific file, and then assuming that the first half + 1 data is known. Is predicted one step ahead. When the correlation coefficient between the predicted value and the actually measured blood glucose level when this process is repeated until there is no more data is the highest, “embedded dimension n” and “delay time τ” are obtained.

【0065】このダイナミクス推定は、ある一定量の自
己測定値が収集された場合と、ダイナミクスの変化(例
えば、患者の血糖値変化がpoor controlか
らfair controlやgood contro
lに移行)により予測誤差がある値より大きくなった場
合に実行される。
The dynamics estimation is performed when a certain amount of self-measurement value is collected and when a change in the dynamics (for example, a change in the blood glucose level of the patient is changed from poor control to fair control or good control).
This is executed when the prediction error becomes larger than a certain value due to (shift to 1).

【0066】最適埋め込みパラメータファイル4は、ダ
イナミクス推定部3で求めた「埋め込み次元n」と「遅
れ時間τ」を患者別のパラメータとして保存しておく。
The optimum embedding parameter file 4 stores “embedding dimension n” and “delay time τ” obtained by the dynamics estimating unit 3 as parameters for each patient.

【0067】血糖値予測部5は、血糖値時系列ファイル
2に格納される患者別の血糖値測定データと、それに対
応する最適埋め込みパラメータをパラメータファイル4
から取り出し、局所ファジィ再構成法により1〜nステ
ップ先の血糖値を予測する。
The blood glucose level predicting section 5 stores the blood glucose level measurement data for each patient stored in the blood glucose level time-series file 2 and the optimum embedding parameters corresponding to the data.
And predicts the blood glucose level 1 to n steps ahead by the local fuzzy reconstruction method.

【0068】この血糖値予測は、時系列データをタケテ
ンスの埋め込み定理により多次元状態空間に埋め込むこ
とでアトラクタを構成し、最新の血糖値測定データy
(T)を含むアトラクタ上のデータベクトルz(T)を
選択し、このデータベクトルz(T)の近傍空間を通過
する別の軌道上にある複数の近傍データベクトルx
(i)をユークリッド距離を測度として近いものを選択
し、アトラクタ上からデータベクトルx(i)の予測し
ようとするsステップ先のデータベクトルx(i+s)
を選択し、データベクトルz(T),x(i),x(i
+s)を用いて局所ファジィ再構成法によりデータベク
トルz(T)のsステップ先の予測値z(T+s)を推
論し、この予測値z(T+s)からsステップ先の予測
血糖値y(T+s)を求める。
In this blood glucose level prediction, an attractor is constructed by embedding time-series data in a multidimensional state space by the Takentens embedding theorem, and the latest blood glucose level measurement data y
A data vector z (T) on the attractor including (T) is selected, and a plurality of neighboring data vectors x on another trajectory passing through the neighboring space of the data vector z (T).
(I) is selected using the Euclidean distance as a measure, and a data vector x (i + s) s steps ahead of the data vector x (i) to be predicted from the attractor.
And the data vectors z (T), x (i), x (i
+ S) using the local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and predict a blood glucose value y (T + s) s steps ahead from this predicted value z (T + s). ).

【0069】予測血糖値ファイル6は、血糖値予測部5
で予測した血糖値データを患者別に保存しておく。
The predicted blood sugar level file 6 is stored in the blood sugar level predicting section 5.
Save the blood glucose level data predicted in the above for each patient.

【0070】インスリン投与量入力部7は、糖尿病患者
が実際に投与したインスリン量をインターネット、PH
S、パソコン通信、ポケベル、FAX等の通信手段を使
って医療センター等に伝送する。
The insulin dose input section 7 is used to input the amount of insulin actually administered by the diabetic patient via the Internet, PH, or the like.
The data is transmitted to a medical center or the like using communication means such as S, personal computer communication, pager, and facsimile.

【0071】インスリン投与量時系列ファイル8は、医
療センター等のコンピュータシステムの外部記憶装置と
して設けられ、インスリン投与量入力部7から伝送され
てきたインスリン投与量データを患者別の時系列データ
として保存しておく。
The insulin dose time-series file 8 is provided as an external storage device of a computer system such as a medical center, and stores the insulin dose data transmitted from the insulin dose input unit 7 as patient-specific time-series data. Keep it.

【0072】表示部9は、血糖値時系列ファイル2と予
測血糖値ファイル6及びインスリン投与量時系列ファイ
ル8から検索した患者別の各データを表示し、医師に対
して糖尿病医療に必要な支援情報として与える。この表
示は、患者の現在の血糖値や近未来の予測血糖値、現在
までのインスリン投与量の履歴情報の他に、必要に応じ
て予測確信度や誤差範囲等の医療支援に必要な情報表示
にされる。
The display unit 9 displays each data for each patient retrieved from the blood sugar level time-series file 2, the predicted blood sugar level file 6, and the insulin dose time-series file 8, and provides the doctor with necessary support for diabetes care. Give as information. This display shows the current blood glucose level of the patient, the predicted blood glucose level in the near future, the history information of the insulin dose up to the present, and the information necessary for medical support such as the prediction confidence level and error range as necessary. To be.

【0073】以上のシステム構成により、従来の医師の
経験や感等によるインスリン投与治療に代えて、患者個
人別の血糖値変化のダイナミクスを基にした予測血糖値
から医師が適正なインスリン投与量を判断することが可
能となり、タイムラグのない血糖値コントロールによ
り、血糖値の日毎の変化を小さくしながら長期的には適
正な範囲に収めることが可能となる。
With the above system configuration, instead of the conventional insulin administration treatment based on the experience and feeling of the doctor, the doctor can determine the appropriate insulin dose from the predicted blood glucose level based on the dynamics of the blood glucose level change for each individual patient. The determination can be made, and the blood sugar level control without a time lag makes it possible to keep the blood sugar level within an appropriate range in the long term while reducing the daily change.

【0074】また、患者は自己測定データを積極的に利
用すること、及び医師は予測血糖値を基にした日毎の指
示を患者に提供することが可能となり、自己血糖値測定
に対する患者のモチベーションの向上が期待できる。
In addition, the patient can actively use the self-measurement data, and the doctor can provide the patient with a daily instruction based on the predicted blood glucose level, thereby increasing the motivation of the patient for the self-blood glucose level measurement. Improvement can be expected.

【0075】[0075]

【発明の効果】以上のとおり、本発明によれば、血糖値
の経時的振る舞いがカオス現象であることに着目し、血
糖値の測定時系列データから局所ファジィ再構成法によ
り現在の血糖値から近未来(明日以降)の血糖値を予測
するようにしたため、医師が適正なインスリン投与量を
決定するための支援情報がタイムラグ無しに得られる効
果がある。
As described above, according to the present invention, attention is paid to the fact that the time-dependent behavior of the blood glucose level is a chaotic phenomenon, and the local fuzzy reconstruction method is used to calculate the current blood glucose level from the blood glucose level measurement time series data. Since the blood sugar level in the near future (after tomorrow) is predicted, there is an effect that support information for a doctor to determine an appropriate insulin dose can be obtained without a time lag.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す血糖値予測システム構
成図。
FIG. 1 is a configuration diagram of a blood sugar level prediction system showing an embodiment of the present invention.

【図2】糖尿病患者の時系列データの一部。FIG. 2 is a part of time series data of a diabetic patient.

【図3】3次元空間に射影されたアトラクタの例。FIG. 3 is an example of an attractor projected onto a three-dimensional space.

【図4】3次元空間上のアトラクタ形状の詳細図。FIG. 4 is a detailed view of an attractor shape in a three-dimensional space.

【図5】時系列データのn次元再構成空間への埋め込み
の説明図。
FIG. 5 is an explanatory diagram of embedding time-series data in an n-dimensional reconstruction space.

【図6】局所再構成法によるx(T)からx(T+s)
へのダイナミクスの説明図。
FIG. 6 shows x (T + s) from x (T) by the local reconstruction method.
FIG.

【図7】局所ファジィ再構成法における前件部メンバー
シップ関数例。
FIG. 7 is an example of an antecedent membership function in the local fuzzy reconstruction method.

【図8】症例1の予測結果。FIG. 8 shows prediction results of Case 1.

【符号の説明】[Explanation of symbols]

1…自己測定血糖値入力部 2…血糖値時系列ファイル 3…ダイナミクス推定部 4…最適埋め込みパラメータファイル 5…血糖値予測部 6…予測血糖値ファイル 7…インスリン投与量入力部 8…インスリン投与量時系列ファイル 9…表示部 Reference Signs List 1 self-monitoring blood sugar level input unit 2 blood sugar level time-series file 3 dynamics estimation unit 4 optimal embedding parameter file 5 blood sugar level prediction unit 6 predicted blood sugar level file 7 insulin dose input unit 8 insulin dose Time series file 9 ... Display

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年7月31日[Submission date] July 31, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 血糖値の予測システム及び予測方法並
びにこの方法を記録した記録媒体
Patent application title: Blood glucose predicting system and predicting method, and recording medium recording this method

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、糖尿病患者の血糖
値変化をコンピュータ処理によって予測する血糖値の予
測方法及び予測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for predicting a blood sugar level of a diabetic patient by computer processing.

【0002】[0002]

【従来の技術】糖尿病患者の治療には、患者の血糖値を
基にインスリンの投与量を調整することが行われてい
る。血糖値管理には、患者自身又は医師が血糖値を測定
するのみとするオープンサークルでなされているか、血
糖値測定データを基に医師の感で1カ月か2週間に1回
の割合でインスリン投与量を調整するフィードバック法
が採られている。また、インスリン投与量は、インスリ
ンスケールを取り決め、日毎に調整することもある。
2. Description of the Related Art In the treatment of a diabetic patient, the dosage of insulin is adjusted based on the blood sugar level of the patient. Blood glucose management is performed in an open circle in which the patient or the physician only measures the blood glucose level, or insulin is administered once a month or two weeks with the feeling of the physician based on the blood glucose measurement data. A feedback method of adjusting the amount is employed. Also, the insulin dose may be adjusted on a daily basis by negotiating an insulin scale.

【0003】[0003]

【発明が解決しようとする課題】糖尿病患者に対する医
師のインスリン療法の処置は、以下のいずれかにされて
いる。
The treatment of a physician for insulin therapy for a diabetic patient is one of the following.

【0004】(1)血糖値測定データを基に、医師の経
験と感により月2回程度の周期でインスリン投与量を決
定する。
(1) Based on the blood sugar level measurement data, an insulin dose is determined about twice a month based on the experience and feeling of a doctor.

【0005】(2)血糖値に対するインスリン投与量を
定めておき、このスケールに基づいて1〜3回/日で行
う。
[0005] (2) An insulin dose for a blood glucose level is determined, and the test is performed once to three times a day based on this scale.

【0006】これら処置方法では、血糖値のコントロー
ルは、タイムラグの大きなフィードバックを伴うため血
糖値変化が不安定になる恐れがある。例えば、血糖値の
平均値を低下させるためにインスリン投与量を増加させ
ると、低血糖を招くことがある。逆に、インスリン投与
量を減らすと、血糖値が高くなり過ぎることがある。
[0006] In these treatment methods, the control of the blood sugar level involves feedback with a large time lag, so that the blood sugar level change may become unstable. For example, increasing the insulin dose to lower the average blood glucose level may result in hypoglycemia. Conversely, reducing the insulin dose can cause blood sugar levels to be too high.

【0007】このような事情から、血糖値の測定データ
を基に、血糖値の適切なコントロール効果を得るための
インスリン投与量を決定するには、タイムラグのない血
糖値コントロールにより、血糖値の日毎の変化を小さく
しながら長期的には適正な範囲に収めることが要望され
る。
[0007] Under such circumstances, in order to determine an insulin dose for obtaining an appropriate blood sugar level control effect based on blood sugar level measurement data, blood glucose level control without a time lag requires daily measurement of blood glucose level. It is demanded to keep the change within a proper range in the long term while minimizing the change in the temperature.

【0008】本発明の目的は、医師が適正なインスリン
投与量を決定するための支援情報がタイムラグ無しに得
られるよう、血糖値の測定データを基に日毎の血糖値を
予測できるようにした血糖値予測システム及び血糖値予
測方法並びにその方法を記録した記録媒体を提供するこ
とにある。
[0008] An object of the present invention is to provide a blood glucose level that can predict a daily blood glucose level based on blood glucose level measurement data so that a doctor can obtain support information for determining an appropriate insulin dose without a time lag. It is an object of the present invention to provide a value prediction system, a blood glucose level prediction method, and a recording medium on which the method is recorded.

【0009】[0009]

【課題を解決するための手段】本発明は、血糖コントロ
ールの不安定性について分析し、これに基づいて血糖値
の経時的振る舞いにカオス現象の存在を解明し、局所フ
ァジィ再構成法により現在の血糖値から近未来(明日以
降)の血糖値を予測できるようにしたものである。これ
ら事項を以下に説明する。なお、局所ファジィ再構成法
による近未来の予測については、本願発明者等は、既に
提案している(特開平7−239838号公報)。
DISCLOSURE OF THE INVENTION The present invention analyzes the instability of blood glucose control, elucidates the existence of chaos in the behavior of blood glucose over time based on this analysis, and uses the local fuzzy reconstruction method to analyze the current blood glucose. The blood sugar level in the near future (after tomorrow) can be predicted from the value. These matters will be described below. The near future prediction by the local fuzzy reconstruction method has already been proposed by the present inventors (Japanese Patent Laid-Open No. 7-239838).

【0010】(血糖値の経時的振る舞いとカオス現象)
血糖値データの解析対象とした糖尿病患者は、インスリ
ン依存型(IDDM)5症例、非依存型(NIDDM)
5症例である。これら患者の最短1年半から最長10年
に及び1日間隔の時系列測定データを対象とした。図2
は、良好な血糖コントロールを示す1つのNIDDM症
例と2つのIDDM症例の時系列データの一部を示す。
(Time-dependent behavior of blood sugar level and chaos phenomenon)
Diabetes patients whose blood glucose data were analyzed were insulin-dependent (IDDM) 5 cases and non-dependent (NIDDM)
Five cases. The time series measurement data of these patients for a minimum of one and a half years to a maximum of ten years was measured at daily intervals. FIG.
Shows part of the time-series data of one NIDDM case and two IDDM cases showing good glycemic control.

【0011】臨床的にコントロールの指標として用いら
れるのは、HbAlcの%であるが、これは臨床的には
大まかに過去1〜2カ月の血糖コントロール状態の平均
を示すとされている。図2のデータになる症例1はHb
lcが5〜6%、症例2はHbAlcが5〜6%、症
例3はHbAlcが9〜10%で、経過中コントロール
状態がほぼ一定していた。
[0011] Clinically used as an indicator of control is the% of HbAlc , which is clinically considered to roughly represent the average of glycemic control over the past one to two months. Case 1 which becomes the data of FIG. 2 is Hb
A lc 5 to 6% Case 2 HbA lc 5 to 6% Case 3 in HbA lc is 9-10%, during the course control state has been nearly constant.

【0012】症例1は、インスリン非依存型糖尿病で内
因性インスリン分泌を介して血糖調節機能が不十分なが
ら残存していると考えられる。症例2及び3は、インス
リン依存型糖尿病でインスリン分泌能が0に近く、内因
性インスリンによる血糖調節機能が0に近いと考えられ
る。
Case 1 is considered to be non-insulin-dependent diabetes mellitus, and the blood glucose control function via the endogenous insulin secretion is insufficient but remaining. Cases 2 and 3 are considered to have insulin-dependent diabetes with insulin secretion capacity close to 0 and blood sugar regulation function by endogenous insulin close to 0.

【0013】これら3つの症例のデータをFFT(Fa
st Fourier Transform)でスペク
トル解析を行うと、広い帯域で周波数成分が現れてい
た。また、自己相関関数をとると、時間の増大とともに
ほぼ0に収束した。また、最大リヤプノフ指数は正であ
り、3つの症例はカオスである可能性を示していた。
[0013] The data of these three cases was converted to FFT ( Fa
When the spectrum analysis was performed using the “ st Fourier Transform” , frequency components appeared in a wide band. In addition, when the autocorrelation function was taken, it converged to almost 0 with an increase in time. The maximum Lyapunov exponent is positive, three cases showed the potential to be chaotic.

【0014】次に、この3つの症例について3次元空間
上に射影されたアトラクタを図3に示す。アトラクタ
は、症例1では円柱状、症例2では三角錐状、症例3で
は球状を示している。各フラクタル次元は、症例1が
2.27に対して、症例2では2.73、さらに症例3
では3.54となり、アトラクタの形状が複雑化するに
つれてフラクタル次元が増大することを示している。
Next, the attractors projected onto the three-dimensional space for these three cases are shown in FIG. The attractor shows a columnar shape in Case 1, a triangular pyramid shape in Case 2, and a spherical shape in Case 3. Each fractal dimension is 2.27 in Case 1, 2.73 in Case 2, and Case 3
Is 3.54, which indicates that the fractal dimension increases as the shape of the attractor increases.

【0015】これら3つの症例は、HbAlcによるコ
ントロールレベルの評価で症例1の円柱と症例2の三角
錐は良好(good control)で同じ程度であ
り、そのアトラクタの形状の差異はIDDMとNIDD
Mの自己血糖調節能力差に起因していると思われる。
[0015] These three cases, triangular pyramid HbA lc cylinder and case 2 in Case 1 in the evaluation of the control level by the the same extent in good (good Control), the difference in shape of the attractor IDDM and NIDD
This is probably due to the difference in M's ability to regulate blood sugar.

【0016】症例2の三角錐と症例3の球ではどちらも
IDDMであり、同様の持続インスリン皮下注入療法
(CSII)にてコントロールしており、コントロール
レベルが良好(good control)対不十分
(poor control)と異なっていた。
Both the pyramidal pyramid of Case 2 and the sphere of Case 3 are IDDM and are controlled by the same continuous insulin subcutaneous infusion therapy (CSII), and the control level is good (good control) or insufficient (poor). control).

【0017】他のすべてのDM症例に関しても同様の検
討を行ったがすべての症例がカオス性を示し、アトラク
タ形状はこの3種のいずれかあるいは混合した形状であ
った。
The same examination was performed for all other DM cases, but all cases showed chaos, and the attractor shape was any of these three types or a mixed shape.

【0018】この3つの形のアトラクタもデータ数を変
化させ、いろいろな方向から観測すると、実際は図4に
示すようなスパイラル形状を基本とし、このスパイラル
がおそらく3つか4つの少数のパラメータとノイズによ
って三角錐や円柱、球等に形を変えるものと考えられ
る。
These three types of attractors also change the number of data, and when observed from various directions, they are actually based on a spiral shape as shown in FIG. 4, and this spiral is probably based on three or four small parameters and noise. It is thought to change into a triangular pyramid, cylinder, sphere, etc.

【0019】なお、そのパラメータは内因性インスリン
を介した血糖コントロール能力の残存やコントロールレ
ベルに存在していることが他の多くの症例からも推測さ
れた。
It has been inferred from many other cases that the parameters are present in the residual or control level of the ability to control blood glucose through endogenous insulin.

【0020】以上のように、糖尿病患者の血糖値の経時
的振る舞いは、一見では不規則な現象、つまり偶然性に
支配された非決定論的な現象に見えるが、決定論的にそ
の挙動を決定できる現象、つまり決定論的カオス現象で
あることを解明することができた。
As described above, the time-dependent behavior of the blood glucose level of a diabetic patient appears to be an irregular phenomenon, that is, a nondeterministic phenomenon governed by chance, but its behavior can be determined deterministically. I was able to elucidate the phenomenon, a deterministic chaotic phenomenon.

【0021】(局所再構成法による血糖値の予測)決定
論的カオス現象では、非線形な決定論的規則性を推定で
きれば、ある時点の観測データからカオスの「初期値に
対する鋭敏な依存性」により、決定論的因果性を失うま
での近未来のデータを予測することが可能となる。
(Prediction of Blood Sugar Level by Local Reconstruction Method) In the deterministic chaos phenomenon, if nonlinear deterministic regularity can be estimated, the "sensitive sensitivity to the initial value" of chaos is obtained from observation data at a certain point in time. Thus, it is possible to predict data in the near future until losing deterministic causality.

【0022】このような決定論的カオス現象に対する近
未来の予測は、「1本の観測時系列データから、元の力
学系の状態空間にアトラクタを再構成する」というタケ
ンスの理論に基づいている。この理論の概要は、以下の
通りである。
The near future prediction for such a deterministic chaotic phenomenon is based on Takens' theory that "attractors are reconstructed from one observed time series data into the state space of the original dynamical system". . The outline of this theory is as follows.

【0023】観測されたある時系列データy(t)か
ら、ベクトル(y(t),y(t−τ),y(t−2
τ),y(t−(n−1)τ))をつくる(τは遅れ時
間)。このベクトルは、n次元再構成状態空間Rの一
点を示すことになる。
From the observed time series data y (t), vectors (y (t), y (t−τ), y (t−2)
τ), y (t− (n−1) τ)) (τ is a delay time). This vector indicates one point of the n-dimensional reconstructed state space R n .

【0024】したがって、tを変化させると、このn次
元再構成状態空間に軌道を描くことができる。もしも、
対象システムが決定論的力学系であって、観測時系列デ
ータがこの力学系の状態空間から一次元ユークリッド空
間RへのC連続写像に対応した観測系を介して得られ
たものと仮定すれば、この再構成軌道は、nを十分大き
くとれば、元の決定論系の埋め込み(embeddin
g)になっている。
Therefore, by changing t, a trajectory can be drawn in this n-dimensional reconstructed state space. If,
A target system deterministic dynamical system, the observed time series data assuming that obtained through the observation system corresponding to C 1 continuous function from the state space of the dynamical system into a one-dimensional Euclidean space R For this reconstruction trajectory, if n is sufficiently large, the embedding of the original deterministic system (embeddin
g).

【0025】つまり、力学系に何らかのアトラクタが現
れているならば、再構成状態空間にはこのアトラクタの
位相構造を保存したアトラクタが再現されることにな
る。nは通常「埋め込み次元」と呼ばれるが、再構成の
操作が「埋め込み」であるためには、この次元nは元の
力学系の状態空間の次元をmとしたとき、下記の式が成
立すれば十分であることが証明されている。
That is, if any attractor appears in the dynamical system, an attractor that preserves the phase structure of the attractor is reproduced in the reconstructed state space. n is usually referred to as “embedded dimension”. In order for the reconstruction operation to be “embedded”, when the dimension of the state space of the original dynamical system is m, the following equation is satisfied. Has proven to be sufficient.

【0026】[0026]

【数1】n≧2m+1 但し、これは十分条件であって、データによっては2m
+1未満でも埋め込みである場合がある。さらに、n>
2d(但し、dは元の力学系のアトラクタのボックスカ
ウント次元)であれば、再構成の操作が1対1写像であ
ることも示されている。
## EQU1 ## However, this is a sufficient condition, and depending on data, 2 m
Embedding may be performed even if the value is less than +1. Further, n>
If 2d (where d is the box count dimension of the attractor of the original dynamical system), it is also shown that the reconstruction operation is a one-to-one mapping.

【0027】前記のように、血糖値の変化が決定論的カ
オス現象であることから、血糖値の時系列データをタケ
ンスの埋め込み定理に基づいて、再構成状態空間にアト
ラクタの再構成を行い、さらにこのアトラクタを基に近
未来の血糖値を予測できることになる。
As described above, since the change in the blood glucose level is a deterministic chaotic phenomenon, the time series data of the blood glucose level is stored in the reconstruction state space based on Taken's embedding theorem. Reconstruction is performed, and a blood glucose level in the near future can be predicted based on the attractor.

【0028】具体的には、図5の(a)に示すように、
等サンプリング間隔で観測された血糖値の時系列データ
y(t)を、タケンスの埋め込み定理を用いて埋め込み
次元n)遅れ時間τでn次元の状態空間に埋め込むとい
う再構成を行い、次式のベクトルが得られる。
More specifically, as shown in FIG.
Reconstruction is performed by embedding the time-series data y (t) of the blood glucose level observed at equal sampling intervals into an n-dimensional state space with an embedding dimension n) delay time τ using the Taken's embedding theorem. The vector is obtained.

【0029】[0029]

【数2】x(t)=(y(t),y(t−τ),…,y
(t−(n−1)τ) 但し、t=1〜L L:時系列データy(t)のデータ数 この操作を多数のy(t)データに対し繰り返し行う
と、n次元再構成状態空間に有限個数のデータベクトル
からなるなめらかな多様体を構成することができる。図
5の(b)は、3次元再構成状態空間へ埋め込んだ場合
のアトラクタの軌道を示す。
X (t) = (y (t), y (t−τ),..., Y
(T− (n−1) τ) where t = 1 to L L: the number of data of the time-series data y (t) When this operation is repeatedly performed on a large number of y (t) data, an n-dimensional reconstruction state is obtained. A smooth manifold composed of a finite number of data vectors can be constructed in space. FIG. 5B shows the trajectory of the attractor when embedded in the three-dimensional reconstruction state space.

【0030】このアトラクタの軌道について、最新に計
測された血糖値の時系列データを含むデータベクトル
と、その近傍のデータベクトルの軌道を用いて現時点の
データベクトルの近未来の軌道を推定し、sステップ先
のデータベクトルを求めることができる。つまり、現時
点の血糖値データベクトルとその近傍データベクトルか
ら、現時点の血糖値データから近未来(明日以降)の血
糖値の予測値を求めることができる。
With respect to the trajectory of this attractor, the near future trajectory of the current data vector is estimated by using the data vector including the time series data of the blood glucose level measured most recently and the trajectory of the data vector in the vicinity thereof. The data vector at the step destination can be obtained. That is, from the current blood glucose level data vector and its neighboring data vector, a predicted value of the blood glucose level in the near future (after tomorrow) can be obtained from the current blood glucose level data .

【0031】すなわち、図6に示すように、最新のデー
タによって得られたデータベクトルz(T)をn次元再
構成状態空間にプロットし、その近傍のデータベクトル
をx(i)とすると、これらのデータx(i)は過去の
データであるため、sステップ先の状態x(i+s)は
既知である。これを利用し、現時点のデータベクトルz
(T)のsステップ先の予測値z(T+s)を予測する
ことができる。そして、予測値z(T+s)から元の時
系列データのsステップ先の予測値y(t+s)を求め
ることができる。
That is, as shown in FIG. 6, a data vector z (T) obtained by the latest data is plotted in an n-dimensional reconstructed state space, and a data vector in the vicinity thereof is x (i). Since the data x (i) is past data, the state x (i + s) s steps ahead is known. Using this, the current data vector z
A predicted value z (T + s) s steps ahead of (T) can be predicted. Then, a predicted value y (t + s) s steps ahead of the original time-series data can be obtained from the predicted value z (T + s).

【0032】(局所ファジィ再構成法による血糖値の予
測)前記の局所再構成法による予測において、状態x
(i)のsステップ後の状態x(i+s)への変化は、
決定論に従ったダイナミクスに基づいていると考えられ
る。そして、このダイナミクスはx(i)とx(i+
s)を用いて次のように言語的表現で表すことができ
る。但し、i∈N(z(T))、N(z(T))はz
(T)の近傍x(i)のインデックスiの集合。
(Prediction of blood glucose level by local fuzzy reconstruction method) In the prediction by the local reconstruction method, the state x
The change to the state x (i + s) after s steps of (i) is
It is thought to be based on deterministic dynamics. The dynamics are x (i) and x (i +
Using s), it can be expressed in a linguistic expression as follows. Where i∈N (z (T)) and N (z (T)) are z
A set of indices i of neighborhood x (i) of (T).

【0033】[0033]

【数3】 IF x(T) is x(i) THEN x(T+s) is x(i+s) …(1) x(T):n次元再構成状態空間におけるz(T)の近
傍のデータベクトルを表す集合 x(T+s):x(T)のsステップ後のデータベクト
ルを表す集合 x(i)はz(T)の近傍のデータベクトルであるか
ら、ステップsがカオスの「初期値に対する鋭敏な依存
性」により、決定論的因果性を失う以前であれば、状態
z(T)から状態z(T+s)のダイナミクスを、状態
x(i)から状態x(i+s)のダイナミクスと近似的
に等価であると仮定することができる。
## EQU00003 ## IF x (T) is x (i) THEN x (T + s) is x (i + s) (1) x (T): A data vector near z (T) in the n-dimensional reconstructed state space. Set x (T + s): set x (i) representing a data vector after s steps of x (T) Since x (i) is a data vector in the vicinity of z (T), step s is “sensitive to chaos” Dependency ", before loss of deterministic causality, approximates the dynamics from state z (T) to state z (T + s) with the dynamics from state x (i) to state x (i + s) It can be assumed that

【0034】n次元再構成状態空間に埋め込まれたアト
ラクタが、なめらかな多様体であるとき、z(T)から
z(T+s)への軌道は、z(T)からx(i)へのベ
クトル距離によって影響される。すなわち、z(T)か
ら近いx(i)の軌道ほどz(T)からz(T+s)へ
の軌道におよぼす影響が大きく、遠いほどその影響が小
さいと考えることができる。
When the attractor embedded in the n-dimensional reconstruction state space is a smooth manifold, the trajectory from z (T) to z (T + s) is the vector from z (T) to x (i). Affected by distance. That is, it can be considered that the closer to the trajectory of x (i) from z (T), the larger the effect on the trajectory from z (T) to z (T + s), and the farther the trajectory is, the smaller the effect.

【0035】ところで、By the way,

【0036】[0036]

【数4】 x(i)=(y(i),y(i−τ),…,y(i−(n−1)τ)) x(i+s)=(y(i+s),y(i+s−τ),…,y(i+s−(n− 1) τ))…() であるので、n次元再構成状態空間におけるj軸に注目
すると式(1)は、
X (i) = (y (i), y (i−τ),..., Y (i− (n−1) τ)) x (i + s) = (y (i + s), y (i + s) −τ),..., Y (i + s− (n− 1) τ))... ( 2 ) Therefore, focusing on the j-axis in the n-dimensional reconstructed state space, the equation (1) becomes

【0037】[0037]

【数5】 IF aj(T)is yj(i)THEN aj(T+s)is y(i+ s)(j=1〜n) …() ここで、 aj(T):z(T)の近傍値x(i)のn次元再構成
状態空間におけるj軸成分 aj(T+s):x(i+s)のn次元再構成状態空間
におけるj軸成分 n:埋め込み次元数 と表すことができる。
## EQU00005 ## IF aj (T) is yj (i) THEN aj (T + s) isy (i + s) (j = 1 to n) ( 3 ) where aj (T): neighborhood of z (T) J-axis component in the n-dimensional reconstruction state space of the value x (i) aj (T + s): j-axis component in the n-dimensional reconstruction state space of x (i + s) n: embedding dimension number

【0038】また、z(T)からz(T+s)への軌道
は、z(T)からx(i)へのベクトル距離によって影
響されるが、このベクトルの軌跡であるアトラクタはな
めらかな多様体であるので、この影響は非線形な形で表
される。よって、その影響を非線形化するために、式
)をファジィ関数により表現すると、
The trajectory from z (T) to z (T + s) is affected by the vector distance from z (T) to x (i). The trajectory of this vector is a smooth manifold. Therefore, this effect is expressed in a nonlinear form. Therefore, in order to make the influence nonlinear, if Expression ( 3 ) is expressed by a fuzzy function,

【0039】[0039]

【数6】 IF aj(T) is y’j(i) THEN aj(T+s) is y’j(i+s) ただし(j=1〜n) …() なお、通常は関数y(i)をファジィ化する場合には
「〜」記号を用いるが、ここでは「’」記号を用いる。
## EQU00006 ## IF aj (T) is y'j (i) THEN aj (T + s) is y'j (i + s) (j = 1 to n) ( 4 ) Normally, the function y (i) is In the case of fuzzy conversion, the symbol "~" is used. Here, the symbol "'" is used.

【0040】また、Also,

【0041】[0041]

【数7】z(T)=(y(T), y(T−τ),…,
y(T−(n−1)τ)) であるので、z(T)のn次元再構成状態空間における
j軸成分はyj(T)となる。よって、データベクトル
z(T)のsステップ後のデータベクトルz(T+s)
の予測値をz”(T+s)とすると、そのj軸成分は、
式()のaj(T)にyj(T)を代入しファジィ推
論をすることにより、aj(T+s)として求めること
ができる。この方法を「局所ファジィ再構成(Loca
l FuzzyReconstruction)法」と
呼ぶ
(7) z (T) = (y (T), y (T−τ),...
y (T− (n−1) τ)), the j-axis component of z (T) in the n-dimensional reconstructed state space is yj (T). Therefore, the data vector z (T + s) after s steps of the data vector z (T)
Is assumed to be z ″ (T + s), its j-axis component is
By substituting yj (T) for aj (T) in equation ( 4 ) and performing fuzzy inference, it can be obtained as aj (T + s). This method is referred to as “local fuzzy reconstruction (Loca
l FuzzyReconstruction method)
Call .

【0042】以下に具体的な例として、埋め込み次元n
=3、遅れ時間τ=4、近傍に含まれるデータベクトル
数N=3の場合について説明する。
As a specific example, the embedding dimension n
= 3, the delay time τ = 4, and the number N of data vectors included in the vicinity N = 3.

【0043】各々のデータベクトルを、Each data vector is represented by

【0044】[0044]

【数8】 z(T)=(y1(T), y2(T−4), y3(T−8)) x(a)=(y1(a), y2(a−4), y3(a−8)) x(b)=(y1(b), y2(b−4), y3(b−8)) x(c)=(y1(c), y2(c−4), y3(c−8)) z”(T+s)=(y1(T+s), y2(T+s−4), y3(T+ s−8)) x(a+s)=(y1(a+s), y2(a+s−4), y3(a+s −8)) x(b+s)=(y1(b+s), y2(b+s−4), y3(b+s −8)) x(c+s)=(y1(c+s), y2(c+s−4), y3(c+s −8)) とすると、式()で示されるファジィルールは、式
(5)(6)(7)のように表される。
(8) z (T) = (y1 (T), y2 (T-4), y3 (T-8)) x (a) = (y1 (a), y2 (a-4), y3 (a) -8)) x (b) = (y1 (b), y2 (b-4), y3 (b-8)) x (c) = (y1 (c), y2 (c-4), y3 (c) −8)) z ″ (T + s) = (y1 (T + s), y2 (T + s−4), y3 (T + s−8)) x (a + s) = (y1 (a + s), y2 (a + s−4), y3 (A + s-8)) x (b + s) = (y1 (b + s), y2 (b + s-4), y3 (b + s-8)) x (c + s) = (y1 (c + s), y2 (c + s-4), y3 (C + s-8)), the fuzzy rule expressed by the equation ( 4 ) is expressed by the equation
(5), (6), and (7) .

【0045】再構成状態空間の第1軸については、For the first axis of the reconstructed state space,

【0046】[0046]

【数9】 IFa1(T)is y’1(a)THEN a1(T+s)is y’1 (a+s) IFa1(T)is y’1(b)THEN a1(T+s)is y’1 (b+s) IFa1(T)is y’1(c)THEN a1(T+s)is y’1 (c+s) …() 再構成状態空間の第2軸については、## EQU9 ## IFa1 (T) is y'1 (a) THEN a1 (T + s) is y'1 (a + s) IFa1 (T) is y'1 (b) THEn a1 (T + s) is y'1 (b + s) IFa1 (T) is y′1 (c) THEN a1 (T + s) is y′1 (c + s) ( 5 ) For the second axis of the reconstructed state space,

【0047】[0047]

【数10】 IFa2(T)is y’2(a−4)THEN a2(T+s)is y ’2(a+s−4) IFa2(T)is y’2(b−4)THEN a2(T+s)is y ’2(b+s−4) IFa2(T)is y’2(c−4)THEN a2(T+s)is y ’2(c+s−4) …() 再構成状態空間の第3軸については、## EQU10 ## IFa2 (T) is y'2 (a-4) THEN a2 (T + s) is y'2 (a + s-4) IFa2 (T) is y'2 (b-4) THEN a2 (T + s) is y′2 (b + s−4) IFa2 (T) is y′2 (c−4) THEN a2 (T + s) is y′2 (c + s−4) ( 6 ) For the third axis of the reconstructed state space,

【0048】[0048]

【数11】 IFa3(T)is y’3(a−8)THEN a3(T+s)is y ’3(a+s−8) IFa3(T)is y’3(b−8)THEN a3(T+s)is y ’3(b+s−8) IFa3(T)is y’3(c−8)THEN a3(T+s)is y ’3(c+s−8) …() また、メンバーシップ関数はx(a)、x(b)、x
(c)はz(T)を中心とした近傍のデータベクトルで
あるのでファジィルール(5)(6)(7)の前件部に
おける再構成状態空間の各軸のメンバーシップ関数は図
7のようになる。
IFa3 (T) is y'3 (a-8) THEN a3 (T + s) isy'3 (a + s-8) IFa3 (T) is y'3 (b-8) THEN a3 (T + s) is y′3 (b + s−8) IFa3 (T) is y′3 (c−8) THEN a3 (T + s) is y′3 (c + s−8) ( 7 ) Also, the membership function is x (a), x (b), x
Since (c) is a data vector near z (T), the membership function of each axis of the reconstructed state space in the antecedent of the fuzzy rules (5), (6) and (7) is shown in FIG. Become like

【0049】なお、後件部のメンバーシップ関数は、台
集合を有限範囲に限定することができないため、クリス
プ表現とする。
Since the membership function of the consequent part cannot limit the table set to a finite range, it is expressed in a crisp expression.

【0050】以上のファジィルールおよびメンバーシッ
プ関数で表現されたダイナミクスに対し、a1(T)=
y1(T)、a2(T)=y2(T)、a3(T)=
3(T)を入力データとしてファジィ推論を行うと、
For the dynamics expressed by the above fuzzy rules and membership functions, a1 (T) =
y1 (T), a2 (T) = y2 (T), a3 (T) = y
When fuzzy inference is performed using 3 (T) as input data,

【0051】[0051]

【数12】 y”1(T+s)=a1(T+s) y”2(T+s−4)=a2(T+s) y”3(T+s−8)=a3(T+s) …() となり、元の時系列データy1(T)のsステップ先の
予測値y”1(T+s)はa1(T+s)として求めら
れる。
Y′1 (T + s) = a1 (T + s) y ″ 2 (T + s−4) = a2 (T + s) y ″ 3 (T + s−8) = a3 (T + s) ( 8 ) The predicted value y ″ 1 (T + s) s steps ahead of the series data y1 (T) is obtained as a1 (T + s).

【0052】以上のように、ファジィ推論の持つ内挿能
力、局所的近似能力を用いることで予測値z(T+s)
を求め、このz(T+s)からsステップ先の時系列の
予測値y(t+s)を求めることができる。
As described above, the prediction value z (T + s) is obtained by using the interpolation capability and the local approximation capability of the fuzzy inference.
, And a time-series predicted value y (t + s) s steps ahead can be obtained from z (T + s).

【0053】この局所ファジィ再構成法による予測を血
糖値の予測に適用するには、血糖値の時系列データを多
次元状態空間に埋め込んで構成するアトラクタ上から現
時点の血糖値のデータベクトルz(T)と、ユークリッ
ド距離を測度として近いものを複数個選択した過去の近
傍データベクトルx(i)及びデータベクトルx(i)
からsステップ先のデータベクトルx(i+s)を求
め、これらデータベクトルからz(T)のsステップ先
の予測値z(T+s)を求め、これを時系列化した予測
血糖値y(t+s)として求める。
In order to apply the prediction by the local fuzzy reconstruction method to the prediction of the blood glucose level, the current blood glucose level data vector z () is obtained from an attractor constructed by embedding the blood glucose level time-series data in a multidimensional state space. T), a past neighboring data vector x (i) and a data vector x (i) in which a plurality of close Euclidean distances are selected as measures.
To obtain a data vector x (i + s) s steps ahead, and a predicted value z (T + s) s steps ahead of z (T) from these data vectors, which is used as a time-series predicted blood glucose value y (t + s). Ask.

【0054】(局所ファジィ再構成法による予測実験)
本願発明者等は、血糖値測定データからカオス理論を用
いて現時点から血糖値の経時的振る舞いが予測できるこ
とを実験で確認した。
(Prediction experiment by local fuzzy reconstruction method)
The inventors of the present application have confirmed by experiments that it is possible to predict the time-dependent behavior of the blood glucose level from the present time using the chaos theory from the blood glucose level measurement data.

【0055】この実験は、局所ファジィ再構成法を用い
たコンピュータソフトにより、各症例の1日先の血糖予
測を行い、実測値と比較した結果に図8のものを得るこ
とができた。同図は、症例1の予測結果であり、平均2
0mg/dl以下の誤差で予測可能であり、十分に臨床
使用可能な精度を得ることができた。他の症例に関して
も同様に良好な予測結果を得ることができた。
In this experiment, the blood glucose of each case was predicted one day ahead by computer software using the local fuzzy reconstruction method, and the results shown in FIG. 8 were obtained as a result of comparison with the measured values. The figure shows the prediction results for Case 1 with an average of 2
Prediction was possible with an error of 0 mg / dl or less, and sufficient clinically usable accuracy was obtained. Good prediction results were obtained for other cases as well.

【0056】この予測結果から、臨床的には予測値があ
るレベル以上と以下のとき、その時点で効くインスリン
量を少量変化させる適正なプログラミングを作ることに
より、タイムラグの無い最良の血糖コントロールシステ
ムを構築できる可能性もある。
From this prediction result, when the predicted value is clinically higher or lower than a certain level, by making appropriate programming to change the amount of insulin effective at that point in a small amount, the best blood glucose control system without time lag can be obtained. There is a possibility that it can be built.

【0057】以上までのことから、本発明は、以下の血
糖値の予測システム及び血糖値の予測方法並びにその方
法を記録した記録媒体を特徴とするものである。
As described above, the present invention is characterized by the following blood glucose level prediction system, blood glucose level prediction method, and recording medium recording the method.

【0058】(血糖値の予測システム)血糖値測定デー
タを時系列データとして血糖値時系列ファイルに格納す
る時系列測定データ保存手段と、前記血糖値時系列ファ
イルに格納された時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定するダイナミ
クス推定部と、前記推定したダイナミクスを多次元状態
空間に埋め込むための埋め込み次元nと遅れ時間τをパ
ラメータとして格納するパラメータ保存手段と、前記血
糖値時系列ファイルに格納される血糖値と、これに対応
する前記パラメータを基に、局所ファジィ再構成法によ
り近未来の血糖値を予測して予測血糖値ファイルに格納
する血糖値予測・保存手段と、前記各ファイルのデータ
を表示できる表示手段と、を備えたことを特徴とする。
(Blood Sugar Level Prediction System) A time series measurement data storage means for storing blood sugar level measurement data as time series data in a blood glucose level time series file, and a time series data stored in the blood glucose level time series file. A dynamics estimating unit for estimating dynamics that can best represent topological properties, parameter embedding means for embedding the estimated dynamics in a multidimensional state space, and a parameter storing means for storing a delay time τ as parameters, Based on the blood glucose level stored in the blood glucose level time series file and the corresponding parameters, a blood glucose level prediction / storing to predict the near future blood glucose level by the local fuzzy reconstruction method and store the predicted blood glucose level in the predicted blood glucose level file Means, and display means for displaying data of each file.

【0059】(血糖値の予測方法)最新及び過去の血糖
値測定データy(t)を時系列データとして用意し、前
記時系列データをタケンスの埋め込み定理により多次元
状態空間に埋め込むことでアトラクタを構成し、最新の
血糖値測定データy(T)を含む前記アトラクタ上のデ
ータベクトルz(T)を選択し、前記データベクトルz
(T)の近傍空間を通過する別の軌道上にある複数の近
傍データベクトルx(i)をユークリッド距離を測度と
して近いものを選択し、前記アトラクタ上から前記デー
タベクトルx(i)の予測しようとするsステップ先の
データベクトルx(i+s)を選択し、前記データベク
トルz(T),x(i),x(i+s)を用いて局所フ
ァジィ再構成法によりデータベクトルz(T)のsステ
ップ先の予測値z(T+s)を推論し、前記予測値z
(T+s)からsステップ先の予測血糖値y(T+s)
を求めることを特徴とする。
(Prediction method of blood sugar level) The latest and past blood sugar level measurement data y (t) are prepared as time-series data, and the time-series data is embedded in a multidimensional state space by the Taken 's embedding theorem, whereby the attractor can be used. And selecting a data vector z (T) on said attractor containing the latest blood glucose measurement data y (T),
A plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of (T) are selected using Euclidean distance as a measure, and the data vector x (i) will be predicted from the attractor. The data vector x (i + s) at the s-step ahead is selected, and s of the data vector z (T) is determined by the local fuzzy reconstruction method using the data vectors z (T), x (i), and x (i + s). Infer the predicted value z (T + s) at the step destination, and calculate the predicted value z
Predicted blood sugar value y (T + s) s steps ahead from (T + s)
Is obtained.

【0060】(血糖値の予測方法を記録した記録媒体)
最新及び過去の血糖値測定データy(t)を時系列デー
タとして収集・記録する手順と、前記時系列データを
ケンスの埋め込み定理により多次元状態空間に埋め込む
ことでアトラクタを構成する手順と、最新の血糖値測定
データy(T)を含む前記アトラクタ上のデータベクト
ルz(T)を選択する手順と、前記データベクトルz
(T)の近傍空間を通過する別の軌道上にある複数の近
傍データベクトルx(i)をユークリッド距離を測度と
して近いものを選択する手順と、前記アトラクタ上から
前記データベクトルx(i)の予測しようとするsステ
ップ先のデータベクトルx(i+s)を選択する手順
と、前記データベクトルz(T),x(i),x(i+
s)を用いて局所ファジィ再構成法によりデータベクト
ルz(T)のsステップ先の予測値z(T+s)を推論
する手順と、前記予測値z(T+s)からsステップ先
の予測血糖値y(T+s)を求める手順と、をコンピュ
ータに実行させるプログラムとして、該コンピュータが
読み取り可能な記録媒体に記録したことを特徴とする。
(Recording medium on which blood glucose level prediction method is recorded)
Data and procedures for collecting and recording the latest and past blood glucose measurement data y (t) is a time-series data, the time-series data
A procedure for configuring an attractor by embedding in a multidimensional state space according to the Kens 's embedding theorem, a procedure for selecting a data vector z (T) on the attractor including the latest blood glucose level measurement data y (T), Vector z
A procedure of selecting a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of (T) as a measure using a Euclidean distance as a measure, and a step of selecting the data vector x (i) from the attractor. A procedure for selecting a data vector x (i + s) s steps ahead to be predicted; and a procedure for selecting the data vectors z (T), x (i), x (i +
s) using a local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and a predicted blood glucose value y s steps ahead from the predicted value z (T + s) The procedure for obtaining (T + s) is recorded on a computer-readable recording medium as a program for causing a computer to execute the procedure.

【0061】[0061]

【発明の実施の形態】図1は、本発明の実施形態を示す
システム構成図である。自己測定血糖値入力部1は、糖
尿病患者が日毎に自己測定した血糖値をインターネッ
ト、PHS、パソコン通信、ポケベル、FAX等の通信
手段を使って医療センター等に伝送する。
FIG. 1 is a system configuration diagram showing an embodiment of the present invention. The self-measured blood sugar level input unit 1 transmits a blood sugar level self-measured daily by a diabetic patient to a medical center or the like using communication means such as the Internet, PHS, personal computer communication, pager, and FAX.

【0062】血糖値時系列ファイル2は、医療センター
等のコンピュータシステムの外部記憶装置として設けら
れ、血糖値入力部1から伝送されてきた自己測定血糖値
データを患者別の時系列データとして保存しておく。
The blood glucose level time series file 2 is provided as an external storage device of a computer system such as a medical center, and stores self-measured blood glucose level data transmitted from the blood glucose level input unit 1 as time series data for each patient. Keep it.

【0063】ダイナミクス推定部3は、ファイル2に格
納される患者別の時系列データの持つ位相的性質を最も
良く表すことができるダイナミクスを推定する。
The dynamics estimating unit 3 estimates dynamics that can best represent the topological properties of the patient-specific time-series data stored in the file 2.

【0064】このダイナミクスの推定は、多次元状態空
間に埋め込むためのパラメータ、すなわち患者別ファイ
ルの前半を埋め込むための初期値として1ステップ先を
予測し、次に前半+1のデータを既知とした場合の1ス
テップ先を予測する。この処理をデータがなくなるまで
繰り返したときの予測性能が最も良い場合の「埋め込み
次元n」と「遅れ時間τ」として求める。
This dynamics estimation is performed by predicting one step ahead as a parameter for embedding in the multidimensional state space, that is, an initial value for embedding the first half of the patient-specific file, and then assuming that the first half + 1 data is known. Is predicted one step ahead. This processing is obtained as the “embedded dimension n” and the “delay time τ” when the prediction performance when the data is repeated until there is no more data is the best .

【0065】このダイナミクス推定は、ある一定量の自
己測定値が収集された場合と、ダイナミクスの変化(例
えば、患者の血糖値変化がpoor controlか
らfair controlやgood contro
lに移行)により予測性能が低下した場合に実行され
る。
The dynamics estimation is performed when a certain amount of self-measurement value is collected and when a change in the dynamics (for example, a change in the blood glucose level of the patient is changed from poor control to fair control or good control).
This is executed when the predicted performance is reduced due to (shift to 1).

【0066】最適埋め込みパラメータファイル4は、ダ
イナミクス推定部3で求めた「埋め込み次元n」と「遅
れ時間τ」を患者別のパラメータとして保存しておく。
The optimum embedding parameter file 4 stores “embedding dimension n” and “delay time τ” obtained by the dynamics estimating unit 3 as parameters for each patient.

【0067】血糖値予測部5は、血糖値時系列ファイル
2に格納される患者別の血糖値測定データと、それに対
応する最適埋め込みパラメータをパラメータファイル4
から取り出し、局所ファジィ再構成法により1〜nステ
ップ先の血糖値を予測する。
The blood glucose level predicting section 5 stores the blood glucose level measurement data for each patient stored in the blood glucose level time-series file 2 and the optimum embedding parameters corresponding to the data.
And predicts the blood glucose level 1 to n steps ahead by the local fuzzy reconstruction method.

【0068】この血糖値予測は、時系列データをタケン
の埋め込み定理により多次元状態空間に埋め込むこと
でアトラクタを構成し、最新の血糖値測定データy
(T)を含むアトラクタ上のデータベクトルz(T)を
選択し、このデータベクトルz(T)の近傍空間を通過
する別の軌道上にある複数の近傍データベクトルx
(i)をユークリッド距離を測度として近いものを選択
し、アトラクタ上からデータベクトルx(i)の予測し
ようとするsステップ先のデータベクトルx(i+s)
を選択し、データベクトルz(T),x(i),x(i
+s)を用いて局所ファジィ再構成法によりデータベク
トルz(T)のsステップ先の予測値z(T+s)を推
論し、この予測値z(T+s)からsステップ先の予測
血糖値y(T+s)を求める。
This blood sugar level prediction is based on time series data .
The attractor is constructed by embedding in the multidimensional state space by the data embedding theorem, and the latest blood glucose measurement data y
A data vector z (T) on the attractor including (T) is selected, and a plurality of neighboring data vectors x on another trajectory passing through the neighboring space of the data vector z (T).
(I) is selected using the Euclidean distance as a measure, and a data vector x (i + s) s steps ahead of the data vector x (i) to be predicted from the attractor.
And the data vectors z (T), x (i), x (i
+ S) using the local fuzzy reconstruction method to infer a predicted value z (T + s) s steps ahead of the data vector z (T), and predict a blood glucose value y (T + s) s steps ahead from this predicted value z (T + s). ).

【0069】予測血糖値ファイル6は、血糖値予測部5
で予測した血糖値データを患者別に保存しておく。
The predicted blood sugar level file 6 is stored in the blood sugar level predicting section 5.
Save the blood glucose level data predicted in the above for each patient.

【0070】インスリン投与量入力部7は、糖尿病患者
が実際に投与したインスリン量をインターネット、PH
S、パソコン通信、ポケベル、FAX等の通信手段を使
って医療センター等に伝送する。
The insulin dose input section 7 is used to input the amount of insulin actually administered by the diabetic patient via the Internet, PH, or the like.
The data is transmitted to a medical center or the like using communication means such as S, personal computer communication, pager, and facsimile.

【0071】インスリン投与量時系列ファイル8は、医
療センター等のコンピュータシステムの外部記憶装置と
して設けられ、インスリン投与量入力部7から伝送され
てきたインスリン投与量データを患者別の時系列データ
として保存しておく。
The insulin dose time-series file 8 is provided as an external storage device of a computer system such as a medical center, and stores the insulin dose data transmitted from the insulin dose input unit 7 as patient-specific time-series data. Keep it.

【0072】表示部9は、血糖値時系列ファイル2と予
測血糖値ファイル6及びインスリン投与量時系列ファイ
ル8から検索した患者別の各データを表示し、医師に対
して糖尿病医療に必要な支援情報として与える。この表
示は、患者の現在の血糖値や近未来の予測血糖値、現在
までのインスリン投与量の履歴情報の他に、必要に応じ
て予測確信度や誤差範囲等の医療支援に必要な情報表示
にされる。
The display unit 9 displays each data for each patient retrieved from the blood sugar level time-series file 2, the predicted blood sugar level file 6, and the insulin dose time-series file 8, and provides the doctor with necessary support for diabetes care. Give as information. This display shows the current blood glucose level of the patient, the predicted blood glucose level in the near future, the history information of the insulin dose up to the present, and the information necessary for medical support such as the prediction confidence level and error range as necessary. To be.

【0073】以上のシステム構成により、従来の医師の
経験や感等によるインスリン投与治療に代えて、患者個
人別の血糖値変化のダイナミクスを基にした予測血糖値
から医師が適正なインスリン投与量を判断することが可
能となり、タイムラグのない血糖値コントロールによ
り、血糖値の日毎の変化を小さくしながら長期的には適
正な範囲に収めることが可能となる。
With the above system configuration, instead of the conventional insulin administration treatment based on the experience and feeling of the doctor, the doctor can determine the appropriate insulin dose from the predicted blood glucose level based on the dynamics of the blood glucose level change for each individual patient. The determination can be made, and the blood sugar level control without a time lag makes it possible to keep the blood sugar level within an appropriate range in the long term while reducing the daily change.

【0074】また、患者は自己測定データを積極的に利
用すること、及び医師は予測血糖値を基にした日毎の指
示を患者に提供することが可能となり、自己血糖値測定
に対する患者のモチベーションの向上が期待できる。
In addition, the patient can actively use the self-measurement data, and the doctor can provide the patient with a daily instruction based on the predicted blood glucose level, thereby increasing the motivation of the patient for the self-blood glucose level measurement. Improvement can be expected.

【0075】[0075]

【発明の効果】以上のとおり、本発明によれば、血糖値
の経時的振る舞いがカオス現象であることに着目し、血
糖値の測定時系列データから局所ファジィ再構成法によ
り現在の血糖値から近未来(明日以降)の血糖値を予測
するようにしたため、医師が適正なインスリン投与量を
決定するための支援情報がタイムラグ無しに得られる効
果がある。
As described above, according to the present invention, attention is paid to the fact that the time-dependent behavior of the blood glucose level is a chaotic phenomenon, and the local fuzzy reconstruction method is used to calculate the current blood glucose level from the blood glucose level measurement time series data. Since the blood sugar level in the near future (after tomorrow) is predicted, there is an effect that support information for a doctor to determine an appropriate insulin dose can be obtained without a time lag.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す血糖値予測システム構
成図。
FIG. 1 is a configuration diagram of a blood sugar level prediction system showing an embodiment of the present invention.

【図2】糖尿病患者の時系列データの一部。FIG. 2 is a part of time series data of a diabetic patient.

【図3】3次元空間に射影されたアトラクタの例。FIG. 3 is an example of an attractor projected onto a three-dimensional space.

【図4】3次元空間上のアトラクタ形状の詳細図。FIG. 4 is a detailed view of an attractor shape in a three-dimensional space.

【図5】時系列データのn次元再構成空間への埋め込み
の説明図。
FIG. 5 is an explanatory diagram of embedding time-series data in an n-dimensional reconstruction space.

【図6】局所再構成法によるx(T)からx(T+s)
へのダイナミクスの説明図。
FIG. 6 shows x (T + s) from x (T) by the local reconstruction method.
FIG.

【図7】局所ファジィ再構成法における前件部メンバー
シップ関数例。
FIG. 7 is an example of an antecedent membership function in the local fuzzy reconstruction method.

【図8】症例1の予測結果。FIG. 8 shows prediction results of Case 1.

【符号の説明】 1…自己測定血糖値入力部 2…血糖値時系列ファイル 3…ダイナミクス推定部 4…最適埋め込みパラメータファイル 5…血糖値予測部 6…予測血糖値ファイル 7…インスリン投与量入力部 8…インスリン投与量時系列ファイル 9…表示部[Description of Signs] 1 ... Self-measured blood sugar level input unit 2 ... Blood sugar level time series file 3 ... Dynamics estimation unit 4 ... Optimal embedding parameter file 5 ... Blood sugar level prediction unit 6 ... Predicted blood sugar level file 7 ... Insulin dose input unit 8… Insulin dose time series file 9… Display

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有田 清三郎 兵庫県神戸市西区竹の台6丁目6−2− 2804 (72)発明者 米田 正也 岡山県岡山市津高台2丁目2034−16 (72)発明者 五百旗頭 正 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seizaburo Arita 6-2-2804 Takenodai, Nishi-ku, Kobe City, Hyogo Prefecture (72) Inventor Masaya Yoneda 2-2034-16-1 Tsutakadai, Okayama City, Okayama Prefecture (72) Invention The person, Mr. Tadashi Hikami 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 血糖値測定データを時系列データとして
血糖値時系列ファイルに格納する時系列測定データ保存
手段と、 前記血糖値時系列ファイルに格納された時系列データの
持つ位相的性質を最も良く表すことができるダイナミク
スを推定するダイナミクス推定部と、 前記推定したダイナミクスを多次元状態空間に埋め込む
ための埋め込み次元nと遅れ時間τをパラメータとして
格納するパラメータ保存手段と、 前記血糖値時系列ファイルに格納される血糖値と、これ
に対応する前記パラメータを基に、局所ファジィ再構成
法により近未来の血糖値を予測して予測血糖値ファイル
に格納する血糖値予測・保存手段と、 前記各ファイルのデータを表示できる表示手段と、を備
えたことを特徴とする血糖値の予測システム。
1. A time series measurement data storage means for storing blood glucose level measurement data as time series data in a blood glucose level time series file; and a topological property of the time series data stored in the blood glucose level time series file. A dynamics estimating unit for estimating dynamics that can be well represented; a parameter storage unit for storing an embedding dimension n and a delay time τ as parameters for embedding the estimated dynamics in a multidimensional state space; and the blood glucose level time series file. A blood glucose level prediction and storage unit that predicts a near future blood glucose level by a local fuzzy reconstruction method and stores the predicted blood glucose level in a predicted blood glucose level file, based on the blood glucose level stored therein and the corresponding parameter. A blood glucose level prediction system, comprising: display means for displaying file data.
【請求項2】 最新及び過去の血糖値測定データy
(t)を時系列データとして用意し、 前記時系列データをタケテンスの埋め込み定理により多
次元状態空間に埋め込むことでアトラクタを構成し、 最新の血糖値測定データy(T)を含む前記アトラクタ
上のデータベクトルz(T)を選択し、 前記データベクトルz(T)の近傍空間を通過する別の
軌道上にある複数の近傍データベクトルx(i)をユー
クリッド距離を測度として近いものを選択し、 前記アトラクタ上から前記データベクトルx(i)の予
測しようとするsステップ先のデータベクトルx(i+
s)を選択し、 前記データベクトルz(T),x(i),x(i+s)
を用いて局所ファジィ再構成法によりデータベクトルz
(T)のsステップ先の予測値z(T+s)を推論し、 前記予測値z(T+s)からsステップ先の予測血糖値
y(T+s)を求めることを特徴とする血糖値の予測方
法。
2. The latest and past blood glucose measurement data y
(T) is prepared as time-series data, and the time-series data is embedded in a multidimensional state space by the Takentens embedding theorem to form an attractor, and on the attractor including the latest blood glucose level measurement data y (T). Selecting a data vector z (T), selecting a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of the data vector z (T) and using the Euclidean distance as a measure, An s-step ahead data vector x (i +) for which the data vector x (i) is to be predicted from the attractor
s) and the data vectors z (T), x (i), x (i + s)
And the data vector z by the local fuzzy reconstruction method using
A method for predicting a blood glucose level, comprising inferring a predicted value z (T + s) s steps ahead of (T) and obtaining a predicted blood glucose level y (T + s) s steps ahead from the predicted value z (T + s).
【請求項3】 最新及び過去の血糖値測定データy
(t)を時系列データとして収集・記録する手順と、 前記時系列データをタケテンスの埋め込み定理により多
次元状態空間に埋め込むことでアトラクタを構成する手
順と、 最新の血糖値測定データy(T)を含む前記アトラクタ
上のデータベクトルz(T)を選択する手順と、 前記データベクトルz(T)の近傍空間を通過する別の
軌道上にある複数の近傍データベクトルx(i)をユー
クリッド距離を測度として近いものを選択する手順と、 前記アトラクタ上から前記データベクトルx(i)の予
測しようとするsステップ先のデータベクトルx(i+
s)を選択する手順と、 前記データベクトルz(T),x(i),x(i+s)
を用いて局所ファジィ再構成法によりデータベクトルz
(T)のsステップ先の予測値z(T+s)を推論する
手順と、 前記予測値z(T+s)からsステップ先の予測血糖値
y(T+s)を求める手順と、をコンピュータに実行さ
せるプログラムとして、該コンピュータが読み取り可能
な記録媒体に記録したことを特徴とする血糖値予測方法
を記録した記録媒体。
3. The latest and past blood glucose measurement data y
A procedure for collecting and recording (t) as time-series data; a procedure for configuring the attractor by embedding the time-series data in a multidimensional state space by the Takentens embedding theorem; And selecting a data vector z (T) on the attractor including: a plurality of neighboring data vectors x (i) on another trajectory passing through the neighboring space of the data vector z (T). A procedure for selecting a measure close to the measure, and a data vector x (i +) s steps ahead of the data vector x (i) to be predicted from the attractor.
s), and the data vector z (T), x (i), x (i + s)
And the data vector z by the local fuzzy reconstruction method using
A program for causing a computer to execute a procedure of inferring a predicted value z (T + s) s steps ahead of (T) and a procedure of calculating a predicted blood glucose level y (T + s) s steps ahead from the predicted value z (T + s). Recording method for predicting a blood sugar level, wherein the method is recorded on a computer-readable recording medium.
JP9378398A 1998-04-07 1998-04-07 System and method for predicting blood-sugar level and record medium where same method is recorded Pending JPH11296598A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9378398A JPH11296598A (en) 1998-04-07 1998-04-07 System and method for predicting blood-sugar level and record medium where same method is recorded
US09/174,258 US5971922A (en) 1998-04-07 1998-10-16 System and method for predicting blood glucose level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9378398A JPH11296598A (en) 1998-04-07 1998-04-07 System and method for predicting blood-sugar level and record medium where same method is recorded

Publications (1)

Publication Number Publication Date
JPH11296598A true JPH11296598A (en) 1999-10-29

Family

ID=14092022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9378398A Pending JPH11296598A (en) 1998-04-07 1998-04-07 System and method for predicting blood-sugar level and record medium where same method is recorded

Country Status (2)

Country Link
US (1) US5971922A (en)
JP (1) JPH11296598A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351184A (en) * 2003-05-28 2004-12-16 Yasuo Fujii Ubiquitous health management support system
JP2005267042A (en) * 2004-03-17 2005-09-29 Sysmex Corp Diabetes mellitus medical care support system
JP2005535885A (en) * 2002-08-13 2005-11-24 ユニヴァースティ オブ ヴァージニア パテント ファウンデイション Method, system and computer program product for processing self-monitoring blood glucose (SMBG) data to promote diabetes self-management
JPWO2006009199A1 (en) * 2004-07-21 2008-05-01 松下電器産業株式会社 Blood sugar level management system
EP1995680A2 (en) 2007-05-23 2008-11-26 Sysmex Corporation Medical diagnosis support computer system, computer program, and server computer
JP2013503874A (en) * 2009-09-01 2013-02-04 ユニバーシティ オブ ヴァージニア パテント ファウンデーション System, method and computer program product for regulation of insulin release (AID) in diabetes using a nominal open loop profile
WO2012145616A3 (en) * 2011-04-20 2013-02-14 The Cleveland Clinic Foundation Predictive modeling
WO2014087768A1 (en) 2012-12-04 2014-06-12 Necシステムテクノロジー株式会社 Blood-sugar level prediction device, measurement device, blood-sugar level prediction method, and computer-readable storage medium
JP2019531522A (en) * 2016-07-08 2019-10-31 ノボ・ノルデイスク・エー/エス Basal titration with adaptive target glucose value

Families Citing this family (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095340B2 (en) 1992-11-17 2012-01-10 Health Hero Network, Inc. Home power management system
AU1766201A (en) 1992-11-17 2001-05-30 Health Hero Network, Inc. Method and system for improving adherence with a diet program or other medical regimen
US20010011224A1 (en) 1995-06-07 2001-08-02 Stephen James Brown Modular microprocessor-based health monitoring system
US6968375B1 (en) 1997-03-28 2005-11-22 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US7624028B1 (en) 1992-11-17 2009-11-24 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US8078407B1 (en) 1997-03-28 2011-12-13 Health Hero Network, Inc. System and method for identifying disease-influencing genes
US5951300A (en) 1997-03-10 1999-09-14 Health Hero Network Online system and method for providing composite entertainment and health information
US7613590B2 (en) 1992-11-17 2009-11-03 Health Hero Network, Inc. Modular microprocessor-based power tool system
US9215979B2 (en) 1992-11-17 2015-12-22 Robert Bosch Healthcare Systems, Inc. Multi-user remote health monitoring system
US8078431B2 (en) 1992-11-17 2011-12-13 Health Hero Network, Inc. Home power management system
US5832448A (en) 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US5956501A (en) * 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US8027809B2 (en) 1992-11-17 2011-09-27 Health Hero Network, Inc. Home power management system
US6330426B2 (en) 1994-05-23 2001-12-11 Stephen J. Brown System and method for remote education using a memory card
US7305348B1 (en) 1996-02-20 2007-12-04 Health Hero Network, Inc. Aggregating and pooling health related information in a communication system with feedback
US7584108B2 (en) 1996-12-23 2009-09-01 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8005690B2 (en) 1998-09-25 2011-08-23 Health Hero Network, Inc. Dynamic modeling and scoring risk assessment
CA2404262C (en) 2000-03-29 2009-03-24 University Of Virginia Patent Foundation Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
US6543682B1 (en) 2000-05-03 2003-04-08 Nichole Glaser Insulin-dose calculator disk
WO2002100266A1 (en) * 2000-06-13 2002-12-19 Edward Henry Mathews A dietary system: 'blood sugar predicting system'
WO2002005702A2 (en) * 2000-07-18 2002-01-24 Healthetech, Inc. Closed loop glycemic index system
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US6704588B2 (en) 2001-06-16 2004-03-09 Rafat R. Ansari Method and apparatus for the non-invasive measurement of blood glucose levels in humans
US20030208113A1 (en) * 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
US20030216628A1 (en) * 2002-01-28 2003-11-20 Bortz Jonathan David Methods and systems for assessing glycemic control using predetermined pattern label analysis of blood glucose readings
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7497827B2 (en) 2004-07-13 2009-03-03 Dexcom, Inc. Transcutaneous analyte sensor
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US6998247B2 (en) * 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
GB0206792D0 (en) * 2002-03-22 2002-05-01 Leuven K U Res & Dev Normoglycemia
CN101079082A (en) * 2002-08-13 2007-11-28 弗吉尼亚大学专利基金会 Method, system, and computer program product for the processing of self-monitoring blood glucose(AMBG)data to enhance diabetic self-management
AU2003260191B2 (en) * 2002-09-20 2009-10-01 Neurotech Research Pty Limited Condition analysis
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7727181B2 (en) 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
EP2386758A1 (en) 2002-10-09 2011-11-16 Abbott Diabetes Care Inc. A method of pumping a predetermined dose of a medical fluid
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
WO2004061420A2 (en) 2002-12-31 2004-07-22 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7260480B1 (en) 2003-04-07 2007-08-21 Health Hero Network, Inc. Method and system for integrating feedback loops in medical knowledge development and healthcare management
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7399276B1 (en) 2003-05-08 2008-07-15 Health Hero Network, Inc. Remote health monitoring system
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
DE60315080T2 (en) * 2003-06-27 2008-04-10 Melvyn Jeremie Lafitte METHOD AND DEVICE FOR EXTRACTING KAUSAL INFORMATION FROM A CHAOTIC TIME SERIES
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
US7955261B2 (en) 2003-08-01 2011-06-07 Dexcom, Inc. System and methods for processing analyte sensor data
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US6931327B2 (en) 2003-08-01 2005-08-16 Dexcom, Inc. System and methods for processing analyte sensor data
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
DE10351728A1 (en) * 2003-10-31 2005-06-30 W.O.M. World Of Medicine Ag Method and system for the diagnosis and / or monitoring of the cardiovascular system of a living being
US7299082B2 (en) * 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
ATE480761T1 (en) 2003-12-05 2010-09-15 Dexcom Inc CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
EP1711791B1 (en) 2003-12-09 2014-10-15 DexCom, Inc. Signal processing for continuous analyte sensor
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc Method and system for providing data communication in continuous glucose monitoring and management system
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
DE102004020160A1 (en) * 2004-04-24 2005-11-10 Roche Diagnostics Gmbh Method and device for monitoring a concentration of an analyte in the living body of a human or animal
WO2005106446A1 (en) * 2004-04-30 2005-11-10 Matsushita Electric Industrial Co., Ltd. Blood sugar level measuring device
CN100533429C (en) * 2004-05-11 2009-08-26 希森美康株式会社 Glucose and insulin concentration simulation system and recording medium
EP1810185A4 (en) 2004-06-04 2010-01-06 Therasense Inc Diabetes care host-client architecture and data management system
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US7905833B2 (en) 2004-07-13 2011-03-15 Dexcom, Inc. Transcutaneous analyte sensor
US7724242B2 (en) 2004-08-06 2010-05-25 Touchtable, Inc. Touch driven method and apparatus to integrate and display multiple image layers forming alternate depictions of same subject matter
US7719523B2 (en) 2004-08-06 2010-05-18 Touchtable, Inc. Bounding box gesture recognition on a touch detecting interactive display
US7728821B2 (en) * 2004-08-06 2010-06-01 Touchtable, Inc. Touch detecting interactive display
JP2008511374A (en) * 2004-09-03 2008-04-17 ノボ・ノルデイスク・エー/エス System and method for estimating blood glucose concentration
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
AU2006226988B2 (en) 2005-03-21 2011-12-01 Abbott Diabetes Care, Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8109871B2 (en) * 2005-05-06 2012-02-07 Minntech Corporation Endoscope integrity tester including context-sensitive compensation and methods of context-sensitive integrity testing
US20070060791A1 (en) * 2005-05-06 2007-03-15 Melissa Kubach Computer systems and software for operating an endoscope integrity tester
JP2006313481A (en) * 2005-05-09 2006-11-16 Sysmex Corp Function simulation system for organ of organism, and program therefor
JP4756906B2 (en) * 2005-05-11 2011-08-24 シスメックス株式会社 Biological simulation system and computer program
JP4781710B2 (en) * 2005-05-12 2011-09-28 シスメックス株式会社 Treatment effect prediction system and program thereof
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20080314395A1 (en) 2005-08-31 2008-12-25 Theuniversity Of Virginia Patent Foundation Accuracy of Continuous Glucose Sensors
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
EP1968432A4 (en) 2005-12-28 2009-10-21 Abbott Diabetes Care Inc Medical device insertion
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
EP1830333A1 (en) * 2006-01-27 2007-09-05 Sysmex Corporation Medical simulation system, computer system and computer program product
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
EP1991110B1 (en) 2006-03-09 2018-11-07 DexCom, Inc. Systems and methods for processing analyte sensor data
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
JP4918285B2 (en) * 2006-05-24 2012-04-18 シスメックス株式会社 Biological organ function simulation system and program thereof
WO2007143225A2 (en) 2006-06-07 2007-12-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US8548544B2 (en) 2006-06-19 2013-10-01 Dose Safety System, method and article for controlling the dispensing of insulin
JP2010508091A (en) 2006-10-26 2010-03-18 アボット ダイアベティス ケア インコーポレイテッド Method, system, and computer program product for detecting in real time a decrease in sensitivity of an analyte sensor
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008130897A2 (en) 2007-04-14 2008-10-30 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683962C (en) 2007-04-14 2017-06-06 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
ES2817503T3 (en) 2007-04-14 2021-04-07 Abbott Diabetes Care Inc Procedure and apparatus for providing data processing and control in a medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8140142B2 (en) 2007-04-14 2012-03-20 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
CN101686804B (en) 2007-06-21 2013-05-08 雅培糖尿病护理公司 Health monitor
CA2690742C (en) 2007-06-21 2018-05-15 Abbott Diabetes Care Inc. Health management devices and methods
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
EP4468309A3 (en) 2007-10-09 2024-12-11 DexCom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US9143569B2 (en) 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
WO2009126942A2 (en) 2008-04-10 2009-10-15 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US9117015B2 (en) 2008-12-23 2015-08-25 Roche Diagnostics Operations, Inc. Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US8849458B2 (en) * 2008-12-23 2014-09-30 Roche Diagnostics Operations, Inc. Collection device with selective display of test results, method and computer program product thereof
US10456036B2 (en) 2008-12-23 2019-10-29 Roche Diabetes Care, Inc. Structured tailoring
US20120011125A1 (en) 2008-12-23 2012-01-12 Roche Diagnostics Operations, Inc. Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US9918635B2 (en) * 2008-12-23 2018-03-20 Roche Diabetes Care, Inc. Systems and methods for optimizing insulin dosage
US10437962B2 (en) * 2008-12-23 2019-10-08 Roche Diabetes Care Inc Status reporting of a structured collection procedure
KR20110097889A (en) 2008-12-23 2011-08-31 에프. 호프만-라 로슈 아게 Management methods and systems for the implementation, execution, data collection, and data analysis of structured collection procedures running on the collection device.
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
WO2010111660A1 (en) 2009-03-27 2010-09-30 Dexcom, Inc. Methods and systems for promoting glucose management
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
EP2424426B1 (en) 2009-04-29 2020-01-08 Abbott Diabetes Care, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8483967B2 (en) 2009-04-29 2013-07-09 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
LT3689237T (en) 2009-07-23 2021-09-27 Abbott Diabetes Care, Inc. Method of manufacturing and system for continuous analyte measurement
ES2888427T3 (en) 2009-07-23 2022-01-04 Abbott Diabetes Care Inc Real-time management of data related to the physiological control of glucose levels
WO2011025549A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Medical devices and methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
EP4070728A1 (en) 2009-08-31 2022-10-12 Abbott Diabetes Care, Inc. Displays for a medical device
BR112012004834A2 (en) * 2009-09-02 2018-03-13 Univ Virginia Patent Foundation Track the likelihood of impending hypoglycemia in diabetes from blood glucose self-titration (smbg) data
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
WO2011053881A1 (en) 2009-10-30 2011-05-05 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
JP5083297B2 (en) * 2009-11-18 2012-11-28 セイコーエプソン株式会社 Predictive blood sugar level calculating device, predictive blood sugar level calculating method and program
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
US9041730B2 (en) 2010-02-12 2015-05-26 Dexcom, Inc. Receivers for analyzing and displaying sensor data
WO2011112753A1 (en) 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
CA3135001A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8532933B2 (en) 2010-06-18 2013-09-10 Roche Diagnostics Operations, Inc. Insulin optimization systems and testing methods with adjusted exit criterion accounting for system noise associated with biomarkers
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US11213226B2 (en) 2010-10-07 2022-01-04 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US10458973B2 (en) 2010-12-22 2019-10-29 Roche Diabetes Care, Inc. Handheld diabetes management device with bolus calculator
US9786024B2 (en) 2010-12-22 2017-10-10 Roche Diabetes Care, Inc. Graphical user interface for a handheld diabetes management device with bolus calculator
US20120173151A1 (en) 2010-12-29 2012-07-05 Roche Diagnostics Operations, Inc. Methods of assessing diabetes treatment protocols based on protocol complexity levels and patient proficiency levels
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CA3177983A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP3825694B1 (en) 2011-04-15 2023-10-25 DexCom, Inc. Advanced analyte sensor calibration and error detection
US8766803B2 (en) 2011-05-13 2014-07-01 Roche Diagnostics Operations, Inc. Dynamic data collection
US8755938B2 (en) 2011-05-13 2014-06-17 Roche Diagnostics Operations, Inc. Systems and methods for handling unacceptable values in structured collection protocols
EP2720612B1 (en) 2011-06-16 2019-02-06 Abbott Diabetes Care, Inc. Temperature-compensated analyte monitoring devices, systems, and methods thereof
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
DE202012013757U1 (en) 2011-12-11 2021-06-08 Abbott Diabetes Care Inc. Analyte sensor
US9136939B2 (en) 2011-12-29 2015-09-15 Roche Diabetes Care, Inc. Graphical user interface pertaining to a bolus calculator residing on a handheld diabetes management device
US20140149329A1 (en) * 2012-04-19 2014-05-29 Stephen Shaw Near real time blood glucose level forecasting
EP3395252A1 (en) 2012-08-30 2018-10-31 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
WO2014052136A1 (en) 2012-09-26 2014-04-03 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9119529B2 (en) 2012-10-30 2015-09-01 Dexcom, Inc. Systems and methods for dynamically and intelligently monitoring a host's glycemic condition after an alert is triggered
US9833191B2 (en) 2012-11-07 2017-12-05 Bigfoot Biomedical, Inc. Computer-based diabetes management
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10130275B2 (en) 2013-06-13 2018-11-20 Dyansys, Inc. Method and apparatus for autonomic nervous system sensitivity-point testing
US10052257B2 (en) 2013-06-13 2018-08-21 Dyansys, Inc. Method and apparatus for stimulative electrotherapy
AU2014374361B9 (en) 2013-12-31 2019-07-04 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
WO2015153482A1 (en) 2014-03-30 2015-10-08 Abbott Diabetes Care Inc. Method and apparatus for determining meal start and peak events in analyte monitoring systems
CA2950966C (en) 2014-06-10 2019-07-09 Bigfoot Biomedical, Inc. Insulin delivery systems and methods
US10565329B2 (en) 2014-06-30 2020-02-18 Evolving Machine Intelligence Pty Ltd System and method for modelling system behaviour
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US10674944B2 (en) 2015-05-14 2020-06-09 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
JP6986007B2 (en) 2015-07-10 2021-12-22 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Systems, devices and methods of dynamic glucose profile response to physiological parameters
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
WO2018136898A1 (en) 2017-01-23 2018-07-26 Abbott Diabetes Care Inc. Systems, devices and methods for analyte sensor insertion
EP3600014A4 (en) 2017-03-21 2020-10-21 Abbott Diabetes Care Inc. METHOD, DEVICE AND SYSTEM FOR PROVIDING THE DIAGNOSIS AND THERAPY OF DIABETIC CONDITIONS
EP3618713B1 (en) 2017-05-05 2021-12-15 Eli Lilly and Company Closed loop control of physiological glucose
WO2019060991A1 (en) 2017-09-26 2019-04-04 Bio-Conscious Technologies Inc. Physiological property forecasting
CN107576703A (en) * 2017-10-12 2018-01-12 天津科技大学 A kind of domestic glucometer based on fuzzy system
US20190120785A1 (en) 2017-10-24 2019-04-25 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
CN111542884B (en) 2017-12-21 2024-03-15 益首药物治疗股份公司 Closed loop control of physiological glucose
CA3103479A1 (en) 2018-06-22 2019-12-26 Eli Lilly And Company Insulin and pramlintide delivery systems, methods, and devices
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
EP4203819B1 (en) 2020-08-31 2024-07-31 Abbott Diabetes Care Inc. Systems, devices, and methods for analyte sensor insertion
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
CN113317783B (en) * 2021-04-20 2022-02-01 港湾之星健康生物(深圳)有限公司 Multimode personalized longitudinal and transverse calibration method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US5251126A (en) * 1990-10-29 1993-10-05 Miles Inc. Diabetes data analysis and interpretation method
KR0142483B1 (en) * 1994-02-28 1998-08-17 고지마 게이지 Non-linear time sequential data predicting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535885A (en) * 2002-08-13 2005-11-24 ユニヴァースティ オブ ヴァージニア パテント ファウンデイション Method, system and computer program product for processing self-monitoring blood glucose (SMBG) data to promote diabetes self-management
JP2004351184A (en) * 2003-05-28 2004-12-16 Yasuo Fujii Ubiquitous health management support system
JP4547173B2 (en) * 2004-03-17 2010-09-22 シスメックス株式会社 Diabetes care support system
JP2005267042A (en) * 2004-03-17 2005-09-29 Sysmex Corp Diabetes mellitus medical care support system
US7914449B2 (en) 2004-03-17 2011-03-29 Sysmex Corporation Diagnostic support system for diabetes and storage medium
JPWO2006009199A1 (en) * 2004-07-21 2008-05-01 松下電器産業株式会社 Blood sugar level management system
EP1995680A2 (en) 2007-05-23 2008-11-26 Sysmex Corporation Medical diagnosis support computer system, computer program, and server computer
JP2013503874A (en) * 2009-09-01 2013-02-04 ユニバーシティ オブ ヴァージニア パテント ファウンデーション System, method and computer program product for regulation of insulin release (AID) in diabetes using a nominal open loop profile
WO2012145616A3 (en) * 2011-04-20 2013-02-14 The Cleveland Clinic Foundation Predictive modeling
WO2014087768A1 (en) 2012-12-04 2014-06-12 Necシステムテクノロジー株式会社 Blood-sugar level prediction device, measurement device, blood-sugar level prediction method, and computer-readable storage medium
US10123749B2 (en) 2012-12-04 2018-11-13 Nec Solution Innovators, Ltd. Blood sugar level prediction device, measurement device, blood sugar level prediction method and computer-readable storage medium
JP2019531522A (en) * 2016-07-08 2019-10-31 ノボ・ノルデイスク・エー/エス Basal titration with adaptive target glucose value
US11373746B2 (en) 2016-07-08 2022-06-28 Novo Nordisk A/S Basal titration with adaptive target glucose level

Also Published As

Publication number Publication date
US5971922A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
JPH11296598A (en) System and method for predicting blood-sugar level and record medium where same method is recorded
Chen et al. Ethical machine learning in healthcare
Abdel-Basset et al. A novel intelligent medical decision support model based on soft computing and IoT
Schmidt et al. Cased-based reasoning for medical knowledge-based systems
US20220101967A1 (en) Methods for automatic cohort selection in epidemiologic studies and clinical trials
Zohora et al. Forecasting the risk of type ii diabetes using reinforcement learning
US20230157533A1 (en) A computer-implemented system and method for assessing a level of activity of a disease or condition in a patient's eye
US20170270256A1 (en) Determining disease state of a patient by mapping a topological module representing the disease, and using a weighted average of node data
Alharbi et al. Prediction of dental implants using machine learning algorithms
CN114141379A (en) Sleep disorder attribution analysis method, device and system based on knowledge graph
CN116682565B (en) Digital medical information on-line monitoring method, terminal and medium
Giannoulis et al. Designing and implementing a collaborative health knowledge system
CN113425248B (en) Medical image evaluation method, device, equipment and computer storage medium
CN118748075A (en) Decision optimization method for diagnosis and treatment large model based on interactive feedback
US11942226B2 (en) Providing clinical practical guidelines
JP6881287B2 (en) Data processing equipment, data processing method and data processing program
Eremeev et al. Data collection and preparation of training samples for problem diagnosis of vision pathologies
Shahn et al. G-computation and hierarchical models for estimating multiple causal effects from observational disease registries with irregular visits
EP4226280A1 (en) Decentralized training method suitable for disparate training sets
US20240242803A1 (en) Medical learning system, medical learning method, and storage medium
Murugesan et al. Support vector machine the most fruitful algorithm for prognosticating heart disorder
Fiarni Design of Knowledge Management System for Diabetic Complication Diseases
JP7662422B2 (en) Thought state estimation device
Jakhmola et al. A computational approach of data smoothening and prediction of diabetes dataset
US20230101650A1 (en) Medical information processing apparatus, medical information processing method, and recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417