CN101233783B - Loudspeaker device - Google Patents
Loudspeaker device Download PDFInfo
- Publication number
- CN101233783B CN101233783B CN2006800278025A CN200680027802A CN101233783B CN 101233783 B CN101233783 B CN 101233783B CN 2006800278025 A CN2006800278025 A CN 2006800278025A CN 200680027802 A CN200680027802 A CN 200680027802A CN 101233783 B CN101233783 B CN 101233783B
- Authority
- CN
- China
- Prior art keywords
- signal
- filter
- telecommunication
- speaker
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 claims abstract description 143
- 238000006073 displacement reaction Methods 0.000 claims description 100
- 239000012528 membrane Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 30
- 230000008030 elimination Effects 0.000 claims description 11
- 238000003379 elimination reaction Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 3
- 238000012546 transfer Methods 0.000 description 41
- 230000000694 effects Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 24
- 230000008859 change Effects 0.000 description 21
- 230000004044 response Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 238000011045 prefiltration Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 6
- 230000010363 phase shift Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
- H04R3/08—Circuits for transducers, loudspeakers or microphones for correcting frequency response of electromagnetic transducers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
根据本发明的扬声器装置包括:扬声器;前馈处理部件,用于基于预设的滤波器系数对要输入到所述扬声器的电信号进行前馈处理,以便消除所述扬声器发生的非线性失真;以及反馈处理部件,用于检测所述扬声器的振动,并相对于要被输入到所述扬声器的所述电信号对与所述振动相关的电信号进行反馈处理。所述反馈处理部件对与所述振动相关的所述电信号进行反馈处理,从而消除所述扬声器发生的所述非线性失真并使得依据所述扬声器的所述振动的频率特性变成预定频率特性。
The loudspeaker device according to the present invention includes: a loudspeaker; a feed-forward processing component for performing feed-forward processing on an electrical signal to be input to the loudspeaker based on a preset filter coefficient, so as to eliminate nonlinear distortion occurring in the loudspeaker; and feedback processing means for detecting vibration of the speaker and performing feedback processing on the electrical signal related to the vibration with respect to the electrical signal to be input to the speaker. The feedback processing section performs feedback processing on the electric signal related to the vibration, thereby canceling the nonlinear distortion occurring in the speaker and making the frequency characteristic according to the vibration of the speaker become a predetermined frequency characteristic .
Description
技术领域 technical field
本发明涉及一种扬声器装置,更具体而言涉及一种用于消除扬声器发生的失真的扬声器装置。The present invention relates to a speaker device, and more particularly to a speaker device for canceling distortion occurring in a speaker.
背景技术 Background technique
常规上,希望在不进行电信号处理的普通扬声器中忠实地将电信号转换成声波。不过,由于其结构限制,实际的扬声器难以执行忠实的转换。例如,在构成扬声器的磁路中,由于其结构的原因,磁隙中的磁通密度随着振幅增大而减小。那么,力系数也随着磁通密度的减小而减小。由于诸如阻尼器、边缘等的支持系统的结构,该支持系统的刚性随着振幅大小而变化。由于这些原因,扬声器的振幅未必与输入的电信号幅度成比例,因此存在发生非线性失真的问题。Conventionally, it is desirable to faithfully convert electrical signals into sound waves in ordinary speakers without electrical signal processing. However, due to their structural limitations, it is difficult for actual loudspeakers to perform faithful conversions. For example, in the magnetic circuit constituting a loudspeaker, due to its structure, the magnetic flux density in the magnetic gap decreases as the amplitude increases. Then, the force coefficient also decreases as the magnetic flux density decreases. Due to the structure of the support system such as dampers, edges, etc., the stiffness of the support system varies with the magnitude of the vibration amplitude. For these reasons, the amplitude of the speaker is not necessarily proportional to the amplitude of the input electric signal, so there is a problem that nonlinear distortion occurs.
作为消除上述非线性失真的方法,常规上提出的是利用诸如前馈处理等的电信号处理的方法。这种处理方法是这样的方法,其中,对包括扬声器的非线性分量的参数(根据磁通密度的力系数、支持系统的刚性等)进行多项式近似,并设置滤波器系数以消除可归因于该参数的非线性失真。将电信号通过滤波器输入到其滤波器系数被设置的扬声器中,由此消除非线性失真。然而,在参数中,尤其是支持系统的刚性时刻都会变化,而且还会老化。换言之,参数值随时间变化。因此,在上述前馈处理中,参数预设值和参数实际值之间的误差随着时间变大,因此存在的缺点是上述消除失真的效果显著劣化。As a method of eliminating the above-described nonlinear distortion, a method utilizing electrical signal processing such as feedforward processing or the like has conventionally been proposed. This processing method is a method in which polynomial approximation is performed on parameters including nonlinear components of the speaker (force coefficient according to magnetic flux density, rigidity of support system, etc.), and filter coefficients are set so as to eliminate The nonlinear distortion for this parameter. An electric signal is input through a filter into a speaker whose filter coefficient is set, thereby canceling nonlinear distortion. However, among the parameters, especially the rigidity of the support system changes all the time and also ages. In other words, parameter values change over time. Therefore, in the above-mentioned feedforward processing, the error between the parameter preset value and the parameter actual value becomes larger with time, so there is a disadvantage that the above-mentioned effect of eliminating distortion is significantly deteriorated.
为了解决以上问题,在前馈处理中,提出了自适应地更新滤波器系数参数的方法(例如参考专利文献1)。以下将参考图28描述该方法。图28为示出了常规扬声器装置9的方框图,该扬声器装置自适应地更新滤波器系数参数。In order to solve the above problems, in feedforward processing, a method of adaptively updating filter coefficient parameters has been proposed (for example, refer to Patent Document 1). This method will be described below with reference to FIG. 28 . FIG. 28 is a block diagram showing a conventional speaker device 9 which adaptively updates filter coefficient parameters.
在图28中,常规扬声器装置9包括控制部件91、参数检测器92和扬声器95。参数检测器92包括误差电路93和更新电路94。误差电路93包括滤波器(未示出),并在滤波器处根据从控制部输入的信号计算伪振动特性。误差电路93根据该伪振动特性预测性地计算将被施加到扬声器95的驱动电压。注意,当扬声器95由电流驱动时,该预测的驱动电压等效于阻抗特性。然后,误差电路93通过从预测的驱动电压减去被施加到扬声器95的实际驱动电压产生误差信号e(t)。误差信号e(t)被输入到更新电路94。In FIG. 28 , a conventional speaker device 9 includes a
基于该误差信号e(t),更新电路94计算控制部件91中要被更新的参数。将更新电路94计算的参数返回到误差电路93的滤波器,并由误差电路93产生梯度信号Sg。再次将误差电路93产生的梯度信号Sg输出到更新电路94。于是,更新电路94利用上述误差信号e(t)和梯度信号Sg计算参数,使得误差信号e(t)变成最小。将误差信号e(t)变成最小时的参数作为功率矢量P输出到控制部件91,并更新控制部91中的参数。如上所述,在如图28所示的扬声器装置9中,通过误差电路93和更新电路94更新参数,使得控制部件91中的参数对应于实际扬声器95的参数。Based on this error signal e(t), the
[专利文献1]日本专利特许公开No.11-46393[Patent Document 1] Japanese Patent Laid-Open No. 11-46393
发明内容 Contents of the invention
本发明要解决的问题The problem to be solved by the present invention
然而,更新参数的误差电路93和更新电路94需要复杂而大量的数学运算。而且,如上所述,支持系统的刚性随着输入到扬声器的电信号幅度而时刻变化。换言之,由于常规扬声器装置9需要复杂而繁多的数学运算,因此常规扬声器装置9极难在实际上进行参数的更新处理以便跟踪上述支持系统刚性的剧烈变化。结果,常规扬声器装置9的问题在于,无法充分获得失真消除效果,且缺少实用性。此外,由于常规扬声器装置9实现大量的数学运算,因此常规扬声器装置9存在缺少性价比的问题。However, the
因此,本发明的一个目的在于提供一种扬声器装置,其执行信号处理以跟踪实际扬声器中的参数变化并能够执行更稳定的失真消除处理。Accordingly, an object of the present invention is to provide a speaker device that performs signal processing to track parameter changes in an actual speaker and is capable of performing more stable distortion removal processing.
问题的解决方案problem solution
第一方面是一种扬声器装置,其包括:扬声器,其包括:振动膜;包括边缘和阻尼器的支持系统组件,用于支持所述振动膜以容许所述振动膜振动;以及音圈,其产生导致所述振动膜振动的驱动力;前馈处理部件,用于基于滤波器系数对要输入到所述扬声器的电信号进行前馈处理,所述滤波器系数至少包括对表示所述支持系统组件相对于所述振动膜的振动位移的刚性的振动位移特性进行建模的固定参数以及对表示施加到所述音圈的相对于所述振动膜的振动位移的力系数的振动位移特性进行建模的固定参数,所述滤波器系数被设置成消除每个参数的非线性分量;以及反馈处理部件,用于检测所述振动膜的振动,并相对于要被输入到所述扬声器的所述电信号对与所述振动相关的电信号进行反馈处理,其中所述反馈处理部件对与所述振动相关的所述电信号进行反馈处理,从而消除表示所述支持系统组件的刚性的振动位移特性的变化并使得与所述振动膜的所述振动相关的频率特性变成期望频率特性。A first aspect is a loudspeaker device comprising: a loudspeaker including a diaphragm; a support system assembly including a rim and a damper for supporting the diaphragm to allow the diaphragm to vibrate; and a voice coil generating a driving force that causes the vibration of the vibrating membrane; a feedforward processing section for performing feedforward processing on an electric signal to be input to the speaker based on a filter coefficient including at least a signal representing the support system fixed parameters for modeling the stiffness of the vibration displacement of the component relative to the vibration displacement of the diaphragm and a vibration displacement characteristic representing a force coefficient applied to the voice coil relative to the vibration displacement of the diaphragm fixed parameters of the modulus, the filter coefficients are set to eliminate the nonlinear component of each parameter; and a feedback processing part for detecting the vibration of the diaphragm and relative to the electrical signal feedback processing of the electrical signal associated with the vibration, wherein the feedback processing component performs feedback processing of the electrical signal associated with the vibration to cancel a vibration displacement characteristic indicative of stiffness of the support system component and make the frequency characteristic related to the vibration of the vibrating membrane become a desired frequency characteristic.
在根据第一方面的第二方面中,所述反馈处理部件包括:理想滤波器,用于接收要输入到所述扬声器的所述电信号并将所接收到的电信号的频率特性转换成期望频率特性;传感器,用于检测所述振动膜的所述振动;第一加法器,用于获得由所述理想滤波器转换并表示所述期望频率特性的所述电信号以及与由所述传感器检测到的所述振动相关的所述电信号之间的差,并输出所述差的电信号作为误差信号;以及第二加法器,用于将所述前馈处理部件处理的所述电信号与所述误差信号相加,并将得到的电信号输出到所述扬声器。In a second aspect according to the first aspect, the feedback processing section includes an ideal filter for receiving the electric signal to be input to the speaker and converting a frequency characteristic of the received electric signal into a desired a frequency characteristic; a sensor for detecting the vibration of the vibrating membrane; a first adder for obtaining the electrical signal converted by the ideal filter and representing the desired frequency characteristic and detecting the difference between the electric signals related to the vibration, and outputting the electric signal of the difference as an error signal; and a second adder for processing the electric signal processed by the feedforward processing part The error signal is summed and the resulting electrical signal is output to the speaker.
所述前馈处理部件的滤波器系数为基于所述扬声器独有的参数的系数;并且所述前馈处理部件处理要输入到所述扬声器的所述电信号,以便消除所述参数的非线性分量。The filter coefficient of the feedforward processing section is a coefficient based on a parameter unique to the speaker; and the feedforward processing section processes the electric signal to be input to the speaker so as to cancel nonlinearity of the parameter portion.
所述前馈处理部件的滤波器系数为基于所述扬声器独有的参数的系数;以及所述参数为根据所述扬声器的振动位移而变化的参数。The filter coefficient of the feedforward processing section is a coefficient based on a parameter unique to the speaker; and the parameter is a parameter that changes according to a vibration displacement of the speaker.
在根据第二方面的第五方面中,所述前馈处理部件包括:消除滤波器,用于接收要输入到所述扬声器的所述电信号,并基于所述滤波器系数处理所接收的电信号;以及线性滤波器,用于接收要输入到所述扬声器的所述电信号,并产生表示在所述振动膜线性振动的时候所述振动膜的振动位移的电信号,并且所述消除滤波器参考所述线性滤波器产生的且表示所述振动位移的所述电信号。In a fifth aspect according to the second aspect, the feedforward processing part includes a cancellation filter for receiving the electric signal to be input to the speaker, and processing the received electric signal based on the filter coefficient. signal; and a linear filter for receiving the electrical signal to be input to the speaker and generating an electrical signal representing a vibration displacement of the vibrating membrane when the vibrating membrane linearly vibrates, and the cancellation filter A detector is referenced to the electrical signal generated by the linear filter and representing the vibration displacement.
在根据第五方面的第六方面中,所述扬声器装置还包括:提供于所述第二加法器和所述扬声器之间的功率放大器,用于放大要输入到所述扬声器的所述电信号的增益,并且所述消除滤波器的滤波器系数、所述理想滤波器的滤波器系数和所述线性滤波器的滤波器系数是被乘以所述功率放大器放大的增益值的倒数的滤波器系数。In a sixth aspect according to the fifth aspect, the speaker device further includes: a power amplifier provided between the second adder and the speaker for amplifying the electrical signal to be input to the speaker , and the filter coefficients of the cancellation filter, the filter coefficients of the ideal filter, and the filter coefficients of the linear filter are filters multiplied by the reciprocal of the gain value amplified by the power amplifier coefficient.
在根据第二方面的第七方面中,由所述传感器检测到的所述电信号是表示所述振动膜的所述振动位移的电信号,并且所述前馈处理部件参考由所述传感器检测到的且表示所述振动位移的所述电信号。In a seventh aspect according to the second aspect, the electrical signal detected by the sensor is an electrical signal representing the vibration displacement of the vibrating membrane, and the feedforward processing part refers to The electrical signal obtained and representing the vibration displacement.
在根据第二方面的第八方面中,所述扬声器装置还包括提供于所述前馈处理部件前一级的前级滤波器,用于接收要输入到所述扬声器的所述电信号,并基于通过从所述期望频率特性减去与所述振动相关的所述扬声器的特性获得的滤波器系数处理所接收的电信号。In an eighth aspect according to the second aspect, the speaker device further includes a pre-stage filter provided at a stage preceding the feedforward processing part for receiving the electric signal to be input to the speaker, and The received electrical signal is processed based on filter coefficients obtained by subtracting a characteristic of the speaker related to the vibration from the desired frequency characteristic.
在根据第二方面的第九方面中,所述扬声器装置还包括限幅器,用于限制电信号的电平,以免向所述扬声器输入电平等于或高于预定电平的电信号。In a ninth aspect according to the second aspect, the speaker device further includes a limiter for limiting a level of an electric signal so as not to input an electric signal having a level equal to or higher than a predetermined level to the speaker.
在根据第二方面的第十方面中,所述扬声器装置还包括提供于所述第二加法器和所述扬声器之间的功率放大器,用于放大要输入到所述扬声器的所述电信号的增益,并且所述前馈处理部件的滤波器系数和所述理想滤波器的滤波器系数是被乘以所述功率放大器放大的所述增益值的倒数的滤波器系数。In a tenth aspect according to the second aspect, the speaker device further includes a power amplifier provided between the second adder and the speaker for amplifying the electric signal to be input to the speaker. gain, and the filter coefficient of the feedforward processing part and the filter coefficient of the ideal filter are filter coefficients multiplied by the reciprocal of the gain value amplified by the power amplifier.
在根据第一方面的第十一方面中,所述前馈处理部件提供于所述扬声器之前的位置处且提供于由所述反馈处理部件形成的反馈回路中。In an eleventh aspect according to the first aspect, the feedforward processing means is provided at a position before the speaker and in a feedback loop formed by the feedback processing means.
在根据第一方面的第十二方面中,所述反馈处理部件包括:理想滤波器,用于接收要输入到所述扬声器的所述电信号并将所接收到的电信号的频率特性转换成期望频率特性;传感器,用于检测所述振动膜的所述振动;第一加法器,用于获得由所述理想滤波器转换并表示所述期望频率特性的所述电信号以及与由所述传感器检测的所述振动相关的所述电信号之间的差,并输出所述差的电信号作为误差信号;以及第二加法器,用于将要输入的所述电信号和所述误差信号相加并将所得到的电信号输出到所述前馈处理部件,并且所述前馈处理部件对所述第二加法器输出的所述电信号进行前馈处理,并向所述扬声器输出所得到的电信号。In a twelfth aspect according to the first aspect, the feedback processing section includes an ideal filter for receiving the electric signal to be input to the speaker and converting a frequency characteristic of the received electric signal into a desired frequency characteristic; a sensor for detecting the vibration of the vibrating membrane; a first adder for obtaining the electric signal converted by the ideal filter and representing the desired frequency characteristic and combined with the electric signal by the a difference between the electric signals related to the vibration detected by the sensor, and outputting the electric signal of the difference as an error signal; and a second adder for comparing the electric signal to be input with the error signal and output the obtained electric signal to the feedforward processing part, and the feedforward processing part performs feedforward processing on the electric signal output by the second adder, and outputs the obtained electric signal to the speaker electrical signal.
在根据第十二方面的第十三方面中,所述扬声器装置还包括提供于所述第二加法器和所述前馈处理部件之间的低通滤波器,其具有滤波器系数,用于使要输入到所述扬声器的电信号增益表示在等于或低于第一频率的频带中以-6dB/oct或更小的梯度倾斜的特性,并且所述第一频率是等于或高于由所述反馈处理部件形成的反馈回路的开环传递特性表示的增益跨越频率的频率。In a thirteenth aspect according to the twelfth aspect, the speaker device further includes a low-pass filter provided between the second adder and the feedforward processing section, which has a filter coefficient for The gain of the electric signal to be input to the speaker expresses a characteristic inclining with a gradient of -6dB/oct or less in a frequency band equal to or lower than a first frequency, and the first frequency is equal to or higher than the first frequency determined by the The open-loop transfer characteristic of the feedback loop formed by the feedback processing components described above represents the frequency of the gain spanning frequency.
在根据第十二方面的第十四方面中,所述扬声器装置还包括提供于所述前馈处理部件前一级的高通滤波器,其具有滤波器系数,用于使要输入到所述扬声器的电信号增益表示在等于或低于第二频率的频带中以6dB/oct或更大的梯度倾斜的特性,并且所述第二频率是等于或高于由所述反馈处理部件形成的反馈回路的开环传递特性表示的增益跨越频率的频率。In a fourteenth aspect according to the twelfth aspect, the speaker device further includes a high-pass filter provided at a stage preceding the feedforward processing section, which has filter coefficients for making the input to the speaker The electrical signal gain represents a characteristic of being inclined with a gradient of 6 dB/oct or more in a frequency band equal to or lower than a second frequency, and the second frequency is equal to or higher than a feedback loop formed by the feedback processing part The open-loop transfer characteristic represents the frequency of gain across frequencies.
在根据第十二方面的第十五方面中,所述扬声器装置还包括:提供于所述第二加法器和所述前馈处理部件之间的低通滤波器,其具有滤波器系数,用于使要输入到所述扬声器的电信号增益表示在等于或低于第一频率的频带中以-6dB/oct或更小的梯度倾斜的特性;以及提供于所述前馈处理部件前一级的高通滤波器,其具有滤波器系数,用于使要输入到所述扬声器的电信号增益表示在等于或低于第二频率的频带中以6dB/oct或更大的梯度倾斜的特性,并且所述第一和第二频率是等于或高于由所述反馈处理部件形成的反馈回路的开环传递特性表示的增益跨越频率的频率。In a fifteenth aspect according to the twelfth aspect, the speaker device further includes: a low-pass filter provided between the second adder and the feedforward processing section, having a filter coefficient with A characteristic for causing an electric signal gain to be input to the speaker to express a gradient slope of -6 dB/oct or less in a frequency band equal to or lower than the first frequency; and provided at a stage preceding the feedforward processing part a high-pass filter having filter coefficients for making the gain of the electric signal to be input to the speaker express a characteristic inclined at a gradient of 6 dB/oct or more in a frequency band equal to or lower than the second frequency, and The first and second frequencies are frequencies equal to or higher than a gain crossover frequency represented by an open-loop transfer characteristic of a feedback loop formed by the feedback processing section.
所述前馈处理部件的滤波器系数为基于所述扬声器独有的参数的系数;并且所述前馈处理部件处理从所述第二加法器输出的所述电信号,从而消除所述参数的非线性分量。The filter coefficient of the feedforward processing part is a coefficient based on a parameter unique to the loudspeaker; and the feedforward processing part processes the electric signal output from the second adder so as to eliminate the parameter non-linear components.
所述前馈处理部件的滤波器系数为基于所述扬声器独有的参数的系数;并且所述参数为根据所述扬声器的振动位移而变化的参数。The filter coefficient of the feedforward processing section is a coefficient based on a parameter unique to the speaker; and the parameter is a parameter that changes according to a vibration displacement of the speaker.
在根据第十二方面的第十八方面中,所述前馈处理部件包括:消除滤波器,用于接收从所述第二加法器输出的所述电信号,并基于滤波器系数处理所接收的电信号;以及线性滤波器,用于接收从所述第二加法器输出的所述电信号,并产生表示在所述振动膜线性振动时所述振动膜的振动位移的电信号,并且所述消除滤波器参考所述线性滤波器产生的表示所述振动位移的所述电信号。In an eighteenth aspect according to the twelfth aspect, the feedforward processing part includes a cancellation filter for receiving the electrical signal output from the second adder, and processing the received electrical signal based on filter coefficients. an electrical signal; and a linear filter for receiving the electrical signal output from the second adder and generating an electrical signal representing a vibration displacement of the vibrating membrane when the vibrating membrane linearly vibrates, and the obtained The cancellation filter references the electrical signal representative of the vibration displacement produced by the linear filter.
在根据第十八方面的第十九方面中,所述扬声器装置还包括提供于所述前馈处理部件和所述扬声器之间的功率放大器,用于放大要输入到所述扬声器的所述电信号的增益,并且所述消除滤波器的滤波器系数、所述理想滤波器的滤波器系数和所述线性滤波器的滤波器系数是被乘以所述功率放大器放大的增益值的倒数的滤波器系数。In a nineteenth aspect according to the eighteenth aspect, the speaker device further includes a power amplifier provided between the feedforward processing section and the speaker for amplifying the power input to the speaker. The gain of the signal, and the filter coefficient of the cancellation filter, the filter coefficient of the ideal filter and the filter coefficient of the linear filter are filtered by multiplying the inverse of the gain value amplified by the power amplifier device coefficient.
在根据第十二方面的第二十方面中,由所述传感器检测的所述电信号是表示所述振动膜的所述振动位移的电信号,并且所述前馈处理部件参考由所述传感器检测到的且表示所述振动位移的所述电信号。In a twentieth aspect according to the twelfth aspect, the electrical signal detected by the sensor is an electrical signal representing the vibration displacement of the vibrating membrane, and the feedforward processing part refers to The electrical signal detected and indicative of the vibrational displacement.
在根据第十二方面的第二十一方面,所述扬声器装置还包括提供于所述第二加法器前面位置的前级滤波器,用于接收要输入到所述扬声器的所述电信号,并基于通过从所述期望频率特性减去与所述振动相关的所述扬声器的特性获得的滤波器系数处理所接收的电信号。In a twenty-first aspect according to the twelfth aspect, the speaker device further includes a pre-filter provided at a position in front of the second adder for receiving the electric signal to be input to the speaker, and processing the received electrical signal based on filter coefficients obtained by subtracting a characteristic of the speaker related to the vibration from the desired frequency characteristic.
在根据第十二方面的第二十二方面,所述扬声器装置还包括限幅器,用于限制电信号的电平,以免向所述扬声器输入电平等于或高于预定电平的电信号。In a twenty-second aspect according to the twelfth aspect, the speaker device further includes a limiter for limiting the level of an electric signal so as not to input an electric signal having a level equal to or higher than a predetermined level to the speaker. .
在根据第十二方面的第二十三方面,所述扬声器装置还包括提供于所述前馈处理部件和所述扬声器之间的功率放大器,用于放大要输入到所述扬声器的所述电信号的增益,并且所述前馈处理部件的滤波器系数和所述理想滤波器的滤波器系数是被乘以所述功率放大器放大的所述增益值的倒数的滤波器系数。在根据第一方面的第二十四方面中,表示所述支持系统组件的刚性的所述振动位移特性的变化是因为形成所述支持系统组件的材料的缓慢变化或形成所述支持系统部件的材料的蠕变现象而发生的。在根据第一方面的第二十五方面中,形成所述支持系统组件的材料为布或树脂。In a twenty-third aspect according to the twelfth aspect, the speaker device further includes a power amplifier provided between the feedforward processing part and the speaker for amplifying the power input to the speaker. The gain of the signal, and the filter coefficient of the feedforward processing part and the filter coefficient of the ideal filter are filter coefficients multiplied by the reciprocal of the gain value amplified by the power amplifier. In a twenty-fourth aspect according to the first aspect, the change in the vibrational displacement characteristic indicative of the stiffness of the support system component is due to a slow change in the material forming the support system component or the material forming the support system component. due to the creep phenomenon of the material. In a twenty-fifth aspect according to the first aspect, the material forming the support system component is cloth or resin.
第二十六方面为一种集成电路用于处理要输入到扬声器的电信号,所述扬声器包括:振动膜;包括边缘和阻尼器的支持系统组件,用于支持所述振动膜以容许所述振动膜振动;以及音圈,其产生导致所述振动膜振动的驱动力,所述集成电路,包括:前馈处理部件,用于基于滤波器系数对要输入到所述扬声器的电信号进行前馈处理,所述滤波器系数至少包括对表示所述支持系统组件相对于所述振动膜的振动位移的刚性的振动位移特性进行建模的固定参数以及对表示施加到所述音圈的相对于所述振动膜的振动位移的力系数的振动位移特性进行建模的固定参数,所述滤波器系数被设置成消除每个参数的非线性分量;以及反馈处理部件,用于检测所述振动膜的振动,并相对于要被输入到所述扬声器的所述电信号对与所述振动相关的电信号进行反馈处理,并且所述反馈处理部件对与所述振动相关的所述电信号进行反馈处理,从而消除表示所述支持系统组件的刚性的振动位移特性的变化并使得依据所述振动膜的所述振动的频率特性变成期望频率特性。A twenty-sixth aspect is an integrated circuit for processing electrical signals to be input to a speaker, the speaker comprising: a diaphragm; a support system assembly including a lip and a damper for supporting the diaphragm to allow the a vibrating membrane; and a voice coil that generates a driving force that causes the vibrating membrane to vibrate, the integrated circuit including: a feedforward processing part for forwarding an electric signal to be input to the speaker based on a filter coefficient Feedback processing, the filter coefficients include at least fixed parameters representing the vibration displacement characteristics representing the rigidity of the vibration displacement of the support system components relative to the diaphragm and representing the vibration displacement applied to the voice coil relative to fixed parameters for modeling the vibration displacement characteristics of the force coefficient of the vibration displacement of the vibration membrane, the filter coefficients are set to eliminate the nonlinear component of each parameter; and a feedback processing part for detecting the vibration displacement of the vibration membrane vibration, and feedback-processing the electric signal related to the vibration with respect to the electric signal to be input to the speaker, and the feedback processing part feeds back the electric signal related to the vibration processing so as to eliminate variations in vibration displacement characteristics indicative of rigidity of the support system components and to make frequency characteristics of the vibration by the diaphragm into desired frequency characteristics.
本发明的效果Effect of the present invention
根据第一方面,可以基于被设置为消除每个参数的非线性分量的滤波器系数通过前馈处理消除大部分非线性失真。此外,通过反馈处理,可以相对于(例如)扬声器的支持系统的刚性的缓慢变化等进行鲁棒的失真消除。换言之,根据本方面,前馈处理部件基于上述滤波器系数进行处理,反馈处理部件执行以上鲁棒失真消除,由此提供了一种扬声器装置,其能够以高可行性执行更稳定的失真消除,而无需进行更新扬声器参数的处理。此外,根据本方面,通过反馈处理,可以消除表示支持系统组件的刚性的振动位移特性的变化,将与扬声器振动相关的频率特性近似为期望频率特性。According to the first aspect, most of the nonlinear distortion can be eliminated by feedforward processing based on the filter coefficients set to eliminate the nonlinear component of each parameter. Furthermore, through feedback processing, robust distortion cancellation is possible with respect to, for example, slow variations in the stiffness of the support system of the loudspeaker. In other words, according to the present aspect, the feedforward processing section performs processing based on the above-mentioned filter coefficients, and the feedback processing section performs the above robust distortion cancellation, thereby providing a speaker device capable of performing more stable distortion cancellation with high feasibility, There is no need to update the speaker parameters. Furthermore, according to the present aspect, by feedback processing, it is possible to eliminate variations in vibration displacement characteristics indicating rigidity of support system components, and to approximate frequency characteristics related to speaker vibration to desired frequency characteristics.
根据第二方面,可以基于被设置为消除每个参数的非线性分量的滤波器系数通过前馈处理消除大部分非线性失真,且可以基于误差信号通过反馈处理执行相对于(例如)扬声器的支持系统的刚性缓慢变化的鲁棒失真消除。于是,可以提供一种能够以高可行性进行更稳定的失真消除处理的扬声器装置。此外,根据本方面,可以通过理想滤波器将与扬声器振动相关的频率特性近似为期望频率特性。According to the second aspect, most of the nonlinear distortion can be eliminated by feed-forward processing based on the filter coefficients set to eliminate the nonlinear component of each parameter, and support with respect to, for example, a speaker can be performed by feedback processing based on the error signal Robust distortion cancellation for slowly varying stiffness of the system. Thus, it is possible to provide a speaker device capable of performing more stable distortion canceling processing with high feasibility. Furthermore, according to the present aspect, the frequency characteristics related to speaker vibration can be approximated to desired frequency characteristics by an ideal filter.
注意,可以通过处理要输入到扬声器的电信号从而消除参数的非线性分量,来消除扬声器发生的非线性失真。Note that nonlinear distortion occurring at a speaker can be canceled by processing an electrical signal to be input to the speaker so as to cancel the nonlinear component of the parameter.
而且,可以进行依据扬声器的振动位移的高精确度失真消除处理。Furthermore, highly accurate distortion removal processing depending on the vibration displacement of the speaker can be performed.
根据第五方面,基于振动膜线性振动时的振动位移的处理是可能的,且可以进行更高效的失真消除处理。According to the fifth aspect, processing based on the vibration displacement when the diaphragm vibrates linearly is possible, and more efficient distortion removal processing can be performed.
根据第六方面,即使在能在消除滤波器、理想滤波器和线性滤波器的内部运算中处理的电压小的情况下,保持消除失真效果的处理也是可能的。此外,通过在反馈回路中提供功率放大器,反馈增益可以变大,可以改善失真消除效果。According to the sixth aspect, even when the voltage that can be processed in the internal operation of the cancellation filter, the ideal filter, and the linear filter is small, processing that maintains the effect of canceling distortion is possible. Also, by providing a power amplifier in the feedback loop, the feedback gain can be made large, and the distortion canceling effect can be improved.
根据第七方面,可以进行依据实际扬声器的振动的失真消除处理。According to the seventh aspect, it is possible to perform distortion canceling processing according to the vibration of an actual speaker.
根据第八方面,在与扬声器输出的振动相关的特性中,可以增强到期望频率特性的收敛。According to the eighth aspect, in the characteristics related to the vibration output from the speaker, convergence to desired frequency characteristics can be enhanced.
根据第九方面,可以防止扬声器因为过大的输入而受损。According to the ninth aspect, it is possible to prevent the speaker from being damaged due to excessive input.
根据第十方面,即使在能在前馈处理部件和理想滤波器的内部运算中处理的电压小的情况下,保持消除失真效果的处理也是可能的。此外,通过在反馈回路中提供功率放大器,反馈增益可以变大,可以改善失真消除效果。According to the tenth aspect, even in the case where the voltage that can be processed in the internal operation of the feedforward processing section and the ideal filter is small, processing that maintains the effect of canceling distortion is possible. Also, by providing a power amplifier in the feedback loop, the feedback gain can be made large, and the distortion canceling effect can be improved.
根据第十一方面,通过将前馈处理部件设置在反馈回路中,即使在扬声器的振辐变大时,也能够在较低频带实现消除失真的效果。According to the eleventh aspect, by arranging the feedforward processing means in the feedback loop, even when the amplitude of the speaker becomes large, it is possible to achieve the effect of canceling distortion in the lower frequency band.
根据第十二方面,通过将前馈处理部件设置在反馈回路中,即使在扬声器的振辐变大时,也能够在较低频带实现消除失真的效果。According to the twelfth aspect, by arranging the feedforward processing means in the feedback loop, even when the amplitude of the speaker becomes large, it is possible to achieve the effect of canceling distortion in the lower frequency band.
根据第十三方面,由于增益跨越频率被低通滤波器降低,因此可以在较低频带实现消除失真的效果。According to the thirteenth aspect, since the gain is lowered by the low-pass filter across frequencies, the effect of canceling distortion can be achieved in a lower frequency band.
根据第十四方面,由于高通滤波器没有输入频率等于或低于增益跨越频率的电信号,因此可以预先消除由于输入频率等于或低于增益跨越频率的电信号而导致的失真,可以获得更高的消除失真的效果。According to the fourteenth aspect, since the high-pass filter does not input an electrical signal whose frequency is equal to or lower than the gain crossover frequency, distortion due to an input electrical signal whose frequency is equal to or lower than the gain crossover frequency can be eliminated in advance, and higher The effect of eliminating distortion.
根据第十五方面,由于增益跨越频率被低通滤波器降低,因此可以在较低频带实现消除失真的效果。此外,由于高通滤波器没有输入频率等于或低于增益跨越频率的电信号,因此可以预先消除由于输入频率等于或低于增益跨越频率的电信号而导致的失真,可以获得更高的消除失真的效果。According to the fifteenth aspect, since the gain is lowered by the low-pass filter across frequencies, the effect of canceling distortion can be achieved in a lower frequency band. In addition, since the high-pass filter does not input an electrical signal whose frequency is equal to or lower than the gain spanning frequency, the distortion caused by the input frequency of an electrical signal equal to or lower than the gain spanning frequency can be eliminated in advance, and a higher degree of distortion elimination can be obtained. Effect.
附图说明 Description of drawings
图1为示出了根据第一实施例的扬声器装置1的示范性构造的方框图。FIG. 1 is a block diagram showing an exemplary configuration of a
图2为通用扬声器16的截面图。FIG. 2 is a cross-sectional view of the
图3示出了在磁隙165附近相对于振动位移x的力系数B1的特性的范例。FIG. 3 shows an example of the behavior of the force coefficient B1 with respect to the vibration displacement x in the vicinity of the
图4示出了支持系统的刚性K与振动位移x的关系范例。Figure 4 shows an example of the relationship between the stiffness K of the support system and the vibration displacement x.
图5示出了刚性K相对于输入信号I(t)的变化。Fig. 5 shows the variation of the stiffness K with respect to the input signal I(t).
图6示出了期望的输出特性,其被设置为理想滤波器12的滤波器系数。FIG. 6 shows desired output characteristics, which are set as filter coefficients of the
图7为方框图,示出了在非线性分量消除滤波器10参考传感器17的输出信号时扬声器装置1的示范性构造。FIG. 7 is a block diagram showing an exemplary configuration of the
图8为示出了根据第二实施例的扬声器装置2的示范性构造的方框图。FIG. 8 is a block diagram showing an exemplary configuration of a
图9为方框图,示出了图8中所示的线性滤波器11的输入被改变的示范性构造。FIG. 9 is a block diagram showing an exemplary configuration in which the input of the
图10为方框图,示出了在非线性分量消除滤波器10参考传感器17的输出信号时扬声器装置2的示范性构造。FIG. 10 is a block diagram showing an exemplary configuration of the
图11为示出了根据第三实施例的扬声器装置3的示范性构造的方框图。FIG. 11 is a block diagram showing an exemplary configuration of a
图12示出了扬声器装置3的增益特性和相位特性。FIG. 12 shows gain characteristics and phase characteristics of the
图13示出了用于分析图10中所示的扬声器装置2的频率特性的构造。FIG. 13 shows a configuration for analyzing the frequency characteristics of the
图14示出了当图13的扬声器16的输入被改变时的增益特性、二次失真特性、和三次失真特性。FIG. 14 shows gain characteristics, second-order distortion characteristics, and third-order distortion characteristics when the input of the
图15为方框图,示出了向图11中所示的扬声器装置3添加了补偿滤波器21的示范性构造。FIG. 15 is a block diagram showing an exemplary configuration in which a
图16示出了由方程(18)所示的传递函数的频率特性。Fig. 16 shows the frequency characteristics of the transfer function shown by Equation (18).
图17为方框图,示出了向图11中所示的扬声器装置3添加了高通滤波器22的示范性构造。FIG. 17 is a block diagram showing an exemplary configuration in which a high-
图18为方框图,示出了向图11中所示的扬声器装置3添加了补偿滤波器21和高通滤波器22的示范性构造。FIG. 18 is a block diagram showing an exemplary configuration in which a
图19示出了当输入为20W和40W时的分析结果。FIG. 19 shows analysis results when the input is 20W and 40W.
图20示出了图10中所示的扬声器装置2的反馈回路。FIG. 20 shows a feedback loop of the
图21示出了阶跃输入及其在图20中所示的反馈回路中的响应。Figure 21 shows a step input and its response in the feedback loop shown in Figure 20.
图22示出了阶跃输入及其在图20中所示的反馈回路中的响应。Figure 22 shows a step input and its response in the feedback loop shown in Figure 20.
图23示出了阶跃输入及其在图20中所示的反馈回路中的响应。Figure 23 shows a step input and its response in the feedback loop shown in Figure 20.
图24为示出了根据第四实施例的扬声器装置4的示范性构造的方框图。FIG. 24 is a block diagram showing an exemplary configuration of a
图25示出了具有和不具有缩放处理的频率特性对比。Fig. 25 shows a comparison of frequency characteristics with and without scaling.
图26示出了功率放大器23的强度与每个元件相关的示范性构造。FIG. 26 shows an exemplary configuration in which the strength of the
图27为方框图,示出了在图1中所示的扬声器装置1中提供了限幅器24的示范性构造。FIG. 27 is a block diagram showing an exemplary configuration in which the
图28为示出了常规扬声器装置9的方框图。FIG. 28 is a block diagram showing a conventional speaker device 9 .
附图标记说明Explanation of reference signs
1,2 扬声器装置1, 2 speaker units
10 非线性分量消除滤波器10 Nonlinear component elimination filter
11 线性滤波器11 Linear filter
12 理想滤波器12 ideal filter
13,14 加法器13, 14 adder
15 反馈控制滤波器15 Feedback Control Filter
16 扬声器16 speakers
17 传感器17 sensors
20 前级滤波器20 pre-filter
21 补偿滤波器21 Compensation filter
22 高通滤波器22 high pass filter
23 功率放大器23 power amplifier
24 限幅器24 limiter
161 音圈161 voice coil
162 振动膜162 diaphragm
163 磁体163 magnets
164 磁路164 magnetic circuit
165 磁隙165 magnetic gap
166 阻尼器166 damper
167 边缘167 edge
具体实施方式 Detailed ways
以下将参考附图描述本发明的实施例。Embodiments of the present invention will be described below with reference to the drawings.
(第一实施例)(first embodiment)
参考图1,将描述根据本发明第一实施例的扬声器装置1。图1为示出了根据第一实施例的扬声器装置1的示范性构造的方框图。如图1所示,扬声器装置1包括非线性分量消除滤波器10、线性滤波器11、理想滤波器12、加法器13和14、反馈控制滤波器15、扬声器16和传感器17。Referring to Fig. 1, a
这里,参考图2,将描述扬声器16中发生非线性失真的原因。图2为通用扬声器16的截面图。如图2所示,扬声器16包括音圈161、振动膜162、磁体163、磁路164、阻尼器166和边缘167。磁隙165形成于图2中所示的磁路164中。根据Fleming左手定则,在磁隙165中的磁通密度为B且音圈161中流动电流时,音圈161与振动膜162沿振动位移x的轴向一起振动。振动膜162由阻尼器166和边缘167支持,因此振动膜162沿振动位移x的轴向稳定振动,从而发出声音。注意,图2中所示的扬声器16为范例,其不限于此。例如,它可以是包括消除磁体的屏蔽扬声器,或包括内磁型磁路的扬声器。此外,在图2中,振动位移x为零的位置表示音圈161和振动膜162的振动的中心位置,对应于稍后描述的图3到5中所示的振动位移x为零的原点。Here, referring to FIG. 2 , the reason why nonlinear distortion occurs in the
在扬声器16中,发生非线性失真的原因主要包括三个原因。第一个原因涉及到磁隙165中出现的磁通密度B。图3示出了在磁隙165附近相对于振动位移x的力系数B1的范例。当音圈161的振幅小时,即,当振动位移x的绝对值小(x在零左右),磁通密度B大致恒定。不过,当音圈161的振幅大时,即当振动位移x的绝对值大时,磁通密度B迅速减小。这是因为,由于沿振动位移x的轴向距离磁隙165的中心(x在零附近)附近远,难以形成磁通路径。因此,由磁通密度B获得的力系数B1和音圈161的振动位移x之间的关系为图3所示的关系。注意,图3中所示的力系数B1的特性根据振动位移x改变,被表示为振动位移x的函数B1(x)。In the
这里,在用I(t)表示流经音圈161的输入信号电流时,用以下方程(1)表示使音圈161振动的驱动力F(t):Here, when the input signal current flowing through the
F(t)=B1(x)*I(t) (1)F(t)=B1(x)*I(t) (1)
如图3所示,随着音圈161振幅增大,力系数值B1(x)减小。因此,根据方程(1),当振辐大时,驱动力F(t)不与输入信号I(t)的水平成比例。此外,如果驱动力F(t)不与输入信号I(t)的水平成比例,显然,振动位移x也不与输入信号I(t)的水平成比例。因此,扬声器16发生非线性失真。As shown in FIG. 3 , as the amplitude of the
第二个原因涉及到诸如阻尼器166、边缘167等的支持系统。阻尼器166和边缘167因其形状而不会无限拉伸,当拉伸到某种程度时开始收紧。图4示出了支持系统的刚性K与振动位移x的关系特性范例。如图4所示,当音圈161的振幅小时,即,当振动位移x的绝对值小时,刚性K基本恒定。然而,当音圈161的振幅大时,即当振动位移x的绝对值大时,刚性K变大。于是,当振幅变大时,刚性K的值变化,振动位移x不与驱动力F(t)成比例。此外,如果振动位移x不与驱动力F(t)成比例,根据以上方程(1),振动位移x不与输入信号I(t)的水平成比例。结果,扬声器16发生非线性失真。The second reason involves support systems such as
图5示出了刚性K特性相对于输入信号I(t)的变化。如图5所示,刚性K的特性随着I(t)水平大小而变化,并非恒定地提供恒定曲线。由于阻尼器166和边缘167均由诸如布、树脂等材料制成,因此图4中所示的刚性K的特性甚至会因为材料的缓慢变化和蠕变现象而改变。振动位移x甚至会因为这些原因而不与输入信号I(t)的水平成比例,从而扬声器16发生非线性失真。Fig. 5 shows the variation of the stiffness K characteristic with respect to the input signal I(t). As shown in Fig. 5, the characteristic of the stiffness K varies with the magnitude of the I(t) level, and does not constantly provide a constant curve. Since both the
第三个原因涉及到音圈161的电阻抗特性。将诸如铁等的高磁导率材料用于扬声器的磁路。因此,音圈161中包括的电感分量随着振幅大小而变化。当向音圈161输入电信号时其会发热。因此,音圈161的电阻分量随时间变化。由于这些因素,流经音圈161的电流失真,扬声器16发生非线性失真。由于以上三个主要原因,扬声器16发生非线性失真。A third reason involves the electrical impedance characteristics of the
注意,当扬声器16由恒定电压驱动时,输入到扬声器16的输入信号电压E(t)和振动位移x之间的关系大致由以下方程(2)表示:Note that when the
B1*E(t)/Ze=K*x(t)+(r+B12/Ze)*dx(t)/dt+m*d2x(t)/dt2 (2)B1*E(t)/Ze=K*x(t)+(r+B1 2 /Ze)*dx(t)/dt+m*d 2 x(t)/dt 2 (2)
注意在方程(2)中,由K表示支持系统的刚性,由r表示扬声器16的机械阻力,由Ze表示音圈161的电阻抗,由m表示振动系统质量。Note that in equation (2), the rigidity of the support system is represented by K, the mechanical resistance of the
这里,在以上三个原因中,尤其是在低频频带发生的非线性失真中,力系数B1和刚性K参数的影响大。当把图3和4中所示的力系数B1和刚性K表达为方程(2)中的振动位移x的涵数时,提供了下述方程(3)。Here, among the above three causes, the influence of the force coefficient B1 and the stiffness K parameter is large especially in the nonlinear distortion occurring in the low frequency band. When expressing the force coefficient B1 and rigidity K shown in FIGS. 3 and 4 as a function of the vibration displacement x in equation (2), the following equation (3) is provided.
B1(x)*E(t)/ZeB1(x)*E(t)/Ze
=K(x)*x(t)+(r+B1(x)2/Ze)*dx(t)/dt+m*d2x(t)/dt2 (3)=K(x)*x(t)+(r+B1(x) 2 /Ze)*dx(t)/dt+m*d 2 x(t)/dt 2 (3)
此外,当相对于振动位移x对B1(x)和K(x)进行多项式近似并对B1(x)和K(x)建模时,提供了如下方程(4)和(5)。Furthermore, when B1(x) and K(x) are polynomially approximated with respect to the vibration displacement x and modeled, the following equations (4) and (5) are provided.
B1(x)=A0+A1*x+A2*x2+A3*x3+... (4)B1(x)=A0+A1*x+A2*x 2 +A3*x 3 +... (4)
K(x)=K0+K1*x+K2*x2+K3*x3+... (5)K(x)=K0+K1*x+K2*x 2 +K3*x 3 +... (5)
在上面的方程(4)和上面的方程(5)中,A0和K0是和振动位移x无关的线性分量参数。于是,当把方程(4)和方程(5)都分成线性分量和非线性分量并加以表达时,分别将它们表示为方程(6)和方程(7)。In the above equation (4) and the above equation (5), A0 and K0 are linear component parameters independent of the vibration displacement x. Then, when both equation (4) and equation (5) are divided into linear components and nonlinear components and expressed, they are represented as equation (6) and equation (7), respectively.
B1(x)=A0+Ax (6)B1(x)=A0+Ax (6)
K(x)=K0+Kx (7)K(x)=K0+Kx (7)
注意,Ax为B1(x)的非线性分量,Kx为K(x)的非线性分量。于是,当把方程(3)中的B1(x)和K(x)代入方程(6)和方程(7)时,提供了方程(8)。Note that Ax is a nonlinear component of B1(x), and Kx is a nonlinear component of K(x). Thus, when B1(x) and K(x) in Equation (3) are substituted into Equation (6) and Equation (7), Equation (8) is provided.
(A0+Ax)*E(t)/Ze(A0+Ax)*E(t)/Ze
=(K0+Kx)*x(t)十[r十(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 (8)=(K0+Kx)*x(t) ten [r ten (A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (8)
下文将描述图1中所示的扬声器装置1的操作处理。在根据本实施例的扬声器装置1中,粗略地讲,由非线性分量消除滤波器10和线性滤波器11执行前馈处理,由理想滤波器12、传感器17、加法器14、反馈控制滤波器15和加法器13执行反馈处理。因此,非线性分量消除滤波器10和线性滤波器11对应于本发明的前馈处理部件。而且,理想滤波器12、传感器17、加法器14、反馈控制滤波器15和加法器13对应于本发明的反馈处理部件。Operation processing of the
将描述由非线性分量消除滤波器10和线性滤波器11进行的前馈处理。将电信号作为输入信号输入到非线性分量消除滤波器10、线性滤波器11和理想滤波器12中。稍后将描述理想滤波器12的处理。Feedforward processing by the nonlinear
非线性分量消除滤波器10基于预定的滤波器系数处理输入信号从而消除已建模参数的非线性分量,该滤波器系数是通过参考线性滤波器11产生的伪线性操作中的振动位移x(t)获得的。然后,将非线性分量消除滤波器10处理的信号输出到加法器13。以下将描述在非线性分量消除滤波器10处设置的预定滤波器系数。The nonlinear
扬声器16的工作方程如以上方程(8)所示。根据以上方程(8),不包括参数的非线性分量(B1x和Kx)的工作方程,即,不发生非线性失真的线性运算中的工作方程为如下方程(9)。The operating equation of
A0*E(t)/Ze=K0*x(t)+[r+A02/Ze]*dx(t)/dt+m*d2x(t)/dt2 (9)A0*E(t)/Ze=K0*x(t)+[r+A0 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (9)
因此,当从方程(8)减去方程(9)时,获得了仅包括扬声器的非线性分量的工作方程,为方程(10)。Therefore, when equation (9) is subtracted from equation (8), a working equation including only the nonlinear component of the loudspeaker is obtained as equation (10).
Ax*E(t)/Ze=Kx*x(t)+[(2*A0*Ax+A02)/Ze]*dx(t)/dt (10)Ax*E(t)/Ze=Kx*x(t)+[(2*A0*Ax+A0 2 )/Ze]*dx(t)/dt (10)
此外,当从方程(8)减去方程(10)时,获得了去除了扬声器的非线性分量的工作方程,为方程(11)。Furthermore, when Equation (10) is subtracted from Equation (8), a working equation from which the nonlinear component of the loudspeaker is removed is obtained as Equation (11).
(A0+Ax)*E(t)/Ze-Ax*E(t)/Ze(A0+Ax)*E(t)/Ze-Ax*E(t)/Ze
=(K0+Kx)*x(t)+[r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 =(K0+Kx)*x(t)+[r+(A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2
-Kx*x(t)+[(2*A0*Ax+A02)/Ze]*dx(t)/dt (11)-Kx*x(t)+[(2*A0*Ax+A0 2 )/Ze]*dx(t)/dt (11)
这里,在令方程(11)右侧等于方程(8)(扬声器16的原始工作方程)右侧时,方程(11)被表示为方程(12)。Here, Equation (11) is expressed as Equation (12) when making the right side of Equation (11) equal to the right side of Equation (8) (the original operating equation of the speaker 16).
(A0+Ax)*E(t)/Ze-Ax*E(t)/Ze+Kx*x(t)+(A0+Ax)*E(t)/Ze-Ax*E(t)/Ze+Kx*x(t)+
[(2*A0*Ax+A02)/Ze]*dx(t)/dt[(2*A0*Ax+A0 2 )/Ze]*dx(t)/dt
=(K0+Kx)*x(t)+[r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 (12)=(K0+Kx)*x(t)+[r+(A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (12)
重排方程(12)的左侧,获得方程(13)。方程(13)的左侧为用于消除参数的非线性分量的滤波器系数。Rearranging the left side of equation (12), equation (13) is obtained. The left side of equation (13) is the filter coefficient for eliminating the nonlinear component of the parameter.
(A0+Ax)/Ze*[E(t)-Ze/(A0+Ax)*(Ax/Ze*E(t)-(A0+Ax)/Ze*[E(t)-Ze/(A0+Ax)*(Ax/Ze*E(t)-
(2*A0*Ax+Ax2)/Ze*dx(t)/dt-Kx*x Ct))](2*A0*Ax+Ax 2 )/Ze*dx(t)/dt-Kx*x Ct))]
=(K0+Kx)*x(t)+[r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 (13)=(K0+Kx)*x(t)+[r+(A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (13)
注意,在以上的滤波器系数中,关于上述力系数B1的参数A0和Ax、关于刚性K的参数K0和Kx,以及电阻抗Ze为所连接的扬声器16独有的参数,并且是构成非线性分量消除滤波器10的滤波器系数的预设参数。此外,从方程(13)的左侧看出,需要振动位移x(t)的值作为非线性分量消除滤波器10的滤波器系数所需的参数。振动位移x(t)由接下来描述的线性滤波器11产生。Note that among the above filter coefficients, the parameters A0 and Ax with respect to the above-mentioned force coefficient B1, the parameters K0 and Kx with respect to the rigidity K, and the electrical impedance Ze are parameters unique to the connected
在假设扬声器16执行来自输入信号的线性工作时,基于预设的滤波器系数,线性滤波器11产生振动位移x(t)。换言之,线性滤波器11在伪线性工作中产生振动位移x(t)。如上所述,扬声器16线性工作中的工作方程如方程(9)所述。因此,在通过对方程(9)进行拉普拉斯变换获得传递函数后,获得以下方程(14)。方程(14)的右侧为线性滤波器11的滤波器系数。注意,X(s)表示振动位移x(t)的传递函数,E(s)表示输入信号电压的传递函数。On the assumption that the
x(s)/E(s)=(A0/Ze)/[K0+s*(r+A02/Ze)+s2*m] (14)x(s)/E(s)=(A0/Ze)/[K0+s*(r+A0 2 /Ze)+s 2 *m] (14)
如上所述,如方程(8)所示,通过非线性分量消除滤波器10和线性滤波器11的前馈处理,消除了已建模的力系数BI(x)和刚性K(x)的非线性分量。因此,可以消除可归因于这些非线性分量的非线性失真。此外,前馈处理消除了非线性分量,使得扬声器16进行线性工作。由于在扬声器16线性工作时非线性分量消除滤波器10参考振动位移x(t),从而获得了更高效的失真效应消除效果。As described above, as shown in Equation (8), through the feed-forward processing of the nonlinear
以下将描述由理想滤波器12、传感器17、加法器14、反馈控制滤波器15和加法器13进行的反馈处理。The feedback processing performed by the
理想滤波器12是这样的滤波器,在根据扬声器16的振动的特性(以下称为输出特性)为期望的输出特性时,该滤波器具有期望的输出特性的传递函数F(s)作为滤波器系数。换言之,理想滤波器12是将输入信号的频率特性转换成期望的输出特性的滤波器。这里,将其频率特性转换成期望的输出特性的信号是指期望的特性信号f(t)。期望的特性信号f(t)被输出到加法器14。注意,扬声器16的输出特性包括各种特性,例如振动位移特性、速度特性、加速度特性(声压特性)等。例如,如图6所示,假设实际扬声器16的声压频率特性(加速度特性)为图6中的A所示的特性。图6示出了期望的输出特性,其被设置为理想滤波器12的滤波器系数。在图6中,在如B所示的特性那样,使扬声器16的声压频率特性成为具有展宽频带的平坦特性曲线时,可以将B所示的特性的传递函数F(s)设置成理想滤波器12的滤波器系数。The
传感器17检测扬声器16的振动并输出具有扬声器16的输出特性的检测信号y(t)。对传感器17输出的检测信号y(t)进行适当放大,并输出到加法器14。注意,传感器17例如是麦克风、激光位移测量计、加速度计等。这里,输出到加法器14的信号特性与上述期望的特性信号f(t)具有的输出特性是相同类型的。换言之,在理想滤波器12中,在期望的特性信号f(t)的输出特性例如是扬声器16的振动位移特性的情况下,输出到加法器14的信号为振动位移特性的信号。注意在这种情况下,可以将检测扬声器16的振动并输出其振动位移的传感器用作传感器17。或者,即使将输出扬声器16的速度特性或加速度特性的传感器用作传感器17,也可以在传感器17和加法器14之间适当地提供微分电路和积分电路,以将输出到加法器14的信号的一种特性转换成振动位移特性。The
注意,扬声器的声压频率特性是和加速度特性成比例的特性。因此,当从理想滤波器12输出的期望的特性信号f(t)的特性表示扬声器16的加速度特性,且传感器17为加速度计,且从传感器17输出的信号的特性表示加速度特性时,消除失真效应的效果变成最高。Note that the sound pressure frequency characteristic of a speaker is a characteristic proportional to the acceleration characteristic. Therefore, when the characteristic of the desired characteristic signal f(t) output from the
在下文中,为了解释,假设从传感器17输出的检测信号y(t)的特性与理想滤波器12输出的期望的特性信号f(t)是同一类型的。换言之,考虑这样的情况,即,在传感器17和加法器14之间无需提供微分电路和积分电路。Hereinafter, for the sake of explanation, it is assumed that the characteristic of the detection signal y(t) output from the
加法器14从理想滤波器12输出的期望的特性信号f(t)减去传感器17输出的检测信号y(t),并向反馈控制滤波器15输出相减信号(f(t)-y(t))作为误差信号e(t)。由反馈控制滤波器15调节误差信号e(t)的增益等,并将误差信号e(t)返回并输入到加法器13。然后,通过加法器13将非线性分量消除滤波器10的输出信号和反馈控制滤波器15输出的误差信号e(t)相加,并将其输出到扬声器16。注意,反馈控制滤波器15基本上是调节增益的滤波器,即放大器,随着增益变大,消除失真的效果变大。The
这里,如上所述,支持系统的刚性K会老化。而且,如图5所示,刚性K的特性随着输入大小变化。在这种情况下,扬声器16的输出特性也变化。另一方面,传感器17检测扬声器16改变的输出特性,上述误差信号e(t)为传感器17输出的检测信号y(t)和期望的特性信号r(t)之间的差的信号。于是,将以上刚性K的缓慢变化和因输入大小导致的其特性的变化反映到误差信号e(t)中。通过反馈控制滤波器15将误差信号e(t)返回并输入到加法器13,由此消除上述刚性K的缓慢变化和因输入大小导致的其特性的改变。Here, as mentioned above, the rigidity K of the support system ages. Also, as shown in Fig. 5, the characteristics of the stiffness K vary with the input size. In this case, the output characteristic of the
如上所述,可以由理想滤波器12、传感器17、加法器14、反馈控制滤波器15和加法器13进行的反馈处理,针对支持系统的刚性K的缓慢变化和因输入大小导致的其特性改变,执行鲁棒的失真消除处理。As mentioned above, the feedback processing that can be performed by the
作为发生非线性失真的上述第三个原因,音圈161的电阻抗特性变化(尤其是由发热导致的变化)也包括在上述误差信号e(t)。于是,可以通过以上反馈处理消除由该变化导致的非线性失真。As the above-mentioned third cause of nonlinear distortion, the change in the electrical impedance characteristic of the voice coil 161 (especially the change due to heat generation) is also included in the above-mentioned error signal e(t). Then, nonlinear distortion caused by this variation can be eliminated by the above feedback processing.
在产生误差信号e(t)期间,在理想滤波器12处使用具有期望的输出特性(传递函数F(s))的信号f(t)。可以通过对误差信号e(t)进行反馈处理将实际扬声器16的输出特性近似成上述期望的输出特性。During the generation of the error signal e(t), a signal f(t) with the desired output characteristic (transfer function F(s)) is used at the
如上所述,根据本实施例的扬声器装置1,可以通过前馈处理消除扬声器的大部分非线性失真,且可以通过反馈处理针对支持系统的刚性的缓慢变化和因输入大小导致的其特性的改变进行鲁棒的失真消除处理。于是,不需要要求复杂而大量计算的自适应参数更新电路,防止了成本增大,且可以提供能够以高可行性执行更稳定的失真消除处理的扬声器装置。As described above, according to the
注意,除了增益调节之外,上述反馈控制滤波器15还可以具有例如低通滤波器等的特性。例如,存在这样的情况,扬声器16的中频和高频特性受到显著干扰,当照原样反馈误差信号e(t),恐怕会出现振荡。此时,使反馈控制滤波器15具有低通滤波器的特性,以去除中频和高频分量,由此防止振荡。在图1中所示的扬声器装置1中,如果不怕由误差信号e(t)引起的振荡且不需要增益调节,可以省去反馈控制滤波器15。Note that the above-described
在上述非线性分量消除滤波器10中,利用从方程(8)导出的方程(13)中所示的滤波器系数消除了可归因于支持系统的力系数B1和刚性K的非线性失真,但这不限于此。此外,在方程(8)中,将音圈161的上述电阻抗特性Ze反映为振动位移x的函数Ze(x),且可以根据方程(14)设置考虑到电阻抗特性Ze的滤波器系数。因此,在由非线性分量消除滤波器10和线性滤波器11进行的前馈处理中,可以消除由电阻抗特性Ze基于振动位移x(t)的变化导致的非线性失真。In the above-mentioned nonlinear
此外,上述非线性分量消除滤波器10参考由线性滤波器11产生的伪线性工作中的振动位移x(t),但其可以如图7所示直接参考传感器17的输出信号。换言之,通过直接参考传感器17的输出可以省去线性滤波器11。在这种情况下,振动位移x(t)为实际扬声器的振动位移x(t),非线性分量消除滤波器10可以根据实际扬声器的振动位移进行处理。注意,图7为方框图,示出了在非线性分量消除滤波器10参考传感器17的输出信号时扬声器装置1的示范性构造。此时,由于非线性分量消除滤波器10参考的信号是振动位移x(t),因此传感器17可以是检测扬声器16的振动位移特性的传感器。而且,即使传感器17检测的信号是速度特性或加速度特性,也可以利用微分电路和积分电路适当地获得振动位移特性。In addition, the above-described nonlinear
(第二实施例)(second embodiment)
参考图8,将描述根据本发明第二实施例的扬声器装置2。图8为示出了根据第二实施例的扬声器装置2的示范性构造的方框图。在图8中,扬声器装置2包括非线性分量消除滤波器10、线性滤波器11、理想滤波器12、加法器13、加法器14、反馈控制滤波器15、扬声器16、传感器17和前级滤波器20。如图8所示,根据本实施例的扬声器装置2与上述图1中所示的扬声器装置1的不同之处在于,额外具有前级滤波器20。以下将主要描述差异。由于非线性分量消除滤波器10、线性滤波器11、理想滤波器12、加法器13、加法器14、反馈控制滤波器15、扬声器16和传感器17与第一实施例中所述的相同,因此使用了相同的附图标记且将省略其说明。Referring to Fig. 8, a
前级滤波器20位于非线性分量消除滤波器10和线性滤波器11的紧前方的位置,基于预定的滤波器系数处理作为输入信号的电信号。将前级滤波器20处理的信号输入到非线性分量消除滤波器10和线性滤波器11。这里,前级滤波器20的滤波器系数为F(s)/P(s),其中,作为理想滤波器12的滤波器系数的期望的输出特性的传递函数F(s)除以实际扬声器16在线性工作中的输出特性的传递函数P(s)。注意,传递函数P(s)的输出特性与理想滤波器12的期望的输出特性是相同类型。换言之,如第一实施例中所述,例如,当传递函数F(s)是基于扬声器16的振动位移特性时,传递函数P(s)是基于扬声器16线性工作时的振动位移特性的函数。The front-
这里,输入到前级滤波器20的输入信号电压的传递函数由E(s)表示。此时,前级滤波器20的输出信号变成E(s)*F(s)/P(s)。当通过非线性分量消除滤波器10由扬声器16输出该输出信号时,将输出信号乘以扬声器16的传递函数P(s),使得扬声器16的输出特性最终变成E(s)*F(s)。换言之,扬声器16的输出特性变换成目标特性F(s)。此时,传感器17输出的检测信号y(t)的传递函数变成E(s)*F(s)。而且,将变成传递函数E(s)的输入信号输入到理想滤波器12。此时,由于理想滤波器12的滤波器系数为F(s),因此理想滤波器12的输出信号F(t)的传递函数变成E(s)*F(s)。在加法器14中,从来自理想滤波器12的输出信号f(t)减去上述检测信号y(t)。此时,输出信号f(t)和检测信号y(t)的传递函数均为E(s)*F(s)且相同,误差信号e(t)变成零。Here, the transfer function of the input signal voltage input to the pre-filter 20 is represented by E(s). At this time, the output signal of the pre-filter 20 becomes E(s)*F(s)/P(s). When the output signal is output by the
例如,假设由于支持系统的刚性K缓慢变化等,扬声器的传递函数从P(s)变为P′(s)。此时,图8中所示的扬声器装置2的传递函数Y(s)/E(s)变成方程(15)。注意,Y(s)是通过对扬声器16的输出信号Y(t)执行拉普拉斯变换获得的。E(s)是通过在输入信号电压上执行拉普拉斯变换获得的。For example, assume that the transfer function of the loudspeaker changes from P(s) to P'(s) due to slow changes in the stiffness K of the support system, etc. At this time, the transfer function Y(s)/E(s) of the
Y(s)/E(s)=(P’(s)*[1+P(s)])/(P(s)*[1+P’(s)])*F(s) (15)Y(s)/E(s)=(P'(s)*[1+P(s)])/(P(s)*[1+P'(s)])*F(s) (15 )
从以上方程(15)看出,当扬声器16的传递函数P(s)不变时(当P′(s)=P(s)时),方程(15)的右侧变成F(s)。换言之,扬声器16的输出特性收敛成期望的特性F(s)。It can be seen from the above equation (15) that when the transfer function P(s) of the
接下来,在图1所示的没有前级滤波器20的扬声器装置1中,其中传递函数为扬声器16线性工作时的P(s),图1中所示的扬声器装置1的传递函数Y(s)/E(s)变成方程(16)。Next, in the
Y(s)/E(s)=(P(s)*[1+F(s)])/[1+P(s)] (16)Y(s)/E(s)=(P(s)*[1+F(s)])/[1+P(s)] (16)
从以上方程(16)看出,当扬声器16的传递函数P(s)不变时(当P′(s)=P(s)时),方程(16)的右侧不变成F(s)。换言之,扬声器16的输出特性不会收敛到期望的特性F(s)。It can be seen from the above equation (16) that when the transfer function P(s) of the
如果扬声器16的传递函数从P(s)变成P′(s),图1所示的扬声器装置1的传递函数Y(s)/E(s)变成方程(17)。If the transfer function of the
Y(s)/E(s)=(P’(s)*[1+F(s)])/[1+P’(s)] (17)Y(s)/E(s)=(P’(s)*[1+F(s)])/[1+P’(s)] (17)
因此,在图1中所示的扬声器装置1中,如方程(16)和方程(17)所示,扬声器16的输出特性变成通过提供理想滤波器12而近似为F(s)的特性,但无论扬声器16的传递函数如何变化,其输出特性不收敛到期望的特性F(s)。另一方面,在图8中所示的扬声器装置2中,通过提供前级滤波器20,至少在扬声器的传递函数不变的时候,扬声器16的输出特性收敛到F(s)。换言之,前级滤波器20起到了增强扬声器16的输出特性收敛到期望的输出特性的作用。Therefore, in the
如上所述,通过提供前级滤波器20,根据本实施例的扬声器装置2可以增强收敛到期望的输出特性(传递函数F(s))。As described above, by providing the front-
注意,与在第一实施例中类似,除了增益调节之外,上述反馈控制滤波器15还可以具有例如低通滤波器的特性。在图8中所示的扬声器装置2中,如果不太可能由误差信号e(t)引起的振荡且不需要增益调节,可以省去反馈控制滤波器15。Note that, similarly to the first embodiment, the above-described
在上述非线性分量消除滤波器10中,与在第一实施例中类似,利用从方程(8)导出的方程(13)中所示的滤波器系数消除了可归因于支持系统的力系数B1和刚性K的非线性失真,但这不限于此。此外,在方程(8)中,将音圈161的上述电阻抗特性Ze反映为振动位移x的函数Ze(x),且可以根据方程(14)设置考虑到电阻抗特性Ze的滤波器系数。In the above-described nonlinear
图8示出了线性滤波器11的输入被连接到前级滤波器20的输出的构造,但这不限于此。即使提供如图9所示的构造,即线性滤波器11的输入与前级滤波器20和理想滤波器12的输入相同,也可以获得与图8所示的构造所获得的相同的效果。注意,图9为方框图,示出了图8中所示的线性滤波器11的输入被改变的示范性构造。FIG. 8 shows a configuration in which the input of the
与在第一实施例中类似,上述非线性分量消除滤波器10参考由线性滤波器11产生的伪线性工作中的振动位移x(t),但其可以如图10所示直接参考传感器17的输出信号。换言之,通过直接参考传感器17的输出可以省去线性滤波器11。注意,图10为方框图,示出了在非线性分量消除滤波器10参考传感器17的输出信号时扬声器装置2的示范性构造。此时,由于非线性分量消除滤波器10参考的信号是振动位移x(t),因此传感器17可以是检测扬声器16的振动位移特性的传感器。而且,即使传感器17检测的信号是速度特性或加速度特性,也可以利用微分电路和积分电路适当地获得振动位移特性。Similar to in the first embodiment, the above-mentioned nonlinear
(第三实施例)(third embodiment)
参考图11,将描述根据本发明第三实施例的扬声器装置3。图11为示出了根据第三实施例的扬声器装置3的示范性构造的方框图。在图11中,扬声器装置3包括非线性分量消除滤波器10、理想滤波器12、加法器13、加法器14、反馈控制滤波器15、扬声器16、传感器17和前级滤波器20。根据本实施例的扬声器装置3与图1和7到10中所示的扬声器装置1和2不同之处在于,非线性分量消除滤波器10位于加法器13和扬声器16之间,通过这一差异,扬声器装置可以将获得消除失真的效果的频带扩展到低频带。Referring to Fig. 11, a
以下将参考图11主要描述以上不同。在图11中,作为扬声器装置3,示出了示范性构造,其中,改变了非线性分量消除滤波器10相对于扬声器装置2的位置。注意,在图11中,与加法器13和14的输入和输出相关的符号与图10中所示的不同。不过,如果将它们分配成使相位关系相同,则即使每个符号是它们中的任一个都可以提供相同的操作和相同的效果。由于非线性分量消除滤波器10、理想滤波器12、加法器13、加法器14、反馈控制滤波器15、扬声器16和传感器17与第一和第二实施例中所述的相同,因此使用了相同的附图标记且将省略其说明。The above differences will be mainly described below with reference to FIG. 11 . In FIG. 11 , as the
非线性分量消除滤波器10位于加法器13和扬声器16之间。换言之,非线性分量消除滤波器10位于由传感器17、加法器14、反馈控制滤波器15、加法器13和扬声器16形成的反馈回路中。在这种情况下,可以将非线性分量消除滤波器10和扬声器16的单元看作是线性二自由度控制中的被控制对象。The non-linear
这里,如在第一实施例中所述,非线性分量消除滤波器10消除了建模的刚性K的非线性分量,起到了消除扬声器16产生的非线性失真的作用。因此,可以将上述被控制对象看作是扬声器16的非线性失真被非线性分量消除滤波器10在某种程度上消除了的对象。通过在反馈回路中定位这种被控制对象,图4中所示的刚性K相对于振动位移x的改变在反馈回路中变小。换言之,这意味着,即使在扬声器16的振幅变大时,刚性K也不会显著变化。而且,由于刚性K的变化变小,最低共振频率f0的变化变小。Here, as described in the first embodiment, the nonlinear
另一方面,在图10中所示的扬声器装置2中,非线性分量消除滤波器10不在反馈回路中。因此,在图10中所示的扬声器装置2中,上述被控制对象为扬声器16,而不是如上所述已在反馈回路中在某种程度上消除了非线性失真的对象。On the other hand, in the
如上所述,在关注反馈回路中的处理的情况下,在根据本实施例的扬声器装置3中,与图10中所示的扬声器装置2相比,扬声器16的最低共振频率f0的变化变小。As described above, in the case of paying attention to the processing in the feedback loop, in the
以下将参考图12中所示的增益特性G1到G4以及扬声器装置3的相位特性P更具体地描述上述内容。图12示出了扬声器装置3的增益特性和相位特性。注意,图12中所示的增益特性G1到G4为开环传递特性。在图12中以实线示出的增益特性G1示出了扬声器16的声压频率特性,即,与加速度特性成比例的特性。将稍后描述由虚线表示的增益特性G2到G4。The above will be described more specifically below with reference to the gain characteristics G1 to G4 and the phase characteristic P of the
根据增益特性G1,可以看出,在最低共振频率f0或更低的频带中,增益以-12dB/oct的梯度衰减。根据图12中所示的相位特性P,可以看出,在最低共振频率f0处相位漂移90°。在最低共振频率f0或更低处,看出随着频率变小相移接近180°。在最低共振频率f0或更高处,看出随着频率变大相移接近0°。From the gain characteristic G1, it can be seen that the gain is attenuated with a gradient of -12 dB/oct in the frequency band of the lowest resonance frequency f0 or lower. From the phase characteristic P shown in FIG. 12, it can be seen that the phase shifts by 90° at the lowest resonance frequency f0. At the lowest resonance frequency f0 or lower, it is seen that the phase shift approaches 180° as the frequency becomes smaller. At the lowest resonance frequency f0 or higher, it is seen that the phase shift approaches 0° as the frequency becomes larger.
这里,在图11中所示的反馈控制滤波器15中,考虑了调节输入到加法器13的误差信号e(t)的增益的情形。在这种情况下,根据由反馈控制滤波器15调节的增益大小,增益特性G1变成在图12中由虚线表示的增益特性G2、G3或G4。注意,扬声器16的输入大小随着由反馈控制滤波器15调节的增益大小改变。通过改变扬声器输入的大小,改变了扬声器16的振幅大小。这里,如上所述,在扬声器装置3中,即使在扬声器16的振幅变大时,最低共振频率f0的改变也是小的。因此,图12中由虚线表示的增益特性G2、G3和G4的最低共振频率的每一个都是接近F0的值。Here, in the
接下来考虑作为增益容限和相位容限的被评估值。增益容限表示当开环传递特性的相位为180°时开环传递特性的增益变化多少负值。注意,在180°相位处的频率被称为相位跨越频率fpc。相位容限表示当开环传递特性的增益为0dB时,开环传递特性的相位相对于180°变化多少负值。注意,在0dB增益处的频率被称为增益跨越频率fgc。Next consider evaluated values as gain margin and phase margin. The gain margin indicates how negative the gain of the open-loop transfer characteristic changes when the phase of the open-loop transfer characteristic is 180°. Note that the frequency at the 180° phase is referred to as the phase crossing frequency fpc. The phase tolerance indicates how much negative value the phase of the open-loop transfer characteristic changes relative to 180° when the gain of the open-loop transfer characteristic is 0dB. Note that the frequency at 0dB gain is called the gain crossover frequency fgc.
这里,分析图10中所示的扬声器装置2的反馈回路的频率特性。在图10中所示的扬声器装置2的反馈回路中,由于表示法向加速度特性的信号被反馈,因此频率特性发生显著改变,于是变得难以进行分析。如图13所示添加理想滤波器12,并考虑对频率特性的分析。换言之,添加理想滤波器12,并在频率特性不改变的状态下进行分析。图13示出了用于分析图10中所示的扬声器装置2的频率特性的构造。Here, the frequency characteristics of the feedback loop of the
图14示出了在改变图13的扬声器16的输入大小后的声压频率特性、二次失真特性和三次失真特性。更具体而言,如图14所示,示出了当扬声器16的输入为1V、5W、10W、20W和40W时的声压频率特性、二次失真特性和三次失真特性。如从图14所看出的,随着输入变大,二次和三次失真的水平变大。这是因为刚性随着输入变大而变大,使得增益跨越频率fgc升高。因此,获得消除失真的效果的频带的下限频率与增益跨越频率fgc成比例。FIG. 14 shows sound pressure frequency characteristics, second-order distortion characteristics, and third-order distortion characteristics after changing the input size of
再次参考图12,以下将描述扬声器装置3可以将获得失真消除效果的频带扩展到低频带的原因。在图12中,当反馈控制滤波器15进行调节以增大增益时,增益特性G1变成增益特性G2所示的特性。此时,增益特性G2中的增益跨越频率fgc2变成低于增益跨越频率fgc1的频率。这是因为,如上所述,在扬声器装置3中,即使在扬声器16的振幅大小改变时,最低共振频率f0的改变也是小的。因此,扬声器装置3获得的结果是,获得消除失真的效果的频带被扩展到与增益跨越频率fgc2成比例的低频带。Referring again to FIG. 12 , the reason why the
另一方面,如上所述,在图10中所示的扬声器装置2中,非线性分量消除滤波器10不在反馈回路中。因此,在图10中所示的扬声器装置2中,当扬声器16的输入变大时,即,当反馈控制滤波器15进行调节以提高增益时,增益特性G1变成增益特性G2′所示的特性。.言之,刚性K的值变大,且最低共振频率f0升高到F0′。.此外,增益跨越频率随着最低共振频率f0的升高而升高到增益跨越频率fgc2′。因此,扬声器装置2获得的结果是,获得消除失真的效果的频带被偏移到与增益跨越频率fgc2′成比例的高频带。On the other hand, as described above, in the
注意,在图12中,当反馈控制滤波器15进行调节以减小增益时,增益特性G1变成增益特性G3所示的特性。此时,增益特性G3中的增益跨越频率fgc3变成高于增益跨越频率fgc1的频率。换言之,当反馈控制滤波器15进行调节以减小增益时,增益特性从增益特性G1变成增益特性G3,增益跨越频率fgc1升高到增益跨越频率fgc3。当反馈控制滤波器15进行调节以进一步减小增益时,增益特性G1变成由增益特性G4所示的特性。根据增益特性G4,在整个频带上增益值都是负的。因此,当增益特性为G4时,反馈处理得到完全稳定。不过,通过减小反馈增益,减少失真的效果变小了。对于图10中所示的扬声器装置2而言,由于这些增益特性G3和G4而导致失真减小效果变小是真实的。在使用扬声器16的控制系统中,相位不会变成180°,不存在相位跨越频率fpc。对于扬声器装置1到3而言大部分情况是相同的。由于相位不会变成180°,因此上述相位容限值始终是负的。Note that in FIG. 12, when the
如上所述,根据图11中所示的扬声器装置3,通过将非线性分量消除滤波器10放置在反馈回路中,与图10中所示的扬声器装置2相比,扬声器16的最低共振频率f0的变化变小了。由于扬声器16的最低共振频率f0的变化变小,增益跨越频率fgc的变化变小。因此,即使输入变大,图11中所示的扬声器装置3也可以在比图10中所示的扬声器装置2中的更低的频带实现消除失真的效果。As described above, according to the
注意,对于图11中所示的扬声器装置3而言,如图15所示,可以在非线性分量消除滤波器10紧前面的位置添加补偿滤波器21。图15为方框图,示出了向图11中所示的扬声器装置3添加了补偿滤波器21的示范性构造。Note that, for the
补偿滤波器21提高了扬声器装置3的开环传递特性中的低频带中的电平。换言之,补偿滤波器21对应于本发明的低通滤波器。更具体而言,补偿滤波器21具有由诸如方程(18)的传递函数表示的滤波器系数H。The
H=k*(1+1/(T*s)) (18)H=k*(1+1/(T*s)) (18)
注意,T=1/(2*π*fmax)。Note that T=1/(2*π*fmax).
这里,K表示增益,fmax表示频率特性的拐点频率。拐点频率表示频率特性的梯度变化的频率。例如,假设拐点频率为增益从0dB变为3dB的点的频率。方程(18)所示的传递函数的频率特性变成图16中所示的特性。图16示出了补偿滤波器的增益特性和相位特性以及扬声器装置3的增益特性(G5和G6)和相位特性(P5和P6)。根据图16中所示的扬声器装置3的增益特性,图16中所示的虚线增益特性G5由补偿滤波器21的滤波器特性变成由实线表示的增益特性G6。由于低频带中的电平在不存在相位跨越频率fpc的状态下会升高,因此增益跨越频率fgc可以近似为DC。于是,由于降低了上述获得消除失真的效果的频率,因此当输入大时防止了消除失真的效果劣化,且可以将消除失真的效果实现到更低频段中。Here, K represents a gain, and fmax represents an inflection point frequency of the frequency characteristic. The inflection point frequency indicates the frequency at which the gradient of the frequency characteristic changes. For example, assume that the corner frequency is the frequency at the point where the gain changes from 0dB to 3dB. The frequency characteristic of the transfer function shown in Equation (18) becomes the characteristic shown in FIG. 16 . FIG. 16 shows the gain characteristics and phase characteristics of the compensation filter and the gain characteristics ( G5 and G6 ) and phase characteristics ( P5 and P6 ) of the
将上述拐点频率设置成至少高于增益跨越频率fgc的频率。虽然方程(18)的次数为1,但其不仅限于此。只要能够降低增益跨越频率fgc,它可以是一次或更高次的传递函数。如果方程(18)的次数变高,在补偿滤波器21的滤波器特性中增益在拐点频率或更低频率处升高的梯度变得陡峭。于是,扬声器装置3的增益特性可以随着方程(18)的次数变高而降低增益跨越频率fgc。不过,关于次数是多少,可以考虑到相位特性适当地进行设计。注意,当补偿滤波器21的滤波器系数为第一阶时,补偿滤波器21的滤波器特性表现出这样的特性,在等于或低于上述拐点频率的频带中该特性以-6dB/oct的梯度倾斜。The above-mentioned corner frequency is set to a frequency at least higher than the gain crossing frequency fgc. Although the degree of equation (18) is 1, it is not limited thereto. It can be a first order or higher order transfer function as long as the gain can be reduced across frequency fgc. If the order of the equation (18) becomes high, the gradient in which the gain rises at the corner frequency or lower in the filter characteristic of the
注意,对于图11中所示的扬声器装置3而言,还可以如图17所示添加高通滤波器22。图17为方框图,示出了向图11中所示的扬声器装置3添加了高通滤波器22的示范性构造。Note that, to the
高通滤波器22提前防止频率等于或低于增益跨越频率fgc的信号被输入。于是,至少截止频率需要等于或高于增益跨越频率fgc。由于随着次数变高截止特性变得优异,因此为了方便设计可以选择次数。当高通滤波器22的滤波器系数为一次时,高通滤波器22的滤波器特性表现出这样的特性,即在等于或低于上述截止频率的频带中,该特性以+6dB/oct的梯度倾斜。注意,高通滤波器22可以具有以+6dB/oct或更高的梯度倾斜的截止特性。在这种情况下,进一步截止了频率等于或低于增益跨越频率fgc的信号,且消除失真的效果未劣化。The high-
注意,对于图11中所示的扬声器装置3而言,还可以如图18所示添加补偿滤波器21和高通滤波器22。图18为方框图,示出了向图11中所示的扬声器装置3添加了补偿滤波器21和高通滤波器22的示范性构造。Note that, for the
这里,图19示出了对于图11中的扬声器装置3、图17中的仅添加了高通滤波器22的扬声器装置3以及图18中的添加了高通滤波器22和补偿滤波器21的扬声器装置3中每个的频率特性分析结果。图19示出了当输入为20W和40W时的分析结果。Here, FIG. 19 shows the
从图中看出,在图19中所示的二次和三次失真中,图18中所示的添加了高通滤波器22和补偿滤波器21的扬声器装置3的二次和三次失真是最小的。换言之,如分析结果所示,图18中所示的添加了高通滤波器22和补偿滤波器21的扬声器装置3是提供了最高的消除失真效果的装置。As can be seen from the figure, among the secondary and tertiary distortions shown in FIG. 19, the secondary and tertiary distortions of the
注意,在图12的以上描述中,不存在相位跨越频率fpc,且相位容限始终是负的。这里,当增益容限和相位容限为负时,反馈处理不稳定且发生振荡。于是,在相位跨越频率fpc不存在且相位容限始终为负的情况下,反馈处理的稳定性如何将成为一个问题。另一方面,通过参考阶跃响应进行验证。注意,为了简单起见,利用图10中所示的扬声器装置2的反馈回路进行分析。图20示出了图10中所示的扬声器装置2的反馈回路。虽然理想滤波器12的处理是反馈处理的一部分,但如果关注理想滤波器12的处理,理想滤波器12的处理是向加法器14输出所输入的电信号的处理且对应于前馈处理。在作为二次振动系统的实际扬声器16中基于此对理想滤波器12建模。因此,理想滤波器12的处理一直稳定,但不影响上述反馈处理的稳定性。因此,在评估反馈处理的稳定性时可以不考虑理想滤波器12的处理。Note that in the above description of FIG. 12, there is no phase crossing frequency fpc, and the phase margin is always negative. Here, when the gain margin and the phase margin are negative, the feedback process is unstable and oscillation occurs. Therefore, in the case that the phase crossing frequency fpc does not exist and the phase margin is always negative, how to stabilize the feedback process will become a problem. On the other hand, verify by referring to the step response. Note that, for simplicity, the analysis is performed using the feedback loop of the
图21到23中示出了图20中所示的反馈回路中的阶跃响应结果。图21示出了在图20所示的构造中,当刚性Kx(上述刚性K(x)的非线性分量)为20000,相位容限为-0.849°,且增益跨越频率fgc为5.4Hz时的阶跃输入及其响应。图22示出了在图20所示的构造中,当刚性Kx为5000,相位容限为-1.7°,且增益跨越频率fgc为2.7Hz时的阶跃输入及其响应。图23示出了在图20所示的构造中,当刚性Kx为1200,相位容限为-3.46°,且增益跨越频率fgc为1.3Hz时的阶跃输入及其响应。The resulting step response in the feedback loop shown in FIG. 20 is shown in FIGS. 21 to 23 . Figure 21 shows that in the configuration shown in Figure 20, when the stiffness Kx (non-linear component of the aforementioned stiffness K(x)) is 20000, the phase margin is -0.849°, and the gain crossover frequency fgc is 5.4 Hz Step input and its response. Fig. 22 shows the step input and its response when the stiffness Kx is 5000, the phase margin is -1.7°, and the gain crossover frequency fgc is 2.7 Hz in the configuration shown in Fig. 20 . Fig. 23 shows the step input and its response when the stiffness Kx is 1200, the phase margin is -3.46°, and the gain crossover frequency fgc is 1.3 Hz in the configuration shown in Fig. 20 .
参考图21到23中所示的每一阶跃响应,可以看出所有阶跃响应都随着时间而收敛。因此,即使在相位跨越频率fpc不存在且在增益跨越频率fgc中相位为负的情况下,也不发生振荡,稳定性很高。Referring to each of the step responses shown in Figures 21 to 23, it can be seen that all step responses converge over time. Therefore, even when the phase crossing frequency fpc does not exist and the phase is negative at the gain crossing frequency fgc, oscillation does not occur and the stability is high.
注意,在图21到23中,由于是利用图10中所示的扬声器装置2的反馈回路进行分析的,因此随着刚性Kx增大,增益跨越频率fgc也增大。随着增益跨越频率fgc增大,阶跃响应的收敛波形的频率也增大。Note that in FIGS. 21 to 23, since the analysis is performed using the feedback loop of the
(第四实施例)(fourth embodiment)
参考图24,将描述根据本发明第四实施例的扬声器装置4。图24为示出了根据第四实施例的扬声器装置4的示范性构造的方框图。根据本实施例的扬声器装置4与根据以上第一到第三实施例的扬声器装置1到3的不同之处在于还具有功率放大器23。在图24中,例如,扬声器装置4包括非线性分量消除滤波器10、线性滤波器11、理想滤波器12、加法器13、加法器14、反馈控制滤波器15、扬声器16、传感器17、前级滤波器20和功率放大器23。Referring to Fig. 24, a
为了将根据以上第一到第三实施例的扬声器装置投入实际应用,需要用来驱动扬声器16的功率放大器。这里,当在构成根据上述第一到第三实施例的扬声器装置的元件中有不能在内部处理中处理高电压的元件(例如非线性分量消除滤波器10等)时,需要在图24所示的扬声器16的紧前方提供功率放大器23。In order to put the speaker devices according to the above first to third embodiments into practical use, a power amplifier for driving the
在图24中,由功率放大器23对消除非线性失真的加法器13的输出信号进行放大。例如,假设功率放大器23的增益为10倍,且图24中所示的扬声器装置4的输入电压为1V。在这种情况下,功率放大器23的输出电压变成10V。这里,在非线性分量消除滤波器10的输入为1V的情况下,非线性分量消除滤波器10在扬声器16的输入为1V的时候产生消除了非线性失真的信号。于是,当把加法器13的输出信号放大到10V的时候,引起了一个问题,即,它不与扬声器16的非线性失真大小匹配。In FIG. 24 , the output signal of the
因此,构成每个元件所具有的滤波器系数的每个参数的尺度需要加以调节,以便由功率放大器23放大的输出信号对应于扬声器16的非线性失真的水平。在下文中将调节每个参数的尺寸的过程称为缩放处理。Therefore, the scale of each parameter constituting the filter coefficient that each element has needs to be adjusted so that the output signal amplified by the
以下将描述图24中所示的扬声器装置4的工作原理。注意,在下述说明中,假设功率放大器23的增益为10倍。扬声器16的工作方程由以上所述的方程(8)表示。The operating principle of the
(A0+Ax)*E(t)/Ze(A0+Ax)*E(t)/Ze
=(K0+Kx)*x(t)+[r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 (8)=(K0+Kx)*x(t)+[r+(A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (8)
这里,由于功率放大器23的增益为10倍,因此每个参数被乘以1/10。于是,方程(8)按比例缩小到1/10的模型,成为方程(19)。Here, since the gain of the
1/10*(A0+Ax)*E(t)/(1/10*Ze)1/10*(A0+Ax)*E(t)/(1/10*Ze)
=1/10*(K0+Kx)*x(t)+[1/10*r+{1/10(A0+Ax)}2/(1/10*Ze)]*dx(t)/dt=1/10*(K0+Kx)*x(t)+[1/10*r+{1/10(A0+Ax)} 2 /(1/10*Ze)]*dx(t)/dt
+1/10*m*d2x(t)/dt2 (19)+1/10*m*d 2 x(t)/dt 2 (19)
整理以上方程(19)成为方程(20)。The above equation (19) is rearranged into equation (20).
(A0+Ax)*E(t)/0.1/Ze(A0+Ax)*E(t)/0.1/Ze
=(K0+Kx)*x(t)+[r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 (20)=(K0+Kx)*x(t)+[r+(A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (20)
这表示当输入电压E为1V时,当施加10V的电压时的操作可能。This means that when the input voltage E is 1V, the operation is possible when a voltage of 10V is applied.
接下来,从以上方程(13)的结果,非线性分量消除滤波器10产生如方程(21)所示的电压Eff(t),以便消除非线性分量。Next, from the result of the above equation (13), the non-linear
Eff(t)=Eff(t)=
[E(t)-Ze/(A0+Ax)*(Ax/Ze*E(t)-(2*A0*Ax+Ax2)/Ze*dx(t)/dt-Kx*x(t))] (21)[E(t)-Ze/(A0+Ax)*(Ax/Ze*E(t)-(2*A0*Ax+Ax 2 )/Ze*dx(t)/dt-Kx*x(t) )] (twenty one)
这里,与方程(19)类似考虑,可以将方程(21)的每个参数乘以1/10以获得用于消除非线性失真的输出,该输出对应于像输入电压E为1V时,施加10V电压时的扬声器的工作。于是,方程(21)变成方程(22)。Here, considering similarly to equation (19), each parameter of equation (21) can be multiplied by 1/10 to obtain an output for eliminating nonlinear distortion, which corresponds to applying 10V when the input voltage E is 1V voltage when the speaker works. Thus, Equation (21) becomes Equation (22).
Eff(t)=Eff(t)=
[E(t)-(1/10*Ze)/{1/10*(A0+Ax)}*{(1/10*Ax)/(1/10*Ze)*E(t)[E(t)-(1/10*Ze)/{1/10*(A0+Ax)}*{(1/10*Ax)/(1/10*Ze)*E(t)
-(2*1/10*A0*1/10*Ax+(1/10*Ax)2)}/(1/10*Ze)*dx(t)/dt-1/10*Kx*x(t))] (22)-(2*1/10*A0*1/10*Ax+(1/10*Ax) 2 )}/(1/10*Ze)*dx(t)/dt-1/10*Kx*x(t ))] (twenty two)
此外,以上方程(22)被整理成方程(23)。Furthermore, Equation (22) above is codified into Equation (23).
Eff(t)=Eff(t)=
[E(t)/0.1-Ze/(A0+Ax)*(Ax/Ze*E(t)/0.1-(2*A0*Ax+Ax2)/Ze*dx(t)/dt-Kx*x(t))] (23)[E(t)/0.1-Ze/(A0+Ax)*(Ax/Ze*E(t)/0.1-(2*A0*Ax+Ax 2 )/Ze*dx(t)/dt-Kx* x(t))] (23)
被输入了由方程(23)表示的电压Eff(t)的扬声器16的工作变成从以上方程(13)导出的方程(24)。The operation of the
(A0+Ax)/Ze*[E(t)/0.1-Ze/(A0+Ax)*(Ax/Ze*E(t)/0.1-(2*A0*Ax+Ax2)/Ze*dx(t)/dt-Kx*x(t))](A0+Ax)/Ze*[E(t)/0.1-Ze/(A0+Ax)*(Ax/Ze*E(t)/0.1-(2*A0*Ax+Ax 2 )/Ze*dx (t)/dt-Kx*x(t))]
=(K0+Kx)*x(t)+[r+(A0+Ax)2/Ze]*dx(t)/dt+m*d2x(t)/dt2 (24)=(K0+Kx)*x(t)+[r+(A0+Ax) 2 /Ze]*dx(t)/dt+m*d 2 x(t)/dt 2 (24)
换言之,当输入电压E(t)为1V时,由于E(t)/0.1为10V,工作和处理与电压被放大器增益放大到10V时的一样,所谓的缩放处理是可能的。In other words, when the input voltage E(t) is 1V, since E(t)/0.1 is 10V, the operation and processing are the same as when the voltage is amplified to 10V by the amplifier gain, so-called scaling processing is possible.
因此,如果把功率放大器23的增益由G表示,在执行缩放处理的情况下,可以如方程(25)所示将每个参数乘以1/G。Therefore, if the gain of the
Eff(t)=Eff(t)=
[E(t)-(1/G*Ze)/{1/G*(A0+Ax)}*{(1/G*Ax)/(1/G*Ze)*E(t)[E(t)-(1/G*Ze)/{1/G*(A0+Ax)}*{(1/G*Ax)/(1/G*Ze)*E(t)
-(2*1/G*A0*1/G*Ax+(1/G*Ax)2)}/(1/G*Ze)*dx(t)/dt-1/G*Kx*x(t))](25)-(2*1/G*A0*1/G*Ax+(1/G*Ax) 2 )}/(1/G*Ze)*dx(t)/dt-1/G*Kx*x(t ))] (25)
注意,前级滤波器20、理想滤波器12和线性滤波器11可以执行与上述非线性分量消除滤波器10相同的缩放处理。Note that the front-
如上所述,通过执行缩放处理,在功率放大器23位于扬声器16紧前方的情况下,可以使非线性分量消除滤波器10的输出电压大小对应于从功率放大器23输出的扬声器16的输入电压大小。此外,诸如非线性分量消除滤波器10等的前馈处理部件可以在前馈处理部能够执行内部处理的电压受到限制的时候做出反应。As described above, by performing scaling processing, it is possible to make the magnitude of the output voltage of the nonlinear
此外,图25示出了具有和不具有缩放处理的频率特性对比。如图25所示,可以看出,有缩放处理的二次和三次失真水平更小,且消除失真的效果更高。这是因为通过向反馈处理部件添加功率放大器23导致反馈增益增大,且获得了与图12中的增益特性G2所述的相同效果。In addition, FIG. 25 shows a comparison of frequency characteristics with and without scaling processing. As shown in Figure 25, it can be seen that the level of secondary and tertiary distortion with scaling processing is smaller, and the effect of eliminating distortion is higher. This is because the feedback gain is increased by adding the
注意,如图26所示,功率放大器23的音量可以与非线性分量消除滤波器10、线性滤波器11、理想滤波器12、反馈控制滤波器15和前级滤波器20相关联,且可以将音量信息Vol返回到每个元件。于是,可以自适应地改变以上方程(25)中的系数1/G。注意,音量信息Vol表示增益值的信息。Note that, as shown in FIG. 26, the volume of the
注意,在第一到第四实施例中所述的扬声器装置1到4中,可以额外提供限幅器24。于是,可以防止扬声器16因为大的输入而受到损伤。图27为方框图,示出了在图1中所示的扬声器装置1中提供了限幅器24的示范性构造。在图27中,限幅器24将输入信号电平限制在等于或低于扬声器16受损的电平。因此,即使当输入大的输入信号时,也不会把电平等于或高于限幅器24设置的电平的信号输入到扬声器16,由此防止了扬声器16受损。注意,限幅器24的位置不限于图27中所示的位置,例如,可以在非线性分量消除滤波器10和加法器13的输入之间或在加法器13的输出和扬声器16的输入之间。换言之,限幅器24可以位于限幅器24可以限制扬声器16的输入的任何位置。Note that in the
在第一到第四实施例所述的扬声器装置1到4中,可以将非线性分量消除滤波器10、线性滤波器11、理想滤波器12、加法器13、加法器14、反馈控制滤波器15、前级滤波器20、补偿滤波器21、高通滤波器22、功率放大器23和限幅器24形成为集成电路。此时,该集成电路包括用于向扬声器16输出电信号的输出端子,用于输入电信号的第一输入端子和用于输入传感器17的检测信号的第二输入端子。在上述第一到第四实施例中,将用于执行上述每一功能的电路集成到小的封装中,并且,形成例如音频信号处理电路DSP(数字信号处理器)等,由此实现本发明。而且,可以将非线性分量消除滤波器10、线性滤波器11和理想滤波器12形成为集成电路,且可以由DSP实现每个功能。在DSP的处理时间对反馈处理造成不利影响且效果被降低的情况下,这是有效的。In the
工业实用性Industrial Applicability
可以将根据本发明的扬声器装置用于这样的扬声器装置中,该扬声器装置进行信号处理以跟踪实际扬声器的参数变化,并能够执行更稳定的失真消除处理,还可以将根据本发明的扬声器装置用于薄扬声器等。The speaker device according to the present invention can be used in a speaker device which performs signal processing to follow the parameter change of an actual speaker and can perform more stable distortion canceling processing, and can also be used in a speaker device according to the present invention For thin speakers, etc.
Claims (22)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP221212/2005 | 2005-07-29 | ||
JP2005221212 | 2005-07-29 | ||
PCT/JP2006/315048 WO2007013622A1 (en) | 2005-07-29 | 2006-07-28 | Loudspeaker device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101233783A CN101233783A (en) | 2008-07-30 |
CN101233783B true CN101233783B (en) | 2011-12-21 |
Family
ID=37683510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800278025A Active CN101233783B (en) | 2005-07-29 | 2006-07-28 | Loudspeaker device |
Country Status (4)
Country | Link |
---|---|
US (1) | US8073149B2 (en) |
EP (1) | EP1912468B1 (en) |
CN (1) | CN101233783B (en) |
WO (1) | WO2007013622A1 (en) |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009016845B3 (en) * | 2009-04-08 | 2010-08-05 | Siemens Medical Instruments Pte. Ltd. | Arrangement and method for detecting feedback in hearing devices |
CN102316396B (en) * | 2010-07-09 | 2014-12-31 | 深圳市宇恒互动科技开发有限公司 | Method and device for realizing automatic control over sounds in large dynamic range by using sensor |
CN102316395B (en) * | 2010-07-09 | 2014-12-31 | 深圳市宇恒互动科技开发有限公司 | Method and device for judging and eliminating howlround |
EP2575375B1 (en) | 2011-09-28 | 2015-03-18 | Nxp B.V. | Control of a loudspeaker output |
US9516443B2 (en) * | 2012-06-07 | 2016-12-06 | Cirrus Logic International Semiconductor Ltd. | Non-linear control of loudspeakers |
CN105103568B (en) * | 2012-09-24 | 2019-03-19 | 思睿逻辑国际半导体有限公司 | The control and protection of loudspeaker |
JP6102268B2 (en) * | 2013-01-15 | 2017-03-29 | オンキヨー株式会社 | Audio playback device |
JP6182869B2 (en) * | 2013-01-16 | 2017-08-23 | オンキヨー株式会社 | Audio playback device |
US9106989B2 (en) * | 2013-03-13 | 2015-08-11 | Cirrus Logic, Inc. | Adaptive-noise canceling (ANC) effectiveness estimation and correction in a personal audio device |
US9247342B2 (en) | 2013-05-14 | 2016-01-26 | James J. Croft, III | Loudspeaker enclosure system with signal processor for enhanced perception of low frequency output |
GB201318802D0 (en) * | 2013-10-24 | 2013-12-11 | Linn Prod Ltd | Linn Exakt |
KR101656213B1 (en) * | 2014-03-13 | 2016-09-09 | 네오피델리티 주식회사 | Amplifier capable of controlling cut-off frequency in real time and method for controlling cut-off frequency in real time |
EP3010251B1 (en) * | 2014-10-15 | 2019-11-13 | Nxp B.V. | Audio system |
EP3099047A1 (en) | 2015-05-28 | 2016-11-30 | Nxp B.V. | Echo controller |
US10547942B2 (en) | 2015-12-28 | 2020-01-28 | Samsung Electronics Co., Ltd. | Control of electrodynamic speaker driver using a low-order non-linear model |
US9947316B2 (en) | 2016-02-22 | 2018-04-17 | Sonos, Inc. | Voice control of a media playback system |
US9811314B2 (en) | 2016-02-22 | 2017-11-07 | Sonos, Inc. | Metadata exchange involving a networked playback system and a networked microphone system |
US10095470B2 (en) | 2016-02-22 | 2018-10-09 | Sonos, Inc. | Audio response playback |
US10264030B2 (en) | 2016-02-22 | 2019-04-16 | Sonos, Inc. | Networked microphone device control |
US10097939B2 (en) * | 2016-02-22 | 2018-10-09 | Sonos, Inc. | Compensation for speaker nonlinearities |
US9826306B2 (en) | 2016-02-22 | 2017-11-21 | Sonos, Inc. | Default playback device designation |
US9965247B2 (en) | 2016-02-22 | 2018-05-08 | Sonos, Inc. | Voice controlled media playback system based on user profile |
WO2017179219A1 (en) * | 2016-04-12 | 2017-10-19 | 株式会社 Trigence Semiconductor | Speaker drive device, speaker device, and program |
CN105916079B (en) * | 2016-06-07 | 2019-09-13 | 瑞声科技(新加坡)有限公司 | A kind of nonlinear loudspeaker compensation method and device |
US9978390B2 (en) | 2016-06-09 | 2018-05-22 | Sonos, Inc. | Dynamic player selection for audio signal processing |
US10152969B2 (en) | 2016-07-15 | 2018-12-11 | Sonos, Inc. | Voice detection by multiple devices |
US10134399B2 (en) | 2016-07-15 | 2018-11-20 | Sonos, Inc. | Contextualization of voice inputs |
US10115400B2 (en) | 2016-08-05 | 2018-10-30 | Sonos, Inc. | Multiple voice services |
US9942678B1 (en) | 2016-09-27 | 2018-04-10 | Sonos, Inc. | Audio playback settings for voice interaction |
US9743204B1 (en) | 2016-09-30 | 2017-08-22 | Sonos, Inc. | Multi-orientation playback device microphones |
US10181323B2 (en) | 2016-10-19 | 2019-01-15 | Sonos, Inc. | Arbitration-based voice recognition |
US10462565B2 (en) | 2017-01-04 | 2019-10-29 | Samsung Electronics Co., Ltd. | Displacement limiter for loudspeaker mechanical protection |
US11109155B2 (en) * | 2017-02-17 | 2021-08-31 | Cirrus Logic, Inc. | Bass enhancement |
US11183181B2 (en) | 2017-03-27 | 2021-11-23 | Sonos, Inc. | Systems and methods of multiple voice services |
GB201712391D0 (en) * | 2017-08-01 | 2017-09-13 | Turner Michael James | Controller for an electromechanical transducer |
US10475449B2 (en) | 2017-08-07 | 2019-11-12 | Sonos, Inc. | Wake-word detection suppression |
US10048930B1 (en) | 2017-09-08 | 2018-08-14 | Sonos, Inc. | Dynamic computation of system response volume |
US10446165B2 (en) | 2017-09-27 | 2019-10-15 | Sonos, Inc. | Robust short-time fourier transform acoustic echo cancellation during audio playback |
US10482868B2 (en) | 2017-09-28 | 2019-11-19 | Sonos, Inc. | Multi-channel acoustic echo cancellation |
US10621981B2 (en) | 2017-09-28 | 2020-04-14 | Sonos, Inc. | Tone interference cancellation |
US10051366B1 (en) | 2017-09-28 | 2018-08-14 | Sonos, Inc. | Three-dimensional beam forming with a microphone array |
US10466962B2 (en) | 2017-09-29 | 2019-11-05 | Sonos, Inc. | Media playback system with voice assistance |
US10880650B2 (en) | 2017-12-10 | 2020-12-29 | Sonos, Inc. | Network microphone devices with automatic do not disturb actuation capabilities |
US10818290B2 (en) | 2017-12-11 | 2020-10-27 | Sonos, Inc. | Home graph |
JPWO2019135269A1 (en) * | 2018-01-04 | 2020-12-17 | 株式会社 Trigence Semiconductor | Speaker drive, speaker device and program |
US10506347B2 (en) | 2018-01-17 | 2019-12-10 | Samsung Electronics Co., Ltd. | Nonlinear control of vented box or passive radiator loudspeaker systems |
US11343614B2 (en) | 2018-01-31 | 2022-05-24 | Sonos, Inc. | Device designation of playback and network microphone device arrangements |
US10701485B2 (en) | 2018-03-08 | 2020-06-30 | Samsung Electronics Co., Ltd. | Energy limiter for loudspeaker protection |
US11175880B2 (en) | 2018-05-10 | 2021-11-16 | Sonos, Inc. | Systems and methods for voice-assisted media content selection |
US10847178B2 (en) | 2018-05-18 | 2020-11-24 | Sonos, Inc. | Linear filtering for noise-suppressed speech detection |
US10959029B2 (en) | 2018-05-25 | 2021-03-23 | Sonos, Inc. | Determining and adapting to changes in microphone performance of playback devices |
US10681460B2 (en) | 2018-06-28 | 2020-06-09 | Sonos, Inc. | Systems and methods for associating playback devices with voice assistant services |
US10542361B1 (en) * | 2018-08-07 | 2020-01-21 | Samsung Electronics Co., Ltd. | Nonlinear control of loudspeaker systems with current source amplifier |
US10461710B1 (en) | 2018-08-28 | 2019-10-29 | Sonos, Inc. | Media playback system with maximum volume setting |
US11076035B2 (en) | 2018-08-28 | 2021-07-27 | Sonos, Inc. | Do not disturb feature for audio notifications |
US11012773B2 (en) | 2018-09-04 | 2021-05-18 | Samsung Electronics Co., Ltd. | Waveguide for smooth off-axis frequency response |
US10797666B2 (en) | 2018-09-06 | 2020-10-06 | Samsung Electronics Co., Ltd. | Port velocity limiter for vented box loudspeakers |
US10587430B1 (en) | 2018-09-14 | 2020-03-10 | Sonos, Inc. | Networked devices, systems, and methods for associating playback devices based on sound codes |
US10878811B2 (en) | 2018-09-14 | 2020-12-29 | Sonos, Inc. | Networked devices, systems, and methods for intelligently deactivating wake-word engines |
US11024331B2 (en) | 2018-09-21 | 2021-06-01 | Sonos, Inc. | Voice detection optimization using sound metadata |
US10811015B2 (en) | 2018-09-25 | 2020-10-20 | Sonos, Inc. | Voice detection optimization based on selected voice assistant service |
US11100923B2 (en) | 2018-09-28 | 2021-08-24 | Sonos, Inc. | Systems and methods for selective wake word detection using neural network models |
US10692518B2 (en) | 2018-09-29 | 2020-06-23 | Sonos, Inc. | Linear filtering for noise-suppressed speech detection via multiple network microphone devices |
US11899519B2 (en) | 2018-10-23 | 2024-02-13 | Sonos, Inc. | Multiple stage network microphone device with reduced power consumption and processing load |
WO2020097824A1 (en) * | 2018-11-14 | 2020-05-22 | 深圳市欢太科技有限公司 | Audio processing method and apparatus, storage medium, and electronic device |
EP3654249A1 (en) | 2018-11-15 | 2020-05-20 | Snips | Dilated convolutions and gating for efficient keyword spotting |
US11183183B2 (en) | 2018-12-07 | 2021-11-23 | Sonos, Inc. | Systems and methods of operating media playback systems having multiple voice assistant services |
US11132989B2 (en) | 2018-12-13 | 2021-09-28 | Sonos, Inc. | Networked microphone devices, systems, and methods of localized arbitration |
US10602268B1 (en) | 2018-12-20 | 2020-03-24 | Sonos, Inc. | Optimization of network microphone devices using noise classification |
US11315556B2 (en) | 2019-02-08 | 2022-04-26 | Sonos, Inc. | Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification |
US10867604B2 (en) | 2019-02-08 | 2020-12-15 | Sonos, Inc. | Devices, systems, and methods for distributed voice processing |
US11120794B2 (en) | 2019-05-03 | 2021-09-14 | Sonos, Inc. | Voice assistant persistence across multiple network microphone devices |
US11361756B2 (en) | 2019-06-12 | 2022-06-14 | Sonos, Inc. | Conditional wake word eventing based on environment |
US11200894B2 (en) | 2019-06-12 | 2021-12-14 | Sonos, Inc. | Network microphone device with command keyword eventing |
US10586540B1 (en) | 2019-06-12 | 2020-03-10 | Sonos, Inc. | Network microphone device with command keyword conditioning |
US11138975B2 (en) | 2019-07-31 | 2021-10-05 | Sonos, Inc. | Locally distributed keyword detection |
US11138969B2 (en) | 2019-07-31 | 2021-10-05 | Sonos, Inc. | Locally distributed keyword detection |
US10871943B1 (en) | 2019-07-31 | 2020-12-22 | Sonos, Inc. | Noise classification for event detection |
US11189286B2 (en) | 2019-10-22 | 2021-11-30 | Sonos, Inc. | VAS toggle based on device orientation |
US11200900B2 (en) | 2019-12-20 | 2021-12-14 | Sonos, Inc. | Offline voice control |
US11562740B2 (en) | 2020-01-07 | 2023-01-24 | Sonos, Inc. | Voice verification for media playback |
US11556307B2 (en) | 2020-01-31 | 2023-01-17 | Sonos, Inc. | Local voice data processing |
US11308958B2 (en) | 2020-02-07 | 2022-04-19 | Sonos, Inc. | Localized wakeword verification |
US11308962B2 (en) | 2020-05-20 | 2022-04-19 | Sonos, Inc. | Input detection windowing |
US11727919B2 (en) | 2020-05-20 | 2023-08-15 | Sonos, Inc. | Memory allocation for keyword spotting engines |
US11482224B2 (en) | 2020-05-20 | 2022-10-25 | Sonos, Inc. | Command keywords with input detection windowing |
US11698771B2 (en) | 2020-08-25 | 2023-07-11 | Sonos, Inc. | Vocal guidance engines for playback devices |
US12283269B2 (en) | 2020-10-16 | 2025-04-22 | Sonos, Inc. | Intent inference in audiovisual communication sessions |
US11356773B2 (en) | 2020-10-30 | 2022-06-07 | Samsung Electronics, Co., Ltd. | Nonlinear control of a loudspeaker with a neural network |
US11984123B2 (en) | 2020-11-12 | 2024-05-14 | Sonos, Inc. | Network device interaction by range |
US11551700B2 (en) | 2021-01-25 | 2023-01-10 | Sonos, Inc. | Systems and methods for power-efficient keyword detection |
CN113162555B (en) * | 2021-03-17 | 2024-06-21 | 维沃移动通信有限公司 | Nonlinear distortion compensation circuit, device, electronic device and method |
CN112866877B (en) * | 2021-04-01 | 2022-06-17 | 维沃移动通信有限公司 | Speaker control method, speaker control device, electronic apparatus, and storage medium |
DE102022118015A1 (en) * | 2022-07-19 | 2024-01-25 | recalm GmbH | Noise reduction system with a non-linear filter unit, method of operating the system and use thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449369B1 (en) * | 1995-09-27 | 2002-09-10 | Technofirst | Method and device for hybrid active attenuation of vibration, particularly of mechanical, acoustic or similar vibration |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0632531B2 (en) | 1984-03-28 | 1994-04-27 | 松下電器産業株式会社 | Low distortion speaker device |
DE4111884A1 (en) * | 1991-04-09 | 1992-10-15 | Klippel Wolfgang | CIRCUIT ARRANGEMENT FOR CORRECTING THE LINEAR AND NON-LINEAR TRANSMISSION BEHAVIOR OF ELECTROACOUSTIC TRANSDUCERS |
US5420932A (en) * | 1993-08-23 | 1995-05-30 | Digisonix, Inc. | Active acoustic attenuation system that decouples wave modes propagating in a waveguide |
DE4332804C2 (en) * | 1993-09-27 | 1997-06-05 | Klippel Wolfgang | Adaptive correction circuit for electroacoustic sound transmitters |
DE4334040C2 (en) * | 1993-10-06 | 1996-07-11 | Klippel Wolfgang | Circuit arrangement for the independent correction of the transmission behavior of electrodynamic sound transmitters without an additional mechanical or acoustic sensor |
US5475761A (en) * | 1994-01-31 | 1995-12-12 | Noise Cancellation Technologies, Inc. | Adaptive feedforward and feedback control system |
US5590205A (en) * | 1994-08-25 | 1996-12-31 | Digisonix, Inc. | Adaptive control system with a corrected-phase filtered error update |
US5848169A (en) * | 1994-10-06 | 1998-12-08 | Duke University | Feedback acoustic energy dissipating device with compensator |
US5600718A (en) * | 1995-02-24 | 1997-02-04 | Ericsson Inc. | Apparatus and method for adaptively precompensating for loudspeaker distortions |
US6005952A (en) * | 1995-04-05 | 1999-12-21 | Klippel; Wolfgang | Active attenuation of nonlinear sound |
US5715320A (en) * | 1995-08-21 | 1998-02-03 | Digisonix, Inc. | Active adaptive selective control system |
US5963651A (en) * | 1997-01-16 | 1999-10-05 | Digisonix, Inc. | Adaptive acoustic attenuation system having distributed processing and shared state nodal architecture |
JPH10276492A (en) | 1997-03-27 | 1998-10-13 | Onkyo Corp | Mfb speaker system |
DE19714199C1 (en) | 1997-04-07 | 1998-08-27 | Klippel Wolfgang J H | Self-adapting control system for actuators |
US6259935B1 (en) * | 1997-06-24 | 2001-07-10 | Matsushita Electrical Industrial Co., Ltd. | Electro-mechanical-acoustic transducing device |
AU2001244887A1 (en) * | 2000-03-07 | 2001-09-17 | Slab Dsp Limited | Noise suppression loudspeaker |
JP2002333886A (en) | 2001-05-08 | 2002-11-22 | Onkyo Corp | Active noise controller |
JP3861742B2 (en) | 2002-04-30 | 2006-12-20 | ソニー株式会社 | Audio signal recording device |
JP2005184154A (en) | 2003-12-16 | 2005-07-07 | Sony Corp | Unit and method for automatic gain control |
US7053705B2 (en) * | 2003-12-22 | 2006-05-30 | Tymphany Corporation | Mixed-mode (current-voltage) audio amplifier |
US7372966B2 (en) * | 2004-03-19 | 2008-05-13 | Nokia Corporation | System for limiting loudspeaker displacement |
JP5194434B2 (en) * | 2006-11-07 | 2013-05-08 | ソニー株式会社 | Noise canceling system and noise canceling method |
JP5564743B2 (en) * | 2006-11-13 | 2014-08-06 | ソニー株式会社 | Noise cancellation filter circuit, noise reduction signal generation method, and noise canceling system |
JP5007561B2 (en) * | 2006-12-27 | 2012-08-22 | ソニー株式会社 | Noise reduction device, noise reduction method, noise reduction processing program, noise reduction audio output device, and noise reduction audio output method |
WO2008090544A2 (en) * | 2007-01-22 | 2008-07-31 | Silentium Ltd. | Quiet fan incorporating active noise control (anc) |
-
2006
- 2006-07-28 CN CN2006800278025A patent/CN101233783B/en active Active
- 2006-07-28 US US11/997,267 patent/US8073149B2/en active Active
- 2006-07-28 EP EP06781958.1A patent/EP1912468B1/en not_active Not-in-force
- 2006-07-28 WO PCT/JP2006/315048 patent/WO2007013622A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449369B1 (en) * | 1995-09-27 | 2002-09-10 | Technofirst | Method and device for hybrid active attenuation of vibration, particularly of mechanical, acoustic or similar vibration |
Also Published As
Publication number | Publication date |
---|---|
CN101233783A (en) | 2008-07-30 |
US20100092004A1 (en) | 2010-04-15 |
US8073149B2 (en) | 2011-12-06 |
EP1912468A4 (en) | 2011-04-06 |
EP1912468A1 (en) | 2008-04-16 |
WO2007013622A1 (en) | 2007-02-01 |
EP1912468B1 (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101233783B (en) | Loudspeaker device | |
JP4805749B2 (en) | Speaker device | |
US10547942B2 (en) | Control of electrodynamic speaker driver using a low-order non-linear model | |
KR100622078B1 (en) | Superdirectional speaker system and signal processing method | |
US9232311B2 (en) | Method for processing an audio signal with modeling of the overall response of the electrodynamic loudspeaker | |
JP6038135B2 (en) | Signal processing device | |
JP2007060648A5 (en) | ||
US7053705B2 (en) | Mixed-mode (current-voltage) audio amplifier | |
EP1971901B1 (en) | Enhanced feedback for plant control | |
CN104980877A (en) | Apparatus and method for identifying and compensating for nonlinear vibrations in an electromechanical transducer | |
CN111213392B (en) | Controller for electromechanical transducer | |
US9893685B2 (en) | Driving apparatus | |
JP2007081815A (en) | Loudspeaker device | |
CN111885476A (en) | System and method for magnetic flux-based compensation for nonlinear behavior of acoustic transducers | |
JPH1070787A (en) | Device and method for signal correction, and device and method for adjusting coefficient of the same signal correcting device | |
CN116897543A (en) | Active noise reduction audio device, method and storage medium | |
Klippel | Nonlinear Adaptive Controller for Loudspeakers with Current Sensor | |
Brunet et al. | Nonlinear control of loudspeaker based on output flatness and trajectory planning | |
US10708690B2 (en) | Method of an audio signal correction | |
JP5430444B2 (en) | Audio playback device | |
JP2006197206A (en) | Speaker device | |
JP6102268B2 (en) | Audio playback device | |
JP2002333886A (en) | Active noise controller | |
JPH0632531B2 (en) | Low distortion speaker device | |
Backman | Comparison of dynamic driver current feedback methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |