CN111466103B - Method and system for generation and adaptation of network baselines - Google Patents
Method and system for generation and adaptation of network baselines Download PDFInfo
- Publication number
- CN111466103B CN111466103B CN201780097537.6A CN201780097537A CN111466103B CN 111466103 B CN111466103 B CN 111466103B CN 201780097537 A CN201780097537 A CN 201780097537A CN 111466103 B CN111466103 B CN 111466103B
- Authority
- CN
- China
- Prior art keywords
- violation
- network
- baseline
- metric
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/147—Network analysis or design for predicting network behaviour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/04—Processing captured monitoring data, e.g. for logfile generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/067—Generation of reports using time frame reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/20—Arrangements for monitoring or testing data switching networks the monitoring system or the monitored elements being virtualised, abstracted or software-defined entities, e.g. SDN or NFV
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0681—Configuration of triggering conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/40—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Data Mining & Analysis (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Debugging And Monitoring (AREA)
Abstract
提供了用于网络基线的生成和适配的系统、方法、装置和计算机程序产品。一种方法可以包括:生成未来时间段内的一个或多个网络度量的预测值;使用预测值和/或历史数据生成针对(多个)网络度量的基线;使用至少一种时间序列分析技术来评估(多个)网络度量以检测网络状况的变化,以及使用历史数据、机器学习和/或时间序列分析技术使基线适配检测到的网络状况的变化。
Systems, methods, apparatus and computer program products for generation and adaptation of network baselines are provided. A method may include: generating forecast values for one or more network metrics for a future time period; generating a baseline for the network metric(s) using the forecast values and/or historical data; using at least one time series analysis technique to The network metric(s) are evaluated to detect changes in network conditions, and the baseline is adapted to the detected changes in network conditions using historical data, machine learning and/or time series analysis techniques.
Description
技术领域technical field
某些实施例总体上可以涉及有线或无线通信网络,包括但不限于局域网或广域网,诸如互联网。例如,一些实施例总体上可以涉及无线或蜂窝通信系统,诸如但不限于通用移动电信系统(UMTS)地面无线电接入网络(UTRAN)、长期演进(LTE)演进的UTRAN(E-UTRAN)、高级LTE(LTE-A)、LTE-A Pro和/或第五代(5G)无线电接入技术或新无线电(NR)接入技术。例如,各种实施例可以涉及用于这种通信网络的网络基线的生成和适配。Certain embodiments may generally relate to wired or wireless communication networks, including but not limited to local or wide area networks, such as the Internet. For example, some embodiments may relate to wireless or cellular communication systems in general, such as, but not limited to, Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (UTRAN), Long Term Evolution (LTE) Evolved UTRAN (E-UTRAN), Advanced LTE (LTE-A), LTE-A Pro and/or fifth generation (5G) or new radio (NR) access technologies. For example, various embodiments may relate to the generation and adaptation of network baselines for such communication networks.
背景技术Background technique
通用移动电信系统(UMTS)地面无线电接入网络(UTRAN)是指包括基站或节点B以及例如无线电网络控制器(RNC)的通信网络。UTRAN允许用户设备(UE)与核心网络之间的连接。RNC为一个或多个节点B提供控制功能。RNC及其对应的节点B称为无线电网络子系统(RNS)。在E-UTRAN(演进的UTRAN)的情况下,空中接口设计、协议架构和多址原理比UTRAN的更为新颖,并且不存在RNC并且无线电接入功能由演进的节点B(eNodeB或eNB)或很多eNB提供。例如,在协作多点传输(CoMP)和双连接(DC)的情况下,单个UE连接涉及多个eNB。A Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (UTRAN) refers to a communication network comprising base stations or Node Bs and eg a Radio Network Controller (RNC). UTRAN allows connectivity between user equipment (UE) and the core network. The RNC provides control functions for one or more Node Bs. The RNC and its corresponding Node Bs are called the Radio Network Subsystem (RNS). In the case of E-UTRAN (Evolved UTRAN), the air interface design, protocol architecture and multiple access principles are more novel than those of UTRAN, and there is no RNC and the radio access function is performed by an evolved Node B (eNodeB or eNB) or Many eNBs provide. For example, in the case of Coordinated Multipoint (CoMP) and Dual Connectivity (DC), a single UE connection involves multiple eNBs.
与前几代相比,长期演进(LTE)或E-UTRAN提高了效率和服务,提供了更低的成本,并且提供了新的频谱机会。特别地,LTE是一种3GPP标准,其提供的上行链路峰值速率为例如至少每载波每秒75兆比特(Mbps)并且其提供的下行链路峰值速率为例如至少每载波每秒300Mbps。LTE支持从20MHz到1.4MHz的可扩展载波带宽,并且支持频分双工(FDD)和时分双工(TDD)两者。载波聚合或上述双连接还允许同时在多个分量载波上操作,因此使性能(诸如每用户的数据速率)成倍增长。Long Term Evolution (LTE), or E-UTRAN, improves efficiency and services, offers lower costs, and opens up new spectrum opportunities compared to previous generations. In particular, LTE is a 3GPP standard that provides an uplink peak rate of, for example, at least 75 megabits per second (Mbps) per carrier and a downlink peak rate of, for example, at least 300 Mbps per carrier. LTE supports scalable carrier bandwidth from 20 MHz to 1.4 MHz, and supports both Frequency Division Duplex (FDD) and Time Division Duplex (TDD). Carrier aggregation, or the aforementioned dual connectivity, also allows simultaneous operation on multiple component carriers, thus multiplying performance such as data rates per user.
如上所述,LTE还可以提高网络中的频谱效率,从而允许载波在给定带宽上提供更多的数据和语音服务。因此,除了高容量语音支持,LTE还旨在满足高速数据和媒体传输的需求。LTE的优势包括例如高吞吐量、低延迟、在同一平台中的FDD和TDD支持、改善的最终用户体验、以及简单的架构,从而可以降低运营成本。As mentioned above, LTE can also increase spectral efficiency in the network, allowing carriers to provide more data and voice services on a given bandwidth. Therefore, in addition to high-capacity voice support, LTE is also designed to meet the needs of high-speed data and media transmission. Advantages of LTE include, for example, high throughput, low latency, FDD and TDD support in the same platform, improved end-user experience, and simple architecture, which can reduce operating costs.
3GPP LTE的某些另外的版本(例如,LTE Rel-10、LTE Rel-11)针对国际移动通信高级(IMT-A)系统,其在本文中为方便起见简称为高级LTE(LTE-A)。Certain additional releases of 3GPP LTE (eg, LTE Rel-10, LTE Rel-11 ) target the International Mobile Telecommunications-Advanced (IMT-A) system, which is simply referred to herein as LTE-Advanced (LTE-A) for convenience.
LTE-A针对扩展和优化3GPP LTE无线电接入技术。LTE-A的目标是通过更高的数据速率和更低的延迟以降低的成本来提供显著增强的服务。LTE-A是一种更优化的无线电系统,其可以满足高级IMT的国际电信联盟无线电(ITU-R)要求,同时保持向后兼容性。在LTERel-10中引入的LTE-A的关键特征之一是载波聚合,它允许通过两个或更多LTE载波的聚合来提高数据速率。3GPP LTE的下一版本(例如,LTE Rel-12、LTE Rel-13、LTE Rel-14,LTE Rel-15)的目标是进一步改进专用服务,缩短延迟,并且满足接近5G的要求。LTE-A is aimed at extending and optimizing the 3GPP LTE radio access technology. The goal of LTE-A is to provide significantly enhanced services at reduced cost through higher data rates and lower latency. LTE-A is a more optimized radio system that can meet the International Telecommunication Union Radio (ITU-R) requirements for IMT-Advanced while maintaining backward compatibility. One of the key features of LTE-A, introduced in LTE Rel-10, is carrier aggregation, which allows increased data rates through the aggregation of two or more LTE carriers. The next releases of 3GPP LTE (eg, LTE Rel-12, LTE Rel-13, LTE Rel-14, LTE Rel-15) aim to further improve dedicated services, reduce latency, and meet requirements close to 5G.
第五代(5G)或新无线电(NR)无线系统是指下一代(NG)无线电系统和网络架构。5G也被称为IMT-2020系统。据估计,5G将提供约10-20Gbit/s或更高的比特率。5G将至少支持增强型移动宽带(eMBB)和超可靠低延迟通信(URLLC)。预计5G还可以将网络扩展性提高到数十万个连接。预期5G的信号技术将具有更大的覆盖范围以及频谱和信令效率。预计5G将提供极端的宽带和超强健的低延迟连接以及大规模网络以支持物联网(IoT)。随着IoT和机器对机器(M2M)通信的日益普及,对满足低功耗、低数据速率和长电池寿命需求的网络的需求将日益增长。注意,在5G或NR中,节点B或eNB可以称为下一代或5G节点B(gNB)。Fifth Generation (5G) or New Radio (NR) wireless systems refer to Next Generation (NG) radio systems and network architectures. 5G is also known as the IMT-2020 system. It is estimated that 5G will provide bit rates of about 10-20Gbit/s or higher. 5G will support at least enhanced mobile broadband (eMBB) and ultra-reliable low-latency communications (URLLC). 5G is also expected to increase network scalability to hundreds of thousands of connections. The signaling technology for 5G is expected to have greater coverage as well as spectral and signaling efficiencies. 5G is expected to deliver extreme broadband and ultra-robust low-latency connections as well as massive networks to support the Internet of Things (IoT). With the growing popularity of IoT and machine-to-machine (M2M) communications, there will be an increasing need for networks that meet the demands of low power consumption, low data rates, and long battery life. Note that in 5G or NR, a Node B or eNB may be referred to as a Next Generation or 5G Node B (gNB).
通信系统向5G的演进将使网络变得更大且更复杂。此外,预计5G网络将支持各种垂直领域,诸如智能电网、智能城市、联网汽车、eHealth等,这将使通信系统与当前系统相比成为社会的更加必不可少的重要组成部分。因此,确保这样的社会关键基础设施的高可靠性和可用性将至关重要。而且,为了支持交付预期数据速率所需要的性能要求,必须有效地运营和管理网络。The evolution of communication systems to 5G will make networks larger and more complex. In addition, 5G networks are expected to support various verticals such as smart grids, smart cities, connected cars, eHealth, etc., which will make communication systems an even more essential and important part of society than current systems. Therefore, ensuring high reliability and availability of such society-critical infrastructure will be of paramount importance. Furthermore, the network must be efficiently operated and managed in order to support the performance requirements required to deliver the expected data rates.
发明内容Contents of the invention
一个实施例涉及一种方法,该方法可以包括生成未来时间段内的至少一个网络度量的预测值。该生成可以包括使用历史数据、机器学习或时间序列分析技术中的至少一种来生成预测值。该方法还可以包括:使用预测值或历史数据中的至少一项生成针对至少一个网络度量的基线;使用至少一种时间序列分析技术来评估至少一个网络度量以检测网络状况的变化,以及使用历史数据、机器学习或时间序列分析技术中的至少一种使基线适应检测到的网络状况的变化。One embodiment relates to a method that may include generating a predicted value of at least one network metric for a future time period. The generating may include generating forecast values using at least one of historical data, machine learning, or time series analysis techniques. The method may also include: generating a baseline for at least one network metric using at least one of predicted values or historical data; evaluating at least one network metric using at least one time series analysis technique to detect changes in network conditions, and using historical At least one of data, machine learning, or time series analysis techniques adapts the baseline to detected changes in network conditions.
在一个实施例中,该方法还可以包括使用至少一种时间序列分析技术,根据未来时间段内的至少一个网络度量的预测值来确定可变性。在某些实施例中,基线的适配可以包括周期性地确定至少一个网络度量的趋势并且当趋势的变化被检测到时,修改基线。In one embodiment, the method may further comprise determining variability based on predicted values of at least one network metric over a future time period using at least one time series analysis technique. In some embodiments, the adaptation of the baseline may include periodically determining a trend of at least one network metric and modifying the baseline when a change in trend is detected.
根据一些实施例,基线可以包括上限和下限,并且该方法还可以包括将至少一个网络度量的当前观察值与基线进行比较,以及当至少一个网络度量的当前观察值在基线的上限以上或在基线的下限以下时检测违背。According to some embodiments, the baseline may include an upper limit and a lower limit, and the method may further comprise comparing the currently observed value of at least one network metric with the baseline, and when the currently observed value of the at least one network metric is above the upper limit of the baseline or within the baseline Violations are detected when the lower limit of .
在某些实施例中,该方法可以包括将基线的每个过去检测到的违背作为记录存储在知识库中,其中知识库中的每个记录可以包括发生违背的时间段、违背的持续时间、和/或违背的最大程度。根据一个实施例,当违背被检测到时,该方法可以包括检查知识库以确定是否存在与存储在知识库中的检测到的违背类似的违背。当在知识库中未找到类似的违背时,该方法可以包括生成警报并且在知识库中针对检测到的违背创建记录。当在知识库中找到类似的违背时,该方法可以包括监测导致该违背遵循该类似违背的记录的至少一个网络度量,以确认检测到的违背不表示网络中的异常。In some embodiments, the method may include storing each past detected violation of the baseline as a record in a knowledge base, where each record in the knowledge base may include the time period when the violation occurred, the duration of the violation, and/or violated to the maximum extent. According to one embodiment, when a violation is detected, the method may include checking the knowledge base to determine whether there is a violation similar to the detected violation stored in the knowledge base. When no similar violations are found in the knowledge base, the method may include generating an alert and creating a record for the detected violation in the knowledge base. When a similar violation is found in the knowledge base, the method may include monitoring at least one network metric that caused the violation to follow the records of the similar violation to confirm that the detected violation does not indicate an anomaly in the network.
根据一些实施例,当警报被生成时,该方法还可以包括:向网络管理员发送所述警报;接收指示触发该警报的违背是否表示网络中的异常的响应;以及更新知识库将响应存储在违背的记录中。在一个实施例中,该方法还可以包括:根据度量之间的对准将至少一个网络度量分配给集群,以及基于该集群对知识库中的记录进行分组。According to some embodiments, when an alert is generated, the method may further include: sending the alert to a network administrator; receiving a response indicating whether the violation that triggered the alert represents an anomaly in the network; and updating the knowledge base to store the response in violation records. In one embodiment, the method may further comprise assigning at least one network metric to a cluster according to the alignment between the metrics, and grouping records in the knowledge base based on the cluster.
在一个实施例中,该方法可以包括将预测值存储在存储器中以与至少一个网络度量的未来预测一起使用。在某些实施例中,预测值的生成可以包括周期性地生成预测值,并且对至少一个网络度量的评估还可以包括连续地评估至少一个网络度量以检测网络状况的变化。In one embodiment, the method may include storing the predicted value in memory for use with future predictions of the at least one network metric. In some embodiments, generating the predicted value may include periodically generating the predicted value, and evaluating the at least one network metric may further include continuously evaluating the at least one network metric to detect changes in network conditions.
另一实施例涉及一种装置,该装置可以包括用于生成未来时间段内的至少一个网络度量的预测值的生成部件。生成部件可以包括用于使用历史数据、机器学习或时间序列分析技术中的至少一种来生成预测值的部件。该装置还可以包括用于使用预测值或历史数据中的至少一项来生成针对至少一个网络度量的基线的生成部件;用于使用至少一种时间序列分析技术来评估至少一个网络度量以检测网络状况的变化的评估部件;以及用于使用历史数据、机器学习或时间序列分析技术中的至少一项来使基线适配检测到的网络状况的变化的适配部件。Another embodiment relates to an apparatus, which may comprise generating means for generating a predicted value of at least one network metric in a future time period. The generating means may include means for generating predicted values using at least one of historical data, machine learning, or time series analysis techniques. The apparatus may also include generating means for generating a baseline for at least one network metric using at least one of predicted values or historical data; for evaluating at least one network metric using at least one time series analysis technique to detect network evaluation means for changes in conditions; and adaptation means for adapting the baseline to the detected changes in network conditions using at least one of historical data, machine learning, or time series analysis techniques.
另一实施例涉及一种装置,该装置可以包括至少一个处理器和包括计算机程序代码的至少一个存储器。至少一个存储器和计算机程序代码可以被配置为与至少一个处理器一起使该装置至少:生成未来时间段内的至少一个网络度量的预测值,例如,使用历史数据、机器学习或时间序列分析技术中的至少一项;使用预测值或历史数据中的至少一项来生成针对至少一个网络度量的基线;使用至少一种时间序列分析技术来评估至少一个网络度量以检测网络状况的变化;以及使用历史数据、机器学习或时间序列分析技术中的至少一种使基线适应检测到的网络状况的变化。Another embodiment relates to an apparatus, which may comprise at least one processor and at least one memory comprising computer program code. At least one memory and computer program code may be configured to, with at least one processor, cause the apparatus to at least: generate a predicted value of at least one network metric for a future time period, e.g., using historical data, machine learning, or time series analysis techniques using at least one of predicted values or historical data to generate a baseline for at least one network metric; using at least one time series analysis technique to evaluate at least one network metric to detect changes in network conditions; and using historical At least one of data, machine learning, or time series analysis techniques adapts the baseline to detected changes in network conditions.
另一实施例涉及一种体现在非瞬态计算机可读介质上的计算机程序。该计算机程序在由处理器执行时可以使处理器执行过程,该过程包括:生成未来时间段内的至少一个网络度量的预测值,例如,使用历史数据、机器学习或时间序列分析技术中的至少一种;使用预测值或历史数据中的至少一项生成针对至少一个网络度量的基线;使用至少一种时间序列分析技术来评估至少一个网络度量以检测网络状况的变化;以及使用历史数据、机器学习或时间序列分析技术中的至少一项来使基线适配检测到的网络状况的变化。Another embodiment relates to a computer program embodied on a non-transitory computer readable medium. The computer program, when executed by a processor, may cause the processor to perform a process comprising: generating a predicted value of at least one network metric for a future time period, for example, using at least one of historical data, machine learning, or time series analysis techniques A; generating a baseline for at least one network metric using at least one of predicted values or historical data; evaluating at least one network metric using at least one time series analysis technique to detect changes in network conditions; and using historical data, machine At least one of learning or time series analysis techniques to adapt the baseline to detected changes in network conditions.
附图说明Description of drawings
为了适当地理解本发明,应当参考附图,在附图中:For a proper understanding of the invention, reference should be made to the accompanying drawings, in which:
图1示出了根据一个实施例的系统的示例框图;Figure 1 shows an example block diagram of a system according to one embodiment;
图2示出了根据一个实施例的过程的框图;Figure 2 shows a block diagram of a process according to one embodiment;
图3示出了根据一个实施例的描绘基线违背建模的示例的图;Figure 3 shows a diagram depicting an example of baseline violation modeling, according to one embodiment;
图4a示出了根据一个实施例的方法的流程图;Figure 4a shows a flow chart of a method according to one embodiment;
图4b示出了根据另一实施例的方法的流程图;以及Figure 4b shows a flow chart of a method according to another embodiment; and
图5示出了根据一个实施例的装置的框图。Fig. 5 shows a block diagram of an apparatus according to one embodiment.
具体实施方式Detailed ways
将容易理解,如本文中的附图中一般性地描述和示出的,本发明的组件可以以各种不同的配置来布置和设计。因此,如在附图中表示并且在下面描述的,下面对用于网络基线的生成和适配的系统、方法、装置和计算机程序产品的实施例的详细描述并非旨在限制本发明的范围,而是表示本发明的所选择的实施例。It will be readily understood that the components of the present invention, as generally described and illustrated in the drawings herein, may be arranged and designed in a variety of different configurations. Accordingly, the following detailed description of embodiments of systems, methods, apparatus, and computer program products for generation and adaptation of network baselines, as represented in the figures and described below, is not intended to limit the scope of the present invention , but instead represent selected embodiments of the invention.
在整个说明书中描述的本发明的特征、结构或特性可以在一个或多个实施例中以任何合适的方式组合。例如,在整个说明书中,短语“某些实施例”、“一些实施例”或其他类似语言的使用是指以下事实:结合该实施例描述的特定特征、结构或特性可以被包括在本发明的至少一个实施例中。因此,在整个说明书中,短语“在某些实施例中”、“在一些实施例中”、“在其他实施例中”或其他类似语言的出现不一定全都是指同一组实施例,并且所描述的特征、结构或特性在一个或多个实施例中可以以任何合适的方式组合。The features, structures or characteristics of the invention described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, use of the phrase "certain embodiments," "some embodiments," or other similar language throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with the embodiments may be included within the scope of the present invention. In at least one embodiment. Thus, appearances of the phrase "in some embodiments," "in some embodiments," "in other embodiments," or other similar language throughout this specification are not necessarily all referring to the same set of embodiments, and all The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
另外,如果需要,下面讨论的不同功能或步骤可以以不同的顺序和/或彼此同时执行。此外,如果需要,所描述的功能或步骤中的一个或多个可以是可选的或可以组合。这样,以下描述应当被认为仅是本发明的原理、教导和实施例的说明,而不是对其的限制。Additionally, different functions or steps discussed below may be performed in a different order and/or concurrently with each other, if desired. Furthermore, one or more of the described functions or steps may be optional or combined, if desired. As such, the following description should be considered as illustrative of the principles, teachings and embodiments of this invention, and not in limitation thereof.
确保必要水平的可靠性、可用性和操作效率需要实时地监测网络系统的能力。这对于检测或预测网络性能何时偏离设定基线以执行预防或纠正措施可能是必需的。最新的监测应用要求网络管理员和/或专家提供或确定可以用作确定异常行为的基础的网络基线。网络基线可以是指例如可以用作确定异常网络行为的基础的网络性能阈值。换言之,当网络性能偏离基线太远时,认为网络行为异常。Ensuring the necessary levels of reliability, availability, and operational efficiency requires the ability to monitor network systems in real time. This may be necessary to detect or predict when network performance deviates from a set baseline to perform preventive or corrective action. State-of-the-art monitoring applications require network administrators and/or experts to provide or determine a network baseline that can be used as a basis for determining anomalous behavior. A network baseline may refer to, for example, network performance thresholds that may be used as a basis for determining abnormal network behavior. In other words, a network is considered to be behaving abnormally when its performance deviates too far from the baseline.
在建立监测解决方案时面临的最大挑战之一是确定这些网络基线的手动过程。该过程通常包括使用历史数据,即,在给定时间内监测每个度量(诸如带宽、吞吐量、延迟、附件成功率、切换失败率、CPU或内存使用率、错误率、抖动等)的值以确定观察到的最大值和/或最小值,这些值然后被用作度量的基线的上限和/或下限。但是,当前用于确定和设置网络基线的方法是静态且不可扩展的。One of the biggest challenges in building a monitoring solution is the manual process of establishing a baseline for these networks. This process usually involves using historical data, i.e., monitoring the value of each metric (such as bandwidth, throughput, latency, attachment success rate, handover failure rate, CPU or memory usage, error rate, jitter, etc.) over a given time To determine observed maximum and/or minimum values, these values are then used as upper and/or lower limits for the baseline of the metric. However, current methods for determining and setting network baselines are static and not scalable.
为可观的网络中的每个监测的度量确定和设置这样的基线所需要的努力是巨大的。随着网络变得越来越复杂并且需要实时操作,这样的动作需要网络管理员的大量时间。因此,通常仅在网络元件安装时确定网络基线,而从未对其进行调节(即,静态的),或者在某些情况下,针对某些度量从未确定基线,而是使用供应商默认值(诸如“CPU利用率不应当超过60%”),并且在元件的整个生命周期内都不得改变。如果将基线设置得很高,则会带来可靠性和可用性的风险;而如果将值设置得非常低,则会带来运行效率的风险(就资源利用率低和多个虚假警报而言)。The effort required to determine and set such baselines for each monitored metric in a sizable network is enormous. As networks become more complex and require real-time operations, such actions require a significant amount of network administrator time. As a result, the network is typically only baselined at network element installation time and never tuned (i.e. static), or in some cases never baselined for some metrics and instead vendor defaults are used (such as "CPU utilization should not exceed 60%") and must not change throughout the lifetime of the component. If you set the baseline very high, you risk reliability and availability, and if you set the value very low, you risk operational efficiency (in terms of low resource utilization and multiple false alarms) .
当给定度量的监测值偏离设定基线时,监测应用通常会发出警报,该警报由网络管理员进行响应。由监测应用生成的很多警报都是虚假警报,因为它们不一定表示系统运行中的实际异常。随着网络的规模和复杂性不断增加以支持IoT,网络管理员不再能够响应于由监测应用生成的每个警报。这就要求要么应当限制被监测设备和/或度量的数目,要么必须将基线设置得足够宽,以减少每个度量的误报数目。但是,这两种选择都对可靠性、可用性和运营效率构成威胁。因此,本文中讨论的实施例提供了一种用于监测节点或应用从所生成的警报中进行学习的机制,使得随着时间的流逝,可以减少虚假警报的数目而不会负面地影响可靠性和效率。When the monitored value for a given metric deviates from a set baseline, the monitoring application typically generates an alert, which is responded to by the network administrator. Many alerts generated by monitoring applications are false alerts because they do not necessarily indicate actual anomalies in system operation. As networks continue to increase in size and complexity to support IoT, network administrators can no longer respond to every alert generated by monitoring applications. This dictates that either the number of monitored devices and/or metrics should be limited, or the baseline must be set wide enough to reduce the number of false positives per metric. However, both options pose a threat to reliability, availability and operational efficiency. Accordingly, embodiments discussed herein provide a mechanism for a monitoring node or application to learn from generated alerts so that over time the number of false alerts can be reduced without negatively impacting reliability and efficiency.
因此,某些实施例涉及一种方法和系统,该方法和系统用于自动生成网络基线并且使网络基线适配网络状况的变化,并且从历史基线违背中学习以优化警报的数目并且限制网络管理员的负担。在一个实施例中,提供了一种用于网络基线生成的方法和系统,其中从一个或多个网络元件和度量收集数据。对于每个度量,可以由机器学习或分析算法使用所收集的数据来生成给定的未来时间段内的度量的预测值。根据一个实施例,时间序列分析技术可以用于确定度量在未来时间段内的可变性。预测值和可变性然后可以用于生成定义的未来时段内的度量的初始基线(例如,上限和下限)。在某些实施例中,可以对网络中的所有度量应用或重复该过程。Accordingly, certain embodiments relate to a method and system for automatically generating and adapting network baselines to changes in network conditions and learning from historical baseline violations to optimize the number of alerts and limit network management member's burden. In one embodiment, a method and system for network baseline generation in which data is collected from one or more network elements and metrics is provided. For each metric, the collected data may be used by a machine learning or analytics algorithm to generate a predicted value of the metric for a given future time period. According to one embodiment, time series analysis techniques may be used to determine the variability of a metric over a future time period. The predicted value and variability can then be used to generate an initial baseline (eg, upper and lower bounds) for the metric over a defined future period. In some embodiments, this process may be applied or repeated for all metrics in the network.
如本文中使用的,根据某些实施例,网络元件可以是任何逻辑或物理电信实体。这些可以包括物理和/或虚拟网络实体,诸如无线电网络控制器、基站、接入点、服务网关、移动性管理实体、路由器或交换机等。对于每个元件,实施例可以监测和收集一个或多个度量,诸如带宽、吞吐量、延迟、附件成功率、切换失败率、CPU或内存使用率、错误率、抖动等。假定(多个)被监测网络由E个元件和所有元件上的M个度量组成,某些实施例可以在时间t获取元件e∈E的度量m∈M的值xt me。在时段T内,所收集的数据可以用以下公式中给出的时间序列来表示:As used herein, according to some embodiments, a network element may be any logical or physical telecommunications entity. These may include physical and/or virtual network entities such as radio network controllers, base stations, access points, serving gateways, mobility management entities, routers or switches, and the like. For each element, embodiments may monitor and collect one or more metrics such as bandwidth, throughput, latency, attachment success rate, handoff failure rate, CPU or memory usage, error rate, jitter, and the like. Assuming that the monitored network(s) consists of E elements and M metrics on all elements, some embodiments may obtain the value x t me of the metric mεM of the element eεE at time t. During the time period T, the collected data can be represented by the time series given in the following formula:
根据一个实施例,可以根据以下公式确定时间段T'≥T内的基线的上限阈值L和下限阈值U:According to an embodiment, the upper limit threshold L and the lower limit threshold U of the baseline within the time period T'≥T can be determined according to the following formula:
在一个实施例中,例如,T'可以在T的结尾处开始并且持续一周(168小时)。然而,在其他实施例中,时间段T'可以是一小时、一天、几天或几周、或任何其他合适的时间段。In one embodiment, for example, T' may start at the end of T and last for one week (168 hours). However, in other embodiments, the time period T' may be one hour, one day, several days or weeks, or any other suitable time period.
附加实施例可以提供一种用于周期性地使(多个)所生成的基线(即,上限和下限阈值)适配网络状况的变化的方法和系统。为此,对于每个度量,实施例可以包括周期性地确定过去时间段内的度量的观察值的总体趋势(例如,向上、向下或平坦)。可以使用一种或多种时间序列分析方法(诸如分解)来确定度量的观察趋势。在一个实施例中,可以存储每个确定的趋势并且将其与先前确定的趋势进行比较以确定观察的总体趋势是否已经改变。根据某些实施例,在检测到趋势变化时,以上讨论的基线生成方法可以用于使用最新的度量观察来重新生成基线。Additional embodiments may provide a method and system for periodically adapting the generated baseline(s) (ie, upper and lower thresholds) to changes in network conditions. To this end, for each metric, an embodiment may include periodically determining an overall trend (eg, upward, downward, or flat) of the observed values of the metric over a past period of time. The observed trend of the metric can be determined using one or more time series analysis methods, such as decomposition. In one embodiment, each determined trend may be stored and compared to previously determined trends to determine whether the observed overall trend has changed. According to some embodiments, when a trend change is detected, the baseline generation method discussed above may be used to regenerate the baseline using the most recent metric observations.
一些实施例还可以包括从基线违背中学习。例如,一个实施例还可以并入一种用于从先前生成的警报中学习以指导将来的警报生成的方法。根据该实施例,可以将几个相似的度量(就起伏和流量的大小和特征而言)进行聚类。该度量集群可以确保在生成警报时将同一集群中的度量视为一个度量,并且从而确保对于被认为相似的警报,对于集群中的所有度量仅发出一个警报。Some embodiments may also include learning from baseline violations. For example, an embodiment may also incorporate a method for learning from previously generated alerts to guide future alert generation. According to this embodiment, several similar measures (in terms of magnitude and character of heave and flow) can be clustered. This metric clustering ensures that metrics in the same cluster are treated as one metric when an alert is generated, and thus ensures that only one alert is raised for all metrics in a cluster for alerts that are considered similar.
另外的实施例可以提供一种方法和系统,该方法和系统用于通过并入从网络管理员或专家到监测系统的反馈回路来确定给定警报是否类似于先前的警报。根据该实施例,每当生成警报时,专家可以例如以“是”或“否”的形式向系统提供关于给定警报是否是操作异常的真实表示的反馈。通过将这样的反馈并入知识库中,监测系统可以从所有生成的警报中学习,从而对于给定群集中的度量,不会重复类似的警报,并且即使对于相同的度量,也不会在它们被标记为虚假时不止一次地发出具有相似特性的警报。Additional embodiments may provide a method and system for determining whether a given alert is similar to previous alerts by incorporating a feedback loop from a network administrator or expert to the monitoring system. According to this embodiment, whenever an alert is generated, the expert may provide feedback to the system, for example in the form of "yes" or "no", as to whether a given alert is a true indication of an operational anomaly. By incorporating such feedback into the knowledge base, the monitoring system can learn from all generated alerts such that for a metric in a given cluster, similar alerts are not repeated, and even for the same Alerts with similar properties are raised more than once when flagged as false.
图1示出了根据一个实施例的系统100的示例框图。如图1的示例所示,系统100可以包括被配置为从网络元件120收集关于一个或多个度量的数据的监测应用110。在一个实施例中,监测应用110还可以被配置为当所收集的数据的观察值在设定基线之外时,生成和/或向专家130发送警报。专家130可以通过提供关于所生成警报的有效性的反馈来与监测应用110交互。系统100还可以包括用于存储所处理的度量数据和/或实现本文中描述的方法的逻辑的若干计算机程序的可读和可写存储介质150。在一个实施例中,系统100可以包括在其上运行有本文中描述的方法的逻辑的至少一种计算介质或处理器140。被监测元件120、监测应用110、计算介质140和存储介质150可以是物理或虚拟元件,并且可以是单独的元件(例如,通过应用程序编程接口(API)连接),或者可以驻留在同一服务器上。FIG. 1 shows an example block diagram of a
图2示出了描绘根据一个实施例的过程的步骤的框图。在一个实施例中,图2的过程步骤可以由图1所示的系统100执行,该系统100包括例如监测应用110和计算介质(例如,处理器)140。如图2所示,该过程可以至少分四个步骤来完成,包括数据预处理205、预测210、分解215和学习增强220。实施例还可以包括图2的四个框之间的交互、与被配置为从网络元件收集数据并且将其提供给数据预处理205的网络监测应用110的交互、以及可选的与可以接收所生成的警报的通知并且提供有关警报的反馈的专家的交互。Figure 2 shows a block diagram depicting the steps of a process according to one embodiment. In one embodiment, the process steps of FIG. 2 may be performed by
数据预处理205可以包括多种数据预处理技术,诸如数据聚合和规范化。通过理解被监测度量值受由网络承载的业务的影响,从而促进聚合。由于可能会在大于一小时的时间范围内预期业务的确定性变化(基于实践经验和电信中的“繁忙时间业务”概念),因此聚合可以包括对观察值求平均以获取每小时平均值。聚合还可以使度量值的随机变化最小化。但是,这并不排除其他聚合时间标度。
由于某些监测值(以及因此平均值)可能具有非常大的幅度,因此希望将输入数据重新缩放到统一的范围内。对于对输入数据规模敏感的很多分析和机器学习方法(诸如神经网络),这可能是必需的。归一化方法的一个非限制性示例涉及将观察值转换为平均值近似为0的结果,而标准偏差在接近1的范围内。这确保了预测过程着重于结构相似性/相异性而不是幅度。Since some monitored values (and thus averages) may have very large magnitudes, it is desirable to rescale the input data to be within a uniform range. This may be necessary for many analytical and machine learning methods (such as neural networks) that are sensitive to the size of the input data. A non-limiting example of a normalization method involves transforming observations to a result where the mean is approximately 0 and the standard deviation is in the range close to 1. This ensures that the prediction process focuses on structural similarity/dissimilarity rather than magnitude.
预测步骤210可以将针对给定元件的每个度量从预处理步骤开始覆盖给定时间段(例如,一个星期)的顺序观察作为输入,并且可以针对给定未来时间段(例如,一个星期)输出针对相同度量的预测观察。换言之,预测210可以获取过去一周的观察,并且可以输出针对接下来一周的预测。为此,预测210可以包括一种方法(将在广泛的度量范围上进行概括),该方法应用基于机器学习的方法或算法。为此目的的一个示例可以利用神经网络的长短期记忆(LSTM)结构。但是,可以使用任何其他机器学习方法。可以通过使用历史数据来训练任何这样的算法或模型。预测过程210可以周期性地和迭代地运行以对每个度量进行预测。在一个实施例中,可以对预测步骤210的最终输出进行后处理以逆转可以在数据预处理步骤205中执行的归一化。例如,在一个实施例中,预测步骤210的最终输出可以根据以下公式进行后处理,其中yt me是预测值:The
分解步骤215可以用于两个目标,包括为每个度量生成网络基线,以及使这些基线不断适配网络状况的变化。为了实现这两个目标,分解215可以使用诸如时间序列分解等方法将给定时段内的给定度量的观察分解成其趋势和可变性(或噪声)。The
为了将预测转换成网络基线,分解步骤215可以确定对于任何给定度量的观察的可变性。为此,可以使用分解的观察的噪声分量。由于机器学习预测方法(诸如神经网络)经过训练可以概括为将输入映射到输出,因此它们的预测通常会尝试消除噪声。因此,可以将噪声用作衡量度量与预测值之间正常变化的量度以创建上下限。分解的噪声的标准偏差(σme)可以被确定为高于和低于预测值的最大许可偏差,从而得出网络运行基线。作为一个示例,每个度量的观察值可以被分解为三个加性分量,诸如其中rt me、st me和nt me分别是趋势、季节和噪声分量。趋势rt me可以根据以下公式被确定为阶k+1的中心加权移动平均值,其中k=168(假定观察时段为一个周期):To convert predictions into network baselines, a
其中n=k/2,并且所有观察的权重cj由1/k给出,除了第一和最后的观察,其中权重c-n和cn由1/2k给出。在一个实施例中,每当基于以下描述的适配来更新给定度量的预测模型时,就可以更新(多个)基线。在一个实施例中,可以根据以下公式确定每个度量的预测的下边界lt me和上边界ut me:where n = k/2, and the weights cj of all observations are given by 1/k, except the first and last observations, where weights c -n and cn are given by 1/2k. In one embodiment, the baseline(s) may be updated whenever the predictive model for a given metric is updated based on the adaptation described below. In one embodiment, the predicted lower bound l t me and upper bound u t me of each metric can be determined according to the following formula:
为了最小化生成预测所需要的时间并且因此确保实时预测,在每次预测之后,可以将所生成的预测模型存储在存储器中以与针对同一度量的未来预测一起使用。但是,为了确保预测模型随着网络的发展而保持准确(即,考虑到业务趋势或网络拓扑和组件的变化),适配可以涉及主动检查给定度量的观察趋势是否自从创建上一预测模型以来已经改变(例如,从增加到减少,从恒定到增加,等等)。为此,在一个实施例中,分解步骤215可以包括周期性地(例如,每周一次)确定每个度量的趋势的斜率。斜率的正值表示增加趋势,而负值表示减少趋势。为了确定观察到的度量的趋势的变化,分解步骤215随时间跟踪这些斜率,并且将当前斜率与前一斜率进行比较。当斜率从正变为负(或从负变为正)时,检测趋势的变化,从而触发预测模型与所考虑度量的最新数据相适应。在一个实施例中,可以存在用于使预测模型适应趋势变化的附加考虑,使得如果检测到的趋势变化导致违背当前设置的基线,则如果从专家或其知识库表明该违背不是由异常引起的,则执行适应。该实施例旨在避免从异常观察来重新创建模型。In order to minimize the time required to generate forecasts and thus ensure real-time forecasts, after each forecast the generated forecast model can be stored in memory for use with future forecasts for the same metric. However, to ensure that the predictive model remains accurate as the network evolves (i.e., taking into account business trends or changes in network topology and components), adaptation can involve actively checking whether the observed trend for a given metric has been since the last predictive model was created has changed (eg, from increasing to decreasing, from constant to increasing, etc.). To this end, in one embodiment, the
当任何度量的观察值超出设定的上限和下限基线时,系统可以将其检测为违背。学习增强组件220的目的是促进一种机制,在该机制中,专家通过在警报发生时提供反馈来增强预测基线,使得系统可以从其发出的所有警报中学习。学习增强220然后可以使用该信息来决定是否发出未来警报。考虑到每个网络中很多度量的行为可能相似(例如,两个节点的CPU利用率可能同时具有相似的大小以及波峰和波谷,因为网络中的业务会在同一锯中影响它们),因此,学习增强220可以被配置为确保针对给定度量发出的警报可以被用作学习关于“相似”度量做出未来决定的基础。为了实现这些目标,学习增强220可以由三个子系统组成:(1)知识库,(2)警报生成,和(3)度量聚类,如下所述。The system can detect violations when the observed values of any metric exceed the set upper and lower baselines. The purpose of the
根据一个实施例,知识库(KB)可以包含过去发生的所有违背的记录和/或来自专家的反馈。KB中存储的信息可以用作在检测到违背之后做出是否应当生成警报的决策的基础。图3示出了基线违背建模的示例,该示例示出了如何将违背转换为KB中的条目。具体地,图3的示例描绘了具有四个违背A、B、C和D的度量。在该示例中,每个违背可以被建模为具有参数α、β和γ的三元组,其中α是发生违背的时间段,β是违背的持续时间,γ是违背的最大程度。该信息可以与专家对每个度量群集的响应一起存储在KB中。在一个实施例中,在生成任何警报之前,可以检查KB以确认针对所考虑的群集在KB中不存在当前违背。根据一些实施例,如果违背的α值落在同一时间范围内(例如,从0000hrs到0600hrs),β小于且γ小于知识库中相同集群中项目的现有条目的对应值,则可以认为该违背与另一违背相似。According to one embodiment, a knowledge base (KB) may contain records of all violations that occurred in the past and/or feedback from experts. The information stored in the KB can be used as a basis for making decisions on whether an alert should be generated after a violation is detected. Figure 3 shows an example of baseline violation modeling showing how violations are converted to entries in the KB. Specifically, the example of FIG. 3 depicts a metric with four violations A, B, C, and D. In this example, each violation can be modeled as a triple with parameters α, β, and γ, where α is the time period over which the violation occurred, β is the duration of the violation, and γ is the maximum extent of the violation. This information can be stored in the KB along with the experts' responses to each metric cluster. In one embodiment, prior to generating any alerts, the KB may be checked to confirm that there are no current violations in the KB for the cluster under consideration. According to some embodiments, a violation may be considered if its α value falls within the same time range (e.g., from 0000 hrs to 0600 hrs), β is less than, and γ is less than the corresponding value of an existing entry for the item in the same cluster in the knowledge base. Similar to another violation.
在一个实施例中,对于每个度量,系统可以连续地将实际观察与其基线进行比较,以便确定观察是否表示违背操作边界,即,观察值是否在设定基线的上边界305以上或在设定基线的下边界310以下。当检测到违背时,应当决定是否要发出警报。因此,并非对设定基线的所有违背都会引发警报。为了做出这一决定,一个实施例使用KB。例如,当检测到违背时,首先检查所考虑的度量在KB中是否具有条目。如果未找到任何条目,则生成警报并且在KB中创建新条目以填充可用值(诸如度量标识和α),并且等待直到其他值(诸如β和γ)变为可用于更新它们。当领域专家(例如,网络管理员)接收到警报时,要求他们以“是”或“否”答复来关于该违背是否表示异常来做出响应。另一方面,如果在违背之后给定度量已经在KB中具有至少一个条目,则针对KB中所有现有条目评估当前违背以建立相似性。根据该实施例,可以将当前违背的三个参数中的每个与该度量的每个现有条目的对应参数进行比较。作为一个示例,考虑到(∝′,β′,γ′)和(∝″,β″,γ″)分别是每个现有条目的KB参数和当前观察,如果对于任何现有条目,∝′=∝″并且β′≤β″并且γ′≤γ″,并且其异常列为“否”,则没有生成警报。In one embodiment, for each metric, the system may continuously compare the actual observations to its baseline in order to determine whether the observations represent a violation of an operational boundary, i.e., whether the observed value is above the
给定网络中的很多元件可能以类似方式受到网络动态的影响。例如,服务功能链中以顺序方式处理分组的虚拟网络功能(VNF)在几乎同时发生的它们的度量(诸如CPU和带宽)的观察中会出现起伏。这表示,相邻节点中托管的两个VNF的CPU使用率将具有相似的大小,并且在相似的时间具有波峰和波谷。在这种情况下,当节点之一违背给定度量(例如,CPU)的设定基线时,很有可能在相邻节点中也发生违背行为。出于这个原因,一个实施例还可以包括一种对度量进行分组的方法,使得警报生成基于度量集群而不是单个度量。根据该实施例,每个度量可以被附加到群集(群集可以具有一个或多个度量),并且KB中的规则基于群集标识符(ID)而不是单个度量ID被存储。因此,当发生违背时,可以针对其中包含当前度量的群集执行对KB中条目的搜索。Many elements in a given network may be affected by network dynamics in a similar manner. For example, Virtual Network Functions (VNFs) in a chain of service functions that process packets in a sequential manner may experience fluctuations in the observation of their metrics (such as CPU and bandwidth) occurring nearly simultaneously. This means that the CPU usage of two VNFs hosted in adjacent nodes will be of similar size and have peaks and troughs at similar times. In this case, when one of the nodes violates a set baseline for a given metric (eg, CPU), there is a high probability that violations will also occur in neighboring nodes. For this reason, an embodiment may also include a method of grouping metrics such that alerts are generated based on clusters of metrics rather than individual metrics. According to this embodiment, each metric can be attached to a cluster (a cluster can have one or more metrics), and the rules in the KB are stored based on the cluster identifier (ID) rather than a single metric ID. Thus, when a violation occurs, a search for entries in the KB can be performed for the cluster in which the current metric is contained.
聚类度量可以用于至少两个目的。第一,由于KB条目被分组,其减少了必须被保留在KB中的条目的数目。第二,由于对于给定度量集群,给定违背被响应一次,因此它减少了可以向专家呈现的虚假警报的数目。为了对度量进行聚类,一个实施例被配置为寻找在给定时间段内所有度量观察中的观察之间的对准。这可以使用时间序列分析(诸如动态时间扭曲)或机器学习(诸如k均值或贝叶斯推断)等方法来进行。使用度量之间的对准,确定提供所有度量之间的相似度的度量的数值。如果两个或更多个度量之间的相似距离小于设定常数,则它们被聚类在一起。Clustering metrics can serve at least two purposes. First, since KB entries are grouped, it reduces the number of entries that must be kept in a KB. Second, since a given violation is responded to once for a given metric cluster, it reduces the number of false alarms that can be presented to an expert. To cluster metrics, one embodiment is configured to find alignments between observations among all metric observations over a given time period. This can be done using methods such as time series analysis (such as dynamic time warping) or machine learning (such as k-means or Bayesian inference). Using the alignment between the metrics, the value of the metric that provides the similarity between all the metrics is determined. Two or more measures are clustered together if the similarity distance between them is less than a set constant.
图4a示出了根据一个实施例的用于生成和适配网络基线的方法的示例过程流程图。图4a的方法可以由网络元件或网络节点执行,诸如路由器、交换机、接入点、基站、无线电网络控制器、节点B、演进型节点B(eNB)、5G节点B(gNB)、下一代节点B(NG-NB)、WLAN接入点、移动性管理实体(MME)、服务网关(SGW)、应用服务器或订阅服务器等。Fig. 4a shows an example process flow diagram of a method for generating and adapting a network baseline according to one embodiment. The method of Figure 4a may be performed by a network element or network node, such as a router, switch, access point, base station, radio network controller, Node B, evolved Node B (eNB), 5G Node B (gNB), next generation node B (NG-NB), WLAN access point, mobility management entity (MME), serving gateway (SGW), application server or subscription server, etc.
如图4a的示例所示,该方法可以包括:在400处,计算或生成未来时间段内的一个或多个网络度量的预测值。生成400可以包括使用历史数据、机器学习和/或时间序列分析技术来生成预测值。根据一个实施例,可以周期性地生成预测值。在一个实施例中,该方法可以包括将预测值存储在存储器中以与(多个)度量的未来预测一起使用。As shown in the example of FIG. 4a, the method may include, at 400, calculating or generating predicted values of one or more network metrics in a future time period. Generating 400 may include generating forecast values using historical data, machine learning, and/or time series analysis techniques. According to one embodiment, predictive values may be generated periodically. In one embodiment, the method may include storing the predicted values in memory for use with future predictions of the metric(s).
在一个实施例中,该方法还可以包括:在401处,使用预测值和/或历史数据生成(多个)网络度量的基线。基线可以指示或包括(多个)网络度量的上限和/或下限,例如,如以上讨论的图3的示例所示。该方法还可以包括:在402处,使用例如至少一种时间序列分析技术来评估(多个)网络度量以检测网络状况的变化。在一个实施例中,(多个)网络度量可以被连续地或周期性地评估。该方法然后可以包括:在403处,使用历史数据、机器学习和/或时间序列分析技术来改变基线或使基线适应检测到的网络状况的变化。基线的适配403可以包括周期性地确定至少一个网络度量的趋势,并且当检测到趋势的变化时修改基线。In one embodiment, the method may further include: at 401, generating a baseline(s) of network metrics using predicted values and/or historical data. A baseline may indicate or include upper and/or lower bounds for a network metric(s), eg, as shown in the example of FIG. 3 discussed above. The method may also include, at 402, evaluating the network metric(s) using, for example, at least one time series analysis technique to detect changes in network conditions. In one embodiment, the network metric(s) may be evaluated continuously or periodically. The method may then include, at 403, changing or adapting the baseline to detected changes in network conditions using historical data, machine learning, and/or time series analysis techniques. Adapting 403 of the baseline may include periodically determining a trend of at least one network metric, and modifying the baseline when a change in trend is detected.
在一个实施例中,该方法还可以包括使用至少一种时间序列分析技术根据未来时间段内的(多个)网络度量的预测值来确定可变性。根据一些实施例,该方法还可以包括:将(多个)网络度量的当前观察值与基线进行比较;以及当(多个)网络度量的当前观察值在基线的上限以上或在基线的下限以下时,检测违背。在某些实施例中,该方法还可以包括将基线的每个过去检测到的违背作为记录存储在KB中。如上面讨论的图3所示,KB中的每个记录可以包括发生违背的时间段、违背的持续时间和/或违背的最大程度。In one embodiment, the method may further comprise determining variability from predicted values of the network metric(s) over a future time period using at least one time series analysis technique. According to some embodiments, the method may further comprise: comparing the current observed value of the network metric(s) to a baseline; and when the currently observed value of the network metric(s) is above the upper limit of the baseline or below the lower limit of the baseline , detect violations. In some embodiments, the method may also include storing each past detected violation of the baseline as a record in the KB. As shown in FIG. 3 discussed above, each record in the KB may include a time period during which a violation occurred, a duration of the violation, and/or a maximum degree of the violation.
在一个实施例中,当检测违背时,该方法可以包括检查KB以确定是否存在与存储在KB中的检测到的违背类似的违背。当在KB中未找到类似的违背时,该方法可以包括生成警报并且在KB中为检测到的违背创建新记录。当在KB中找到类似的违背时,该方法可以包括监测导致该违背遵循该类似违背的记录的(多个)网络度量,以确认检测到的违背不表示网络中的异常。In one embodiment, when a violation is detected, the method may include examining the KB to determine if there is a violation similar to the detected violation stored in the KB. When no similar violations are found in the KB, the method may include generating an alert and creating a new record in the KB for the detected violation. When a similar violation is found in the KB, the method may include monitoring the network metric(s) that caused the violation to follow the records of the similar violation to confirm that the detected violation does not indicate an anomaly in the network.
根据某些实施例,当生成警报时,该方法可以包括:向网络管理员发送所述警报;接收指示触发警报的违背是否表示网络中的异常的响应;以及更新知识库以将响应存储在违背的记录中。在一些实施例中,该方法还可以包括根据度量之间的对准将(多个)网络度量分配给集群,以及基于该集群对KB中的记录进行分组。According to some embodiments, when an alert is generated, the method may include: sending the alert to a network administrator; receiving a response indicating whether the violation that triggered the alert represents an anomaly in the network; and updating the knowledge base to store the response in the violation in the record. In some embodiments, the method may also include assigning the network metric(s) to a cluster according to the alignment between the metrics, and grouping records in the KB based on the cluster.
图4b示出了根据另一实施例的方法的示例过程流程图。如图4b中所示,该方法在404处开始,并且在405处,可以使用历史数据来生成例如度量集群、预测模型和度量基线的初始集合,例如,如图4a所示。这些参数可以由该系统使用,直到必须并入新的度量或检测到趋势的变化。可以针对每个度量执行以下步骤。Fig. 4b shows an example process flow diagram of a method according to another embodiment. As shown in Figure 4b, the method starts at 404, and at 405 historical data may be used to generate an initial set of, for example, metric clusters, predictive models, and metric baselines, eg, as shown in Figure 4a. These parameters can be used by the system until new metrics must be incorporated or a change in trend is detected. The following steps can be performed for each metric.
继续图4b,在410处,可以周期性地监测度量,并且可以预处理所接收的数据并将其存储在数据库或存储器中。在415处,可以确定最近的观察趋势。在420处,可以将所确定的趋势与先前的趋势进行比较以确定趋势是否存在变化。如果趋势变化被检测到,则重新评估度量对任何聚类的成员资格。在425处,该评估的结果可以导致保留在同一集群中,加入不同的集群,或者开始新的集群。另外,在425处,可以使用最新观察来更新度量的预测模型和基线。另一方面,如果趋势没有改变,则在430处,可以将观察值与当前基线进行比较,并且如果其在设定边界内,则该系统等待进行下一观察。如果监测值在设定边界之外,则在440处,可以检查KB以找到度量所属的群集的条目的存在。如果不存在任何条目,则在450处,可以创建条目并且生成警报。如果在440处找到至少一个条目,则针对遵循KB中所有这样的条目来密切地监测该度量,直到在445处确认它不表示异常,或者确认它表示异常,在这种情况下,在450处生成警报。最后,在450处生成警报时,KB可以被更新,并且在455处可以并入专家的响应。该过程然后可以在460处结束。Continuing with FIG. 4b, at 410 metrics can be periodically monitored and received data can be pre-processed and stored in a database or memory. At 415, recent observed trends can be determined. At 420, the determined trend can be compared to previous trends to determine if there is a change in trend. If a trend change is detected, the membership of the measure to any cluster is re-evaluated. At 425, the results of this evaluation can result in remaining in the same cluster, joining a different cluster, or starting a new cluster. Additionally, at 425, the latest observations can be used to update the predictive model and baseline of the metric. On the other hand, if the trend has not changed, then at 430 the observation can be compared to the current baseline, and if it is within set boundaries, the system waits to make the next observation. If the monitored value is outside the set boundaries, then at 440 the KB can be checked for the presence of an entry for the cluster to which the metric belongs. If there are no entries, at 450 an entry can be created and an alert generated. If at least one entry is found at 440, the metric is closely monitored for following all such entries in the KB until it is confirmed at 445 that it does not indicate an anomaly, or that it indicates an anomaly, in which case at 450 Generate an alert. Finally, when an alert is generated at 450, the KB can be updated and the expert's response can be incorporated at 455. The process can then end at 460 .
图5示出了根据一个实施例的装置10的示例。在一个实施例中,装置10可以是通信网络中或服务于该网络的节点、主机或服务器。例如,装置10可以是路由器、交换机、接入点、基站、无线电网络控制器、节点B、演进型节点B(eNB)、5G节点B(gNB)、下一代节点B(NG-NB)、WLAN接入点、移动性管理实体(MME)、服务网关(SGW)、与无线电接入网络(诸如UMTS网络、LTE网络或5G无线电接入技术)相关联的应用服务器或订阅服务器。应当注意,本领域普通技术人员应当理解,装置10可以包括图5中未示出的组件或特征。Figure 5 shows an example of an
如图5所示,装置10可以包括用于处理信息并且执行指令或操作的处理器12。处理器12可以是任何类型的通用或专用处理器。虽然在图5中示出了单个处理器12,但是根据其他实施例,可以利用多个处理器。实际上,作为示例,处理器12可以包括以下中的一种或多种:通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)、和基于多核处理器架构的处理器。As shown in FIG. 5,
处理器12可以执行与装置10的操作相关联的功能,该功能可以包括例如天线增益/相位参数的预编码、形成通信消息的各个比特的编码和解码、信息的格式化、以及对装置10的总体控制,包括与通信资源的管理有关的过程。
装置10还可以包括或耦合到存储器14(内部或外部)(其可以耦合到处理器12)以存储可以由处理器12执行的信息和指令。存储器14可以包括易失性存储器24和和/或非易失性存储器25。因此,存储器14可以是一个或多个存储器,并且可以是适合于本地应用环境的任何类型,并且可以使用任何合适的易失性或非易失性数据存储技术来实现,诸如基于半导体的存储器设备、磁存储器设备和系统、光存储器设备和系统、固定存储器和可移动存储器。例如,易失性存储器24可以包括诸如动态或静态RAM等随机存取存储器(RAM)。非易失性存储器25可以包括例如只读存储器(ROM)、闪存和/或机械盘,诸如硬盘或光盘。因此,存储器14可以包括以下各项的任何组合:随机存取存储器(RAM)、只读存储器(ROM)、诸如磁盘或光盘等静态存储器、硬盘驱动器(HDD)、或任何其他类型的非瞬态机器或计算机可读介质。存储在存储器14中的指令可以包括在由处理器12执行时使得装置10能够执行本文中描述的任务的程序指令或计算机程序代码。
在一些实施例中,装置10还可以包括或耦合到一个或多个天线15以向装置10发射信号和/或从装置10接收信号和/或数据。装置10还可以包括或耦合到被配置为发射和接收信息的收发器18。收发器18可以包括例如可以耦合到(多个)天线15的多个无线电接口。无线电接口可以对应于多种无线电接入技术,包括以下中的一种或多种:GSM、NB-IoT、LTE、5G、WLAN、Bluetooth、BT-LE、NFC、射频标识符(RFID)、超宽带(UWB)等。无线电接口可以包括用于生成符号以经由一个或多个下行链路进行传输并且用于接收符号(例如,经由上行链路)的组件,诸如滤波器、转换器(例如,数模转换器等)、映射器、快速傅立叶变换(FFT)模块等。这样,收发器18可以被配置为将信息调制到载波波形上以供(多个)天线15发射,并且解调经由(多个)天线15接收的信息以供装置10的其他元件进一步处理。收发器18可以能够直接发射和接收信号或数据。In some embodiments,
在一个实施例中,存储器14可以存储在由处理器12执行时提供功能的软件模块。例如,该模块可以包括为装置10提供操作系统功能的操作系统。存储器14还可以存储一个或多个功能模块(诸如应用或程序)以为装置10提供附加功能。例如,在一个实施例中,存储器14可以存储监测应用,诸如图1所示的监测应用110。注意,装置10的组件可以以硬件实现,或者被实现为硬件和软件的任何合适的组合。In one embodiment,
在一个实施例中,如上所述,装置10可以是网络节点、网络元件或服务器。根据某些实施例,装置10可以由存储器14和处理器12控制以执行与本文中描述的任何实施例相关联的功能。例如,在一些实施例中,装置10可以由存储器14和处理器12控制以执行图1-4所示的方法或框图中的至少任何一个。In one embodiment,
根据示例实施例,装置10可以由存储器14和处理器12控制以计算或生成未来时间段内的一个或多个网络度量的预测值。预测值可以例如通过使用历史数据、机器学习和/或时间序列分析技术来计算。根据一个实施例,预测值可以被周期性地生成和/或可以被存储在存储器中以与(多个)度量的未来预测一起使用。According to an example embodiment,
在一个实施例中,装置10可以由存储器14和处理器12控制以使用预测值和/或历史数据来确定或生成(多个)网络度量的基线。基线可以指示或包括(多个)网络度量的上限和/或下限,例如,如以上讨论的图3的示例所示。在一些实施例中,装置10还可以由存储器14和处理器12控制以使用例如至少一种时间序列分析技术来评定或评估(多个)网络度量以检测网络状况的变化。在一个实施例中,(多个)网络度量可以被连续地或周期性地评估。根据一个实施例,装置10可以由存储器14和处理器12控制以使用历史数据、机器学习和/或时间序列分析技术来改变基线或使基线适应检测到的网络状况的变化。在一个实施例中,装置10可以由存储器14和处理器12控制以通过周期性地确定至少一个网络度量的趋势和/或当检测到趋势的变化时修改基线来改变或适配基线。In one embodiment,
根据一个实施例,装置10可以由存储器14和处理器12控制以使用至少一种时间序列分析技术根据未来时间段内的(多个)网络度量的预测值来确定可变性。在一些实施例中,装置10可以由存储器14和处理器12控制以将(多个)网络度量的当前观察值与基线进行比较,并且当(多个)网络度量的当前观察值在基线的上限以上或在基线的下限以下时,检测违背。在某些实施例中,装置10可以由存储器14和处理器12控制以将基线的每个过去检测到的违背作为记录存储在KB中。如上面讨论的图3所示,KB中的每个记录可以包括发生违背的时间段、违背的持续时间和/或违背的最大程度。According to one embodiment,
在一个实施例中,当检测违背时,装置10可以由存储器14和处理器12控制以检查KB以确定是否存在与存储在KB中的检测到的违背类似的违背。如以上详细讨论的,如果发生违背的时间段落在同一时间范围内(例如,从0000hrs到0600hrs),并且持续时间和最大幅度小于KB中现有条目的对应值,则可以认为该违背与另一违背相似。In one embodiment, when a violation is detected,
当在KB中未找到类似的违背时,则装置10可以由存储器14和处理器12控制以生成警报并且在KB中为检测到的违背创建新记录。当在KB中找到类似的违背时,则装置10可以由存储器14和处理器12控制以监测导致该违背遵循该类似违背的记录的(多个)网络度量以确认检测到的违背不表示网络中的异常。When no similar violation is found in the KB, then the
根据某些实施例,当警报被生成时,装置10可以由存储器14和处理器12控制以向网络管理员或专家发送所述警报,从网络管理员/专家接收指示触发警报的违背是否表示网络中的异常的响应,并且更新知识库以将响应存储在违背的记录中。在一些实施例中,装置10可以由存储器14和处理器12控制以根据度量之间的对准将(多个)网络度量分配给集群,并且基于该集群将KB中的记录进行分组。According to some embodiments, when an alert is generated,
因此,本发明的实施例提供了若干技术改进、增强和/或优点。例如,作为某些实施例的结果,能够更好地实时地监测网络。因此,确保并且改善了网络及其节点的可靠性、可用性和/或操作效率。另外,某些实施例可以减少虚假警报的数目并且限制网络管理员的负担。这样,本发明的实施例可以提高网络和网络节点的性能和吞吐量,包括例如接入点、基站/eNB/gNB和移动设备或UE。因此,本发明实施例的使用导致通信网络及其节点的功能得到改善。Accordingly, embodiments of the present invention provide several technical improvements, enhancements and/or advantages. For example, as a result of certain embodiments, the network can be better monitored in real time. Thus, the reliability, availability and/or operational efficiency of the network and its nodes are ensured and improved. Additionally, certain embodiments may reduce the number of false alarms and limit the burden on network administrators. As such, embodiments of the present invention may improve the performance and throughput of networks and network nodes, including for example access points, base stations/eNBs/gNBs and mobile devices or UEs. Thus, the use of embodiments of the present invention results in improved functionality of the communication network and its nodes.
在一些实施例中,本文中描述的任何方法、过程、信令图或流程图的功能可以通过存储在存储器或其他计算机可读或有形介质中的软件和/或计算机程序代码或代码部分来实现,并且由处理器执行。In some embodiments, the functionality of any method, process, signaling diagram or flowchart described herein may be implemented by software and/or computer program code or code portions stored in a memory or other computer readable or tangible medium , and is executed by the processor.
在一些实施例中,一种装置可以与至少一个软件应用、模块、单元或实体一起被包括或与其相关联,该软件应用、模块、单元或实体被配置为(多个)算术运算,或者被配置为其程序或部分(包括添加或更新的软件例程),由至少一个操作处理器执行。程序(也称为程序产品或计算机程序,包括软件例程、小程序和宏)可以存储在任何装置可读数据存储介质中,并且包括执行特定任务的程序指令。In some embodiments, an apparatus may be comprised or associated with at least one software application, module, unit or entity configured to perform an arithmetic operation(s), or to be A configuration is a program or portion thereof, including added or updated software routines, executed by at least one operational processor. Programs (also called program products or computer programs, including software routines, applets, and macros) can be stored on any device-readable data storage medium and include program instructions to perform particular tasks.
一种计算机程序产品可以包括一个或多个计算机可执行组件,当程序运行时,该计算机可执行组件被配置为执行实施例。一个或多个计算机可执行组件可以是至少一个软件代码或其部分。实现实施例的功能所需要的修改和配置可以作为(多个)例程来执行,该例程可以实现为添加或更新的(多个)软件例程。(多个)软件例程可以下载到装置中。A computer program product may include one or more computer-executable components that, when the program is run, are configured to perform embodiments. One or more computer-executable components may be at least one software code or a portion thereof. Modifications and configurations required to implement the functionality of the embodiments may be performed as routine(s), which may be implemented as added or updated software routine(s). The software routine(s) may be downloaded into the device.
软件或计算机程序代码或其部分可以是源代码形式、目标代码形式或某种中间形式,并且可以存储在可以是能够承载程序的任何实体或设备的某种载体、分发介质或计算机可读介质中。这样的载体包括例如记录介质、计算机存储器、只读存储器、光电和/或电载体信号、电信信号和软件分发包。取决于所需要的处理能力,计算机程序可以在单个电子数字计算机中执行,或者可以分布在多个计算机中。计算机可读介质或计算机可读存储介质可以是非瞬态介质。Software or computer program code, or portions thereof, may be in source code form, object code form, or some intermediate form and may be stored on some carrier, distribution medium or computer-readable medium, which may be any entity or device capable of carrying the program . Such carriers include, for example, recording media, computer memories, read-only memories, electro-optical and/or electrical carrier signals, telecommunication signals and software distribution packages. Depending on the processing power required, a computer program can be executed in a single electronic digital computer or it can be distributed among a plurality of computers. Computer readable media or computer readable storage media may be non-transitory media.
在其他实施例中,该功能可以由装置(例如,装置10或装置20)中包括的硬件或电路系统执行,例如通过使用专用集成电路(ASIC)、可编程门阵列(PGA)、现场可编程门阵列(FPGA)、或硬件和软件的任何其他组合。在又一实施例中,该功能可以被实现为信号,即可以由从互联网或其他网络下载的电磁信号来承载的无形手段。In other embodiments, the functionality may be performed by hardware or circuitry included in a device (e.g.,
根据一个实施例,诸如节点、设备或对应组件等装置可以被配置为电路系统、计算机或微处理器(诸如单芯片计算机元件)或芯片组,其至少包括用于提供算术运算的存储容量的存储器和用于执行该算术运算的运算处理器。According to one embodiment, a device such as a node, a device or a corresponding component may be configured as a circuit system, computer or microprocessor (such as a single-chip computer element) or a chipset comprising at least a memory for providing storage capacity for arithmetic operations and an arithmetic processor for performing the arithmetic operation.
本领域普通技术人员将容易理解,如上所述的本发明可以以不同顺序的步骤和/或以与所公开的配置不同的配置的硬件元件来实践。因此,尽管已经基于这些优选实施例描述了本发明,但是对于本领域技术人员而言很清楚的是,在不脱离本发明的精神和范围的情况下,某些修改、变型和替代构造将是很清楚的。因此,为了确定本发明的界限,应当参考所附权利要求。Those of ordinary skill in the art will readily appreciate that the invention as described above may be practiced in a different order of steps and/or with different configurations of hardware elements than that disclosed. Therefore, although the present invention has been described based on these preferred embodiments, it will be apparent to those skilled in the art that certain modifications, variations and alternative constructions will be made without departing from the spirit and scope of the present invention. very clear. For determining the limits of the invention, therefore, reference should be made to the appended claims.
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/115234 WO2019109338A1 (en) | 2017-12-08 | 2017-12-08 | Methods and systems for generation and adaptation of network baselines |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111466103A CN111466103A (en) | 2020-07-28 |
CN111466103B true CN111466103B (en) | 2023-06-13 |
Family
ID=66750752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780097537.6A Active CN111466103B (en) | 2017-12-08 | 2017-12-08 | Method and system for generation and adaptation of network baselines |
Country Status (5)
Country | Link |
---|---|
US (1) | US11228503B2 (en) |
EP (1) | EP3721588B1 (en) |
CN (1) | CN111466103B (en) |
ES (1) | ES2955083T3 (en) |
WO (1) | WO2019109338A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019173734A1 (en) * | 2018-03-09 | 2019-09-12 | Zestfinance, Inc. | Systems and methods for providing machine learning model evaluation by using decomposition |
US11736498B1 (en) * | 2019-08-29 | 2023-08-22 | Trend Micro Incorporated | Stateful detection of cyberattacks |
AU2020346616A1 (en) * | 2019-09-12 | 2022-04-21 | Farmbot Holdings Pty Ltd | System and method for data filtering and transmission management |
CN112445682B (en) * | 2021-02-01 | 2021-05-11 | 连连(杭州)信息技术有限公司 | System monitoring method, device, equipment and storage medium |
EP4050350B1 (en) * | 2021-02-27 | 2024-10-16 | Hitachi Energy Ltd | Determination of phase connections in a power grid |
US11714695B2 (en) * | 2021-07-30 | 2023-08-01 | Microsoft Technology Licensing, Llc | Real time detection of metric baseline behavior change |
CN114422403A (en) * | 2021-12-23 | 2022-04-29 | 中国人民解放军63921部队 | Time delay out-of-limit warning method based on data base line |
US11601344B1 (en) * | 2021-12-29 | 2023-03-07 | At&T Intellectual Property I, L.P. | Cloud gateway outage risk detector |
WO2023196819A1 (en) * | 2022-04-05 | 2023-10-12 | Ivanti, Inc. | Digital employee experience index |
US12088472B2 (en) * | 2022-04-18 | 2024-09-10 | Ust Global (Singapore) Pte. Limited | System and method of managing events of temporal data |
CN115454778B (en) * | 2022-09-27 | 2023-08-08 | 浙江大学 | An intelligent monitoring system for timing index abnormalities in a large-scale cloud network environment |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6597777B1 (en) * | 1999-06-29 | 2003-07-22 | Lucent Technologies Inc. | Method and apparatus for detecting service anomalies in transaction-oriented networks |
US6611726B1 (en) | 1999-09-17 | 2003-08-26 | Carl E. Crosswhite | Method for determining optimal time series forecasting parameters |
US6453265B1 (en) * | 1999-12-28 | 2002-09-17 | Hewlett-Packard Company | Accurately predicting system behavior of a managed system using genetic programming |
CA2634470C (en) * | 2003-01-24 | 2013-05-14 | Pratt & Whitney Canada Corp. | Method and system for trend detection and analysis |
CN101267362B (en) * | 2008-05-16 | 2010-11-17 | 亿阳信通股份有限公司 | A dynamic determination method and device for normal fluctuation range of performance index value |
US20110161048A1 (en) * | 2009-12-31 | 2011-06-30 | Bmc Software, Inc. | Method to Optimize Prediction of Threshold Violations Using Baselines |
US9047559B2 (en) * | 2011-07-22 | 2015-06-02 | Sas Institute Inc. | Computer-implemented systems and methods for testing large scale automatic forecast combinations |
US8832267B2 (en) * | 2012-08-07 | 2014-09-09 | Ca, Inc. | System and method for adaptive baseline calculation |
US9235556B2 (en) * | 2012-12-26 | 2016-01-12 | Hewlett Packard Enterprise Development Lp | Adaptive baseline based on metric values |
US10332139B2 (en) * | 2013-03-14 | 2019-06-25 | Feedvisor Ltd. | Dynamic re-pricing of items on electronic marketplaces and/or online stores |
CN105722729B (en) * | 2013-05-17 | 2018-11-16 | Fybr有限责任公司 | Distributed remote sensing system and sensing equipment |
CN103746750B (en) * | 2013-08-23 | 2016-06-01 | 西华大学 | The pre-examining system of radio monitoring Electromagnetic Situation |
US9319911B2 (en) | 2013-08-30 | 2016-04-19 | International Business Machines Corporation | Adaptive monitoring for cellular networks |
CN104486141B (en) * | 2014-11-26 | 2018-10-23 | 国家电网公司 | A kind of network security situation prediction method that wrong report is adaptive |
US10911318B2 (en) * | 2015-03-24 | 2021-02-02 | Futurewei Technologies, Inc. | Future network condition predictor for network time series data utilizing a hidden Markov model for non-anomalous data and a gaussian mixture model for anomalous data |
WO2017190808A1 (en) * | 2016-05-06 | 2017-11-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Coding of network element performance data for transmission |
US10318669B2 (en) * | 2016-06-16 | 2019-06-11 | International Business Machines Corporation | Adaptive forecasting of time-series |
US20190007285A1 (en) * | 2017-06-28 | 2019-01-03 | Cpacket Networks Inc. | Apparatus and Method for Defining Baseline Network Behavior and Producing Analytics and Alerts Therefrom |
US11182394B2 (en) * | 2017-10-30 | 2021-11-23 | Bank Of America Corporation | Performing database file management using statistics maintenance and column similarity |
-
2017
- 2017-12-08 WO PCT/CN2017/115234 patent/WO2019109338A1/en unknown
- 2017-12-08 EP EP17933943.7A patent/EP3721588B1/en active Active
- 2017-12-08 US US16/770,701 patent/US11228503B2/en active Active
- 2017-12-08 CN CN201780097537.6A patent/CN111466103B/en active Active
- 2017-12-08 ES ES17933943T patent/ES2955083T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3721588C0 (en) | 2023-08-09 |
US11228503B2 (en) | 2022-01-18 |
EP3721588B1 (en) | 2023-08-09 |
ES2955083T3 (en) | 2023-11-28 |
EP3721588A1 (en) | 2020-10-14 |
CN111466103A (en) | 2020-07-28 |
EP3721588A4 (en) | 2021-07-21 |
WO2019109338A1 (en) | 2019-06-13 |
US20210168042A1 (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111466103B (en) | Method and system for generation and adaptation of network baselines | |
Shafin et al. | Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G | |
US11811588B2 (en) | Configuration management and analytics in cellular networks | |
US10750371B2 (en) | Utilizing machine learning to provide closed-loop network management of a fifth generation (5G) network | |
US11496230B2 (en) | Systems and methods for mapping resource blocks to network slices | |
US10966108B2 (en) | Optimizing radio cell quality for capacity and quality of service using machine learning techniques | |
Lee et al. | Federated learning-empowered mobile network management for 5G and beyond networks: From access to core | |
US20200127901A1 (en) | Service aware uplink quality degradation detection | |
US11985527B2 (en) | Systems and methods for autonomous network management using deep reinforcement learning | |
US20230128527A1 (en) | System and method for providing dynamic antenna mapping within an information handling system | |
Vaishnavi et al. | Self organizing networks coordination function between intercell interference coordination and coverage and capacity optimisation using support vector machine | |
US20240249199A1 (en) | Verifying an action proposed by a reinforcement learning model | |
CN118786703A (en) | Machine Learning Models for Predictive Resource Management | |
US11350290B2 (en) | Downlink interference detection and identification of aggressor cells | |
EP4320981A1 (en) | Methods and nodes in a communications network | |
CN115868193A (en) | First, third, fourth node and method performed thereby for handling parameters configuring a node in a communication network | |
US20230164629A1 (en) | Managing a node in a communication network | |
US20240259872A1 (en) | Systems and methods for providing a robust single carrier radio access network link | |
US20250008403A1 (en) | Method and apparatus for relationship information based traffic prediction | |
WO2024169745A1 (en) | Communication method, apparatus, and system | |
US12284082B1 (en) | Systems and methods for radio access network service feasibility assessment | |
US20240348507A1 (en) | Graph based anomaly detection in cellular networks | |
US20240137787A1 (en) | Method for predicting adverse operating conditions | |
US20240155378A1 (en) | System and method for scalable machine learning modeling | |
WO2025076688A1 (en) | Registration and discovery of model training for artificial intelligence at user equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |