CN114648046A - Motion recognition method, device and wearable device - Google Patents
Motion recognition method, device and wearable device Download PDFInfo
- Publication number
- CN114648046A CN114648046A CN202210286020.4A CN202210286020A CN114648046A CN 114648046 A CN114648046 A CN 114648046A CN 202210286020 A CN202210286020 A CN 202210286020A CN 114648046 A CN114648046 A CN 114648046A
- Authority
- CN
- China
- Prior art keywords
- motion
- sensor
- target
- type
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
- G06F2218/10—Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3206—Monitoring of events, devices or parameters that trigger a change in power modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/325—Power saving in peripheral device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3287—Power saving characterised by the action undertaken by switching off individual functional units in the computer system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- User Interface Of Digital Computer (AREA)
- Telephone Function (AREA)
Abstract
Description
技术领域technical field
本发明属于智能穿戴技术领域,更具体地说,是涉及一种运动识别方法、装置及可穿戴设备。The present invention belongs to the field of smart wearable technology, and more particularly, relates to a motion recognition method, device and wearable device.
背景技术Background technique
目前市场上的智能穿戴设备支持运动自动识别功能,该功能是利用穿戴设备上的传感器,实时识别用户的活动类型,如步行、跑步、游泳、骑行等,当设备识别出运动类型后,会提醒并记录用户的运动。At present, the smart wearable devices on the market support the automatic motion recognition function, which uses the sensors on the wearable device to identify the user's activity type in real time, such as walking, running, swimming, cycling, etc. Reminds and records the user's movement.
这种方案的原理是,常见的运动走/跑/骑/游等,在可穿戴设备传感器中的电信号或光信号的波形会呈现一定的特征和规律性,可穿戴设备将走/跑/骑/游等(目标运动)传感器波形规律特性进行学习记录。当用户在运动时,穿戴设备实时监控传感器信号,并与学习的目标运动波形特征比对,从而识别出用户是否正在进行某种目标运动。The principle of this solution is that, for common sports such as walking/running/riding/swimming, the waveform of the electrical signal or optical signal in the wearable device sensor will show certain characteristics and regularities, and the wearable device will walk/run/ Learning and recording the regular characteristics of sensor waveforms such as riding/swimming (target movement). When the user is exercising, the wearable device monitors the sensor signal in real time and compares it with the learned target motion waveform characteristics, thereby identifying whether the user is performing a certain target motion.
现有的运动识别模式为:可穿戴设备的运动相关传感器全部开启并采用高采样频率进行运动识别,由于日常生活中大量零星的步行或跑步(并非运动意图的走跑),例如做家务、办公、陪伴儿童、追赶公交/地铁等,这种零星的步行会频繁的触发传感器进入采集状态,从而导致功耗大。The existing motion recognition mode is: all motion-related sensors of the wearable device are turned on and use high sampling frequency for motion recognition. , accompanying children, chasing bus/subway, etc. This sporadic walking will frequently trigger the sensor to enter the acquisition state, resulting in high power consumption.
发明内容SUMMARY OF THE INVENTION
本发明实施例的目的在于提供一种运动识别方法、装置及可穿戴设备,以解决现有技术中存在的可穿戴设备识别用户运动时,功耗较大的技术问题。The purpose of the embodiments of the present invention is to provide a motion recognition method, device and wearable device, so as to solve the technical problem of high power consumption when the wearable device recognizes the user's motion in the prior art.
第一方面,本申请实施例提供了一种运动识别方法,应用于可穿戴设备,包括:In a first aspect, an embodiment of the present application provides a motion recognition method, which is applied to a wearable device, including:
接收加速度传感器和陀螺仪传感器采集的运动数据;Receive motion data collected by accelerometer sensors and gyroscope sensors;
识别所述运动数据对应的目标运动类型;Identify the target motion type corresponding to the motion data;
在预设时间段内的运动数据均满足所述目标运动类型关联的预设运动强度要求时,控制开启与目标运动类型关联的传感器组。When the motion data within the preset time period meets the preset motion intensity requirement associated with the target motion type, the sensor group associated with the target motion type is controlled to be turned on.
在一种可能的实现方式中,识别所述运动数据对应的目标运动类型包括:将所述运动数据对应的运动波形特征与所述目标运动类型对应的运动波形特征作比对。In a possible implementation manner, identifying the target motion type corresponding to the motion data includes: comparing the motion waveform feature corresponding to the motion data with the motion waveform feature corresponding to the target motion type.
在一种可能的实现方式中,所述传感器组至少包括:加速度传感器、陀螺仪传感器、PPG传感器、GPS传感器以及气压传感器中的一个或多个。In a possible implementation manner, the sensor group at least includes: one or more of an acceleration sensor, a gyroscope sensor, a PPG sensor, a GPS sensor, and an air pressure sensor.
在一种可能的实现方式中,在预设时间段内的运动数据均满足所述目标运动类型关联的预设运动强度要求时,开启与目标运动类型关联的传感器组包括:根据步频、速度或划水频率确定在所述预设时间段内的所述运动数据是否均满足所述目标运动类型关联的所述预设运动强度要求。In a possible implementation manner, when the motion data in the preset time period all meet the preset motion intensity requirement associated with the target motion type, turning on the sensor group associated with the target motion type includes: according to cadence, speed Or the stroke frequency to determine whether the exercise data in the preset time period all meet the preset exercise intensity requirement associated with the target exercise type.
在一种可能的实现方式中,控制开启与目标运动类型关联的传感器组包括:提高与所述目标运动类型关联的所述传感器组的采样频率。In a possible implementation manner, controlling to turn on the sensor group associated with the target movement type includes: increasing the sampling frequency of the sensor group associated with the target movement type.
在一种可能的实现方式中,在所述控制开启与目标运动类型关联的传感器组的步骤之后,所述方法还包括:提高所述加速度传感器及所述陀螺仪传感器的采样频率。In a possible implementation manner, after the step of controlling to enable the sensor group associated with the target motion type, the method further includes: increasing the sampling frequency of the acceleration sensor and the gyro sensor.
在一种可能的实现方式中,在所述控制开启与目标运动类型关联的传感器组的步骤之后,所述方法还包括:显示指示为用户进入运动状态的提醒消息。In a possible implementation manner, after the step of controlling to turn on the sensor group associated with the target movement type, the method further includes: displaying a reminder message indicating that the user has entered a movement state.
在一种可能的实现方式中,所述方法还包括:检测暂停所述目标运动类型对应的运动的第一请求;响应于所述第一请求,降低所述加速度传感器、所述陀螺仪传感器以及所述传感器组的采样频率。In a possible implementation manner, the method further includes: detecting a first request to suspend the movement corresponding to the target movement type; in response to the first request, reducing the acceleration sensor, the gyro sensor, and the The sampling frequency of the sensor group.
在一种可能的实现方式中,所述方法还包括:检测结束所述目标运动类型对应的运动的第二请求;响应于所述第二请求,关闭所述传感器组。In a possible implementation manner, the method further includes: detecting a second request for ending the movement corresponding to the target movement type; and turning off the sensor group in response to the second request.
第二方面,本申请实施例提供了一种运动识别装置,包括接收模块及处理模块;In a second aspect, an embodiment of the present application provides a motion recognition device, including a receiving module and a processing module;
所述接收模块用于接收加速度传感器和陀螺仪传感器采集的运动数据;The receiving module is used for receiving the motion data collected by the acceleration sensor and the gyroscope sensor;
所述处理模块用于识别所述运动数据对应的运动目标类型,所述处理模块还用于在预设时间段内的所述运动数据均满足所述目标运动类型关联的预设运动强度要求时,控制开启与所述运动目标类型关联的传感器组。The processing module is used to identify the motion target type corresponding to the motion data, and the processing module is also used for when the motion data within a preset time period all meet the preset motion intensity requirements associated with the target motion type. , and control to open the sensor group associated with the moving target type.
第三方面,本申请实施例提供一种可穿戴设备,包括加速度传感器、陀螺仪传感器、处理器以及存储器,所述处理器分别与所述加速度传感器、所述陀螺仪传感器以及所述存储器通信连接,其中:In a third aspect, embodiments of the present application provide a wearable device, including an acceleration sensor, a gyroscope sensor, a processor, and a memory, where the processor is respectively connected in communication with the acceleration sensor, the gyroscope sensor, and the memory ,in:
所述加速度传感器用于采集用户运动时的加速度数据,The acceleration sensor is used to collect acceleration data when the user moves,
所述陀螺仪传感器用于采集用于运动时的角速度数据;The gyroscope sensor is used for collecting angular velocity data for movement;
所述存储器用于存储软件指令;the memory is used to store software instructions;
所述处理器用于执行所述存储器中的所述指令,执行如上述第一方面所述的方法。The processor is configured to execute the instructions in the memory to execute the method according to the first aspect.
第四方面,本申请实施例提供了一种计算机可读存储介质,用于存储一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述计算机程序在计算机上运行时,所述指令用于执行上述第一方面所述方法的步骤。In a fourth aspect, embodiments of the present application provide a computer-readable storage medium for storing one or more computer programs, where the one or more computer programs include instructions, and when the computer program runs on a computer, The instructions are used to execute the steps of the method described in the first aspect above.
在本申请实施例中,可接收加速度传感器和陀螺仪传感器采集的运动数据;之后识别运动数据对应的目标运动类型;在预设时间段内的运动数据均满足目标运动类型关联的预设运动强度和运动时长要求时,控制开启与目标运动类型关联的传感器组,首先通过只采用加速度传感器和陀螺仪传感器采集运动数据,在识别到对应的目标运动类型后,如果在预设时间段内的运动数据均满足目标运动类型关联的预设运动强度和运动时长要求时,再控制开启与目标运动类型关联的传感器组进行真实运动的监测,避免了采用与运动相关的全部传感器进行运动识别,从而降低了识别用户运动的功耗。In this embodiment of the present application, the motion data collected by the acceleration sensor and the gyroscope sensor can be received; the target motion type corresponding to the motion data is then identified; the motion data within the preset time period all meet the preset motion intensity associated with the target motion type When the motion duration and motion duration are required, the sensor group associated with the target motion type is controlled to be turned on. First, only the acceleration sensor and gyroscope sensor are used to collect motion data. After identifying the corresponding target motion type, if the motion within the preset time period When the data meet the preset exercise intensity and exercise duration requirements associated with the target movement type, the sensor group associated with the target movement type is controlled to be turned on for real movement monitoring, avoiding the use of all movement-related sensors for movement recognition, thereby reducing to identify the power consumption of the user's motion.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例提供的可穿戴设备的方框示意图;FIG. 1 is a schematic block diagram of a wearable device provided by an embodiment of the present invention;
图2为本发明实施例提供的运动识别方法的一种流程示意图;2 is a schematic flowchart of a motion recognition method provided by an embodiment of the present invention;
图3为本发明实施例提供的运动识别方法的另一种流程示意图;3 is another schematic flowchart of a motion recognition method provided by an embodiment of the present invention;
图4为本发明实施例提供的运动识别方法的又一种流程示意图;4 is another schematic flowchart of a motion recognition method provided by an embodiment of the present invention;
图5为本发明实施例提供的运动识别装置的框图。FIG. 5 is a block diagram of a motion recognition apparatus provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。Thus, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present invention.
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that relational terms such as the terms "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article, or device that includes the element.
本申请的基本思路是,在用户处于日常生活状态时,通过只采用加速度传感器和陀螺仪传感器采集运动数据,在识别到运动数据所对应的目标运动类型后,接下来如果判断出在预设时间段内的运动数据均满足目标运动类型关联的预设运动强度和运动时长要求时,说明用户进入了真实运动状态,此时再控制开启与目标运动类型关联的传感器组进行真实运动的监测,避免了用户在处于日常生活中的非运动状态时开启与运动相关的全部传感器进行运动识别,从而降低了识别用户运动的功耗。The basic idea of this application is that, when the user is in the daily life, only the acceleration sensor and the gyroscope sensor are used to collect the motion data, and after identifying the target motion type corresponding to the motion data, if it is determined that the target motion type corresponding to the motion data is determined at a preset time When the motion data in the segment meets the preset motion intensity and motion duration requirements associated with the target motion type, it means that the user has entered the real motion state. At this time, the sensor group associated with the target motion type is controlled to be turned on to monitor the real motion to avoid This enables the user to turn on all motion-related sensors to perform motion recognition when the user is in a non-exercise state in daily life, thereby reducing the power consumption for recognizing the user's motion.
本申请提供的热身充分性检测方法可应用于用户携带的一个或者多个电子设备中,该电子设备可以是手机、可穿戴设备、便携式媒体播放器等,可穿戴设备可以包括但不限于为智能手表、智能手环、智能腕带、智能眼镜、指环或者头盔等等。The warm-up adequacy detection method provided in this application can be applied to one or more electronic devices carried by the user. The electronic devices may be mobile phones, wearable devices, portable media players, etc. The wearable devices may include but are not limited to smart Watches, smart bracelets, smart wristbands, smart glasses, rings or helmets, etc.
图1示出了本申请实施例提供的可穿戴设备的框图。可穿戴设备100可以包括一个或多个处理器101、存储器102、通信模块103、传感器模块104、显示屏105、音频模块106、扬声器107、麦克风108、相机模块109、马达110、按键111、指示器112、电池113、电源管理模块114。这些部件可以通过一条或多条通信总线或信号线来进行通信。FIG. 1 shows a block diagram of a wearable device provided by an embodiment of the present application. Wearable device 100 may include one or
处理器101是信息处理、程序运行的最终执行单元,可以运行操作系统或应用程序,以执行可穿戴设备100的各种功能应用以及数据处理。处理器101可以包括一个或多个处理单元,例如:处理器101可以包括中央处理器(central processing unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、图像信号处理器(Image Signal Processing,ISP)、传感器中枢处理器或通信处理器(Central Processor,CP)应用处理器(ApplicationProcessor,AP)等等。在一些实施例中,处理器101可以包括一个或多个接口。接口用于将外围设备耦接到处理器101,以传输处理器101与外围设备之间的指令或者数据。在本申请实施例中,处理器101还用于识别加速度传感器和陀螺仪传感器采集的运动数据所对应的目标运动类型,例如,走/跑/骑/游等。具体地,处理器101将接收到的运动数据对应的运动波形特征与目标运动类型对应的运动波形特征作比对,以此来识别运动数据所对应的目标运动类型,处理器101还用于判断在预设时间段内的运动数据是否均满足目标运动类型关联的预设运动强度要求,当判断出运动数据在预设时间段内均满足目标运动类型关联的预设运动强度要求时,处理器101控制开启与目标运动类型关联的传感器组。The
存储器102可以用于存储计算机可执行程序代码,可执行程序代码包括指令。存储器102可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储可穿戴设备100使用过程中所创建的数据,例如用户每次运动的运动参数,如步数、步幅、配速、心率、血氧、血糖浓度、能量消耗(卡路里)等。存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universalflash storage,UFS)等。在本申请实施例中,存储器102能够存储走、跑、骑、游等目标运动所对应的传感器波形规律特性数据。
通信模块103可支持可穿戴设备100通过无线通信技术与网络以及移动终端通信。通信模块103将电信号转换为电磁信号进行发送,或者将接收到的电磁信号转换为电信号。通信模块103可以包括蜂窝移动通信模块、短距离无线通信模块、无线互联网模块、位置信息模块中的一个或者多个。移动通信模块可以基于移动通信的技术标准发送或接收无线信号,可以使用任一移动通信标准或协议,包括但不限于全球移动通信系统(GSM)、码分多址(CDMA)、码分多址2000(CDMA2000)、宽带CDMA(WCDMA)、时分同步码分多址(TD-SCDMA)、长期演进(LTE)、LTE-A(高级长期演进)等。无线互联网模块可以根据无线互联网技术经由通信网络发送或接收无线信号,包括无线LAN(WLAN)、无线保真(Wi-Fi)、Wi-Fi直连、数字生活网络联盟(DLNA)、无线宽带(WiBro)等。短距离无线通信模块可根据短距离通信技术进行发送或接收无线信号,这些技术包括蓝牙、射频识别(RFID)、红外数据通讯(IrDA)、超宽带(UWB)、ZigBee、近场通信(NFC)、无线保真(Wi-Fi)、Wi-Fi直连、无线USB(无线通用串行总线)等。位置信息模块可以基于全球导航卫星系统(GNSS)获取可穿戴设备的位置,全球导航卫星系统(GNSS)可以包括全球定位系统(GPS)、全球卫星导航系统(Glonass)、北斗卫星导航系统和伽利略卫星导航系统中的一个或多个。The
传感器模块104用于测量物理量或检测可穿戴设备100的操作状态。传感器模块104可以包括加速度传感器104A、陀螺仪传感器104B、气压传感器104C、磁传感器104D、生物特征传感器104E、接近传感器104F、环境光传感器104G、触摸传感器104H等。传感器模块104还可以包括控制电路,以用于控制包括在传感器模块104中的一个或多个传感器。The
其中,加速度传感器104A可检测可穿戴设备100在各个方向上的加速度大小。当可穿戴设备100静止时可检测出重力的大小及方向。还可以用于识别可穿戴设备100的姿态,应用于横竖屏切换,计步器等应用。在一种实施方式中,加速度传感器104A可以和陀螺仪传感器104B结合起来用于监测用户在运动过程中的步幅、步频及配速等。The
陀螺仪传感器104B可以用于确定可穿戴设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器104B确定可穿戴设备100围绕三个轴(即,x,y和z轴)的角速度。The
在本申请实施例中,加速度传感器104A和陀螺仪传感器104B用于用户在非运动状态时实时感知用户的各种活动并将检测到的传感器波形实时发送到处理器101,在处理器101根据传感器波形识别到目标运动类型后,加速度传感器104A和陀螺仪传感器104B相互结合还用于监测目标运动类型的运动强度,例如,目标运动类型为步行或跑步,则可以监测步频;目标运动类型为骑行,则可以监测速度;目标运动类型为游泳,则可以监测划水频率。In this embodiment of the present application, the
气压传感器104C用于测量气压。在一些实施例中,可穿戴设备100通过气压传感器104C测得的气压值计算海拔高度,辅助定位和导航。The
GPS传感器104D可以用于记录用户活动轨迹以确定用户位置。
生物特征传感器104E用于测量用户的生理参数,包括但不限于光电容积脉搏波(Photoplethysmography,PPG)传感器、ECG传感器、EMG传感器、血糖传感器、温度传感器。例如可穿戴设备100可以通过光电容积脉搏波传感器和/或ECG传感器的信号测量用户的心率、血氧、血压数据,基于血糖传感器产生的数据识别用户的血糖值。在本申请实施例中,PPG传感器用于检测用户的心率,具体来讲,PPG传感器在开启之后能够持续检测与用户心率相关的信号数据并传到处理器101,再由处理器101通过心率算法计算出心率值。在本申请实施例中,温度传感器用于检测用户腕部皮肤的第一温度,具体地,温度传感器在开启后能够持续获取用户腕部皮肤的温度数据并传输至处理器101,再由处理器101将温度传感器的电信号数据通过温度算法计算出对应的物理意义的温度值。The
接近传感器104F用于在没有任何的物理接触时检测可穿戴设备100附近物体的存在。在一些实施例中,接近传感器104F可以包括发光二极管和光检测器。发光二极管可以是红外光,可穿戴设备100使用光检测器检测来自附近物体的反射光。当检测到反射光时,可以确定可穿戴设备100附近有物体。可穿戴设备100可以利用接近传感器104F检测其佩戴状态。
环境光传感器104G用于感知环境光亮度。在一些实施例中,可穿戴设备100可以根据感知的环境光亮度自适应调节显示屏亮度,以降低功耗。The ambient
触摸传感器104H用于检测作用于其上或附近的触摸操作,也称“触控器件”。触摸传感器104H可以设置于显示屏105,由触摸传感器104H与显示屏105组成触摸屏。The touch sensor 104H is used to detect touch operations on or near it, and is also referred to as a "touch device". The touch sensor 104H may be disposed on the
显示屏105用于显示图形用户界面(User Interface,UI),图形用户界面可以包括图形、文本、图标、视频及其它们的任意组合。显示屏105可以是液晶显示屏(LiquidCrystal Display,液晶显示屏)、有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏等。当显示屏105是触摸显示屏时,显示屏105能够采集在显示屏105的表面或表面上方的触摸信号,并将该触摸信号作为控制信号输入至处理器101。The
音频模块106,扬声器107,麦克风108提供用户与可穿戴设备100之间的音频功能等,例如收听音乐或通话;又例如当可穿戴设备100接收来自移动终端的通知消息时,处理器101控制音频模块106输出预设的音频信号,扬声器107发出声音提醒用户。其中,音频模块106将接收到的音频数据转换为电信号发送至扬声器107,由扬声器107将电信号转换为声音;或者由麦克风108将声音转换为电信号发送至音频模块106,再由音频模块106将音频电信号转换为音频数据。The
相机模块111用于捕获静态图像或视频。相机模块111可以包括图像传感器、图像信号处理器(ISP)和数字信号处理器(DSP)。图像传感器把光信号转换成电信号,图像信号处理器将电信号转换成数字图像信号,数字信号处理器将数字图像信号转换成标准格式(RGB、YUV)的图像信号。图像传感器可以是电荷耦合元件(charge coupled device,CCD)或金属氧化物半导体元件(complementary metal-oxide-semiconductor,CMOS)。The
马达110可以将电信号转换为机械振动,以产生振动效果。马达110可以用于来电、消息的振动提示,也可以用于触摸振动反馈。按键109包括开机键,音量键等。按键109可以是机械按键(物理按钮)或者触摸式按键。指示器112用于指示可穿戴设备100的状态,例如用于指示充电状态、电量变化,也可以用于指示消息,未接来电,通知等。在一些实施例中,可穿戴设备100接收到来自移动终端应用的通知消息后,提供振动反馈。The
电池113用于为可穿戴设备100的各个部件提供电力。电源管理模块114用于电池的充放电管理,以及监测电池容量,电池循环次数,电池健康状态(是否漏电,阻抗、电压、电流以及温度)等参数。在一些实施例中,电源管理模块114可以通过有线或者无线方式为电池充电。The
应当理解,在一些实施例中,可穿戴设备100可由前述部件中的一个或多个组成,可穿戴设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。It should be understood that, in some embodiments, the wearable device 100 may be composed of one or more of the aforementioned components, and the wearable device 100 may include more or less components than shown, or combine certain components, or split certain components, or different component arrangements. The illustrated components may be implemented in hardware, software, or a combination of software and hardware.
在一个实施例中了,请参阅图2,提供了一种运动识别方法的流程图。本实施例主要以该方法应用于图1中的可穿戴设备100来举例说明。需要说明的是,本实施例的运动识别方法并不以图2以及以下的具体顺序为限制,应当理解,在其它实施例中,本申请的运动识别方法其中部分步骤的顺序可以根据实际需要相互交换,或者其中的部分步骤也可以省略或删除。下面将对图2所示的具体流程进行详细阐述。In one embodiment, please refer to FIG. 2, which provides a flowchart of a motion recognition method. This embodiment is mainly illustrated by applying the method to the wearable device 100 in FIG. 1 . It should be noted that the motion recognition method of this embodiment is not limited to the specific sequence shown in FIG. 2 and the following. It should be understood that, in other embodiments, the sequence of some steps in the motion recognition method of the present application can be mutually changed according to actual needs. exchange, or some of the steps can also be omitted or deleted. The specific flow shown in FIG. 2 will be described in detail below.
步骤S201,接收加速度传感器和陀螺仪传感器采集的运动数据。具体地,加速度传感器始终开启并采集可穿戴设备在各个方向上的加速度大小,陀螺仪传感器同样始终开启并识别可穿戴设备的姿态,例如,可以通过陀螺仪传感器确定可穿戴设备围绕三个轴(即,x,y和z轴)的角速度,加速度传感器和陀螺仪传感器均能够将采集到的运动数据发送至可穿戴设备的处理器。Step S201, receiving motion data collected by an acceleration sensor and a gyroscope sensor. Specifically, the acceleration sensor is always turned on and collects the acceleration of the wearable device in all directions, and the gyro sensor is also always turned on and recognizes the posture of the wearable device. For example, the three axes ( That is, the angular velocity of the x, y and z axes), the acceleration sensor and the gyroscope sensor can all send the collected motion data to the processor of the wearable device.
步骤S202,识别运动数据对应的目标运动类型。具体地,可穿戴设备的处理器可以接收并根据加速度传感器采集到的加速度数据和陀螺仪传感器采集到的角速度数据判断目标运动类型,例如,步行、跑步、骑行及游泳等。Step S202, identifying the target motion type corresponding to the motion data. Specifically, the processor of the wearable device can receive and judge the target movement type, such as walking, running, cycling, and swimming, according to the acceleration data collected by the acceleration sensor and the angular velocity data collected by the gyro sensor.
步骤S203,在预设时间段内的运动数据均满足目标运动类型关联的预设运动强度要求时,控制开启与目标运动类型关联的传感器组。具体地,用户在处于日常生活状态时发生了任何疑似与目标运动类型相关的活动时,加速度传感器和陀螺仪传感器采集该项活动的运动数据并发送至可穿戴设备的处理器,处理器在准确识别到运动数据所对应的目标运动类型后,加速度传感器和陀螺仪传感器继续采集与目标运动类型关联的运动强度数据和运动时长数据并实时发送至处理器。当处理器在从识别到目标运动类型后的预设时间段内(例如,3分钟)判断出运动强度数据均满足预设运动强度(例如,步频>140次/分钟),则说明用户进入真实跑步状态,处理器控制开启与目标运动类型关联的传感器组,传感器组开始监测与运动相关的全部运动数据,例如,开启PPG传感器采集用户的心率数据。Step S203, when the motion data in the preset time period all meet the preset motion intensity requirement associated with the target motion type, control to open the sensor group associated with the target motion type. Specifically, when the user performs any activity that is suspected to be related to the target movement type while in the daily life, the acceleration sensor and the gyroscope sensor collect the movement data of the activity and send it to the processor of the wearable device. After identifying the target motion type corresponding to the motion data, the acceleration sensor and the gyroscope sensor continue to collect motion intensity data and motion duration data associated with the target motion type and send them to the processor in real time. When the processor determines within a preset time period (for example, 3 minutes) after the target exercise type is recognized In the real running state, the processor controls to open the sensor group associated with the target exercise type, and the sensor group starts to monitor all exercise data related to the exercise. For example, the PPG sensor is enabled to collect the user's heart rate data.
在一个实施例中,识别运动数据对应的目标运动类型包括:将运动数据对应的运动波形特征与目标运动类型对应的运动波形作比对。具体地,可穿戴设备的存储器存储有常见运动所对应的传感器波形规律特性数据,处理器在接收到运动数据后能够分析出运动数据对应的运动波形,并且将分析出的运动波形与存储器存储的与目标运动类型对应的传感器波形规律特性数据做比对,从而识别出目标运动类型。In one embodiment, identifying the target motion type corresponding to the motion data includes: comparing the motion waveform feature corresponding to the motion data with the motion waveform corresponding to the target motion type. Specifically, the memory of the wearable device stores the regular characteristic data of the sensor waveform corresponding to the common motion, and the processor can analyze the motion waveform corresponding to the motion data after receiving the motion data, and compare the analyzed motion waveform with the data stored in the memory. Compare with the sensor waveform regular characteristic data corresponding to the target movement type, so as to identify the target movement type.
在一个实施例中,传感器组至少包括:PPG传感器、GPS传感器以及气压传感器中的一个或多个。In one embodiment, the sensor group includes at least one or more of a PPG sensor, a GPS sensor, and an air pressure sensor.
在一个实施例中,在预设时间段内的运动数据均满足目标运动类型关联的预设运动时强度要求时,开启与目标运动类型关联的传感器组包括:根据步频、速度或划水频率确定在预设时间段运动数据是否均满足目标运动类型关联的预设运动强度要求。具体地,当识别出的目标运动类型为步行或跑步时,则根据步频确定在预设时间段的运动数据是否满足与步行或跑步关联的预设运动强度要求,例如,识别的目标运动类型为步行时,预设时间段为5分钟,预设运动强度为80次/分钟,则需要判断在5分钟内的步频是否均大于80次/分钟,如是,说明用户进入了真实运动状态,处理器则控制开启与目标运动类型关联的传感器组。In one embodiment, when the exercise data within a preset time period meets the preset exercise intensity requirement associated with the target exercise type, turning on the sensor group associated with the target exercise type includes: according to stride frequency, speed or stroke frequency It is determined whether the exercise data in the preset time period meets the preset exercise intensity requirement associated with the target exercise type. Specifically, when the identified target exercise type is walking or running, it is determined whether the exercise data in the preset time period meets the preset exercise intensity requirement associated with walking or running according to the cadence, for example, the identified target exercise type When walking, the preset time period is 5 minutes, and the preset exercise intensity is 80 times/min. It is necessary to judge whether the stride frequency within 5 minutes is greater than 80 times/min. If so, it means that the user has entered a real exercise state. The processor controls to turn on the sensor group associated with the target movement type.
表1示出了本申请实施例中判断用户是否进入真实运动状态时,各种目标运动类型需满足的条件。Table 1 shows the conditions to be satisfied by various target movement types when judging whether the user enters the real movement state in the embodiment of the present application.
表1Table 1
在一个实施例中,控制开启与目标运动类型关联的传感器组包括:提高与目标运动类型关联的传感器组的采样频率。可以理解地是,在预设时间段内的运动数据均满足目标运动类型关联的预设运动强度要求时,则说明用户进入了目标运动类型的真实运动状态,因此,在控制开启与目标运动类型关联的传感器组的同时提高传感器组的采样频率发生于用户进入真实运动状态之后,从而避免了用户在进入真实运动状态之前保持采用高采样频率采集运动数据,进一步降低了传感器组的功耗。In one embodiment, controlling to turn on the sensor group associated with the target motion type includes increasing the sampling frequency of the sensor group associated with the target motion type. Understandably, when the exercise data in the preset time period meets the preset exercise intensity requirements associated with the target exercise type, it means that the user has entered the real exercise state of the target exercise type. Increasing the sampling frequency of the sensor group while the associated sensor group occurs after the user enters the real exercise state, thereby preventing the user from collecting exercise data at a high sampling frequency before entering the real exercise state, and further reducing the power consumption of the sensor group.
在控制开启与目标运动类型关联的传感器组的步骤之后,方法还包括:提高加速度传感器及陀螺仪传感器的采样频率。After controlling the step of turning on the sensor group associated with the target motion type, the method further includes: increasing the sampling frequency of the acceleration sensor and the gyro sensor.
在一个实施例中,在控制开启与目标运动类型关联的传感器组的步骤之后,方法还包括:显示指示为用户进入运动状态的提醒消息。可以理解地是,通过该提醒消息可以提醒用户进入真实运动状态,并提醒用户可穿戴设备即将开始监测用户在真实运动状态下的各项运动数据,提高了用户的使用体验。In one embodiment, after the step of controlling to turn on the sensor group associated with the target exercise type, the method further includes: displaying a reminder message indicating that the user enters the exercise state. It can be understood that the reminder message can remind the user to enter the real exercise state, and remind the user that the wearable device is about to start monitoring various exercise data of the user in the real exercise state, which improves the user experience.
在一个实施例中,请参阅图3,该运动识别方法还包括:In one embodiment, referring to FIG. 3, the motion recognition method further includes:
步骤S301,检测暂停目标运动类型对应的运动的第一请求。具体地,该第一请求可以为用户点击可穿戴设备的触摸屏所产生的请求。Step S301, detecting a first request to suspend the motion corresponding to the target motion type. Specifically, the first request may be a request generated by the user clicking on the touch screen of the wearable device.
步骤S302,响应于第一请求,降低加速度传感器、陀螺仪传感器以及传感器组的采样频率。可以理解地是,用户在暂停运动后,降低采样频率能够降低可穿戴设备的功耗。Step S302, in response to the first request, reduce the sampling frequency of the acceleration sensor, the gyro sensor and the sensor group. It is understandable that, after the user pauses the exercise, reducing the sampling frequency can reduce the power consumption of the wearable device.
在一个实施例中,请参阅图4,该运动识别方法还包括:In one embodiment, referring to FIG. 4 , the motion recognition method further includes:
步骤S401,检测结束目标运动类型对应的运动的第二请求;Step S401, detecting a second request to end the movement corresponding to the target movement type;
步骤S402,响应于第二请求,关闭传感器组。Step S402, in response to the second request, the sensor group is turned off.
请参阅图5,本申请还提供了一种运动识别装置,该运动识别装置500包括接收模块501和处理模块502。Referring to FIG. 5 , the present application also provides a motion recognition device 500 , which includes a receiving
其中,接收模块501用于接收加速度传感器和陀螺仪传感器采集的运动数据。The receiving
处理模块502用于识别运动数据对应的运动目标类型,处理模块502还用于在预设时间段内的运动数据均满足目标运动类型关联的预设运动强度要求时,控制开启与运动目标类型关联的传感器组。The
本申请实施例还提供了一种可读存储介质,可读存储介质存储有计算机程序,计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。Embodiments of the present application further provide a readable storage medium, where the readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may also be implemented in other manners. The apparatus embodiments described above are merely illustrative, for example, the flowcharts and block diagrams in the accompanying drawings illustrate the architecture, functionality and possible implementations of apparatuses, methods and computer program products according to various embodiments of the present application. operate. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executables for implementing the specified logical function(s) instruction. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。In addition, each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2022100700249 | 2022-01-21 | ||
CN202210070024 | 2022-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114648046A true CN114648046A (en) | 2022-06-21 |
Family
ID=81994548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210286020.4A Pending CN114648046A (en) | 2022-01-21 | 2022-03-23 | Motion recognition method, device and wearable device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114648046A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103617349A (en) * | 2013-11-18 | 2014-03-05 | 杭州攻壳科技有限公司 | Motion state monitoring and feedback device and motion state monitoring and feedback method |
US20140278139A1 (en) * | 2010-09-30 | 2014-09-18 | Fitbit, Inc. | Multimode sensor devices |
WO2016043405A1 (en) * | 2014-09-19 | 2016-03-24 | Lg Electronics Inc. | Mobile terminal and motion-based low power implementing method thereof |
CN110096195A (en) * | 2019-04-29 | 2019-08-06 | 努比亚技术有限公司 | Motion icon display methods, wearable device and computer readable storage medium |
CN112486258A (en) * | 2020-11-24 | 2021-03-12 | 歌尔科技有限公司 | Wearable device, step counting method thereof and computer storage medium |
CN113378801A (en) * | 2021-08-11 | 2021-09-10 | 深圳市梦瑶科技有限公司 | Intelligent bracelet accurate step counting method based on neural network |
-
2022
- 2022-03-23 CN CN202210286020.4A patent/CN114648046A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140278139A1 (en) * | 2010-09-30 | 2014-09-18 | Fitbit, Inc. | Multimode sensor devices |
CN103617349A (en) * | 2013-11-18 | 2014-03-05 | 杭州攻壳科技有限公司 | Motion state monitoring and feedback device and motion state monitoring and feedback method |
WO2016043405A1 (en) * | 2014-09-19 | 2016-03-24 | Lg Electronics Inc. | Mobile terminal and motion-based low power implementing method thereof |
CN110096195A (en) * | 2019-04-29 | 2019-08-06 | 努比亚技术有限公司 | Motion icon display methods, wearable device and computer readable storage medium |
CN112486258A (en) * | 2020-11-24 | 2021-03-12 | 歌尔科技有限公司 | Wearable device, step counting method thereof and computer storage medium |
CN113378801A (en) * | 2021-08-11 | 2021-09-10 | 深圳市梦瑶科技有限公司 | Intelligent bracelet accurate step counting method based on neural network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107997767B (en) | Method for recognizing user activity and electronic device thereof | |
KR102561587B1 (en) | Electronic apparatus and operating method thereof | |
CN104636034B (en) | Combined electronic device and control method thereof | |
AU2018287392B2 (en) | Method for recommending lock-screen wallpaper and related products | |
US8519835B2 (en) | Systems and methods for sensory feedback | |
US20180110021A1 (en) | Method and device for measuring amount of user physical activity | |
WO2020027523A1 (en) | Context-aware respiration rate determination using an electronic device | |
KR20160035394A (en) | Method and apparatus for processing sensor data | |
CN104657057A (en) | Terminal waking method and device | |
CN114209298A (en) | A PPG sensor control method, device and electronic device | |
CN114668368A (en) | A sleep state monitoring method, electronic device and computer-readable storage medium | |
US20160299483A1 (en) | Method for controlling terminal device, and wearable electronic device | |
WO2019095155A1 (en) | Fatigue notification method and terminal | |
CN113873075B (en) | Notification message management method and system, mobile terminal and storage medium | |
US20210064115A1 (en) | Multipoint Sensor System for Efficient Power Consumption | |
CN107291242A (en) | The control method and intelligent terminal of a kind of intelligent terminal | |
CN113867666A (en) | Information display method, device and wearable device | |
CN114532992B (en) | Method, device and system for detecting nap state and computer readable storage medium | |
CN113778282B (en) | A sports type management method, system and mobile terminal | |
CN114631798A (en) | Physical fitness test method, system, wearable device and computer-readable storage medium | |
US20250090906A1 (en) | Exercise Guidance Method and Related Apparatus | |
CN110012158A (en) | A kind of charging reminding method, terminal and computer readable storage medium | |
CN113873076A (en) | Notification message management method, system and mobile terminal | |
CN114648046A (en) | Motion recognition method, device and wearable device | |
CN114849215A (en) | Rope skipping counting method and device based on intelligent wearable equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |