US20110314546A1 - Electronic Message Analysis for Malware Detection - Google Patents
Electronic Message Analysis for Malware Detection Download PDFInfo
- Publication number
- US20110314546A1 US20110314546A1 US13/089,191 US201113089191A US2011314546A1 US 20110314546 A1 US20110314546 A1 US 20110314546A1 US 201113089191 A US201113089191 A US 201113089191A US 2011314546 A1 US2011314546 A1 US 2011314546A1
- Authority
- US
- United States
- Prior art keywords
- url
- electronic message
- suspicious
- urls
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims description 83
- 238000004458 analytical method Methods 0.000 title abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000008569 process Effects 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000003278 mimic effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 16
- 238000007726 management method Methods 0.000 description 18
- 238000004891 communication Methods 0.000 description 14
- 230000004044 response Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 230000006399 behavior Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 6
- 230000002155 anti-virotic effect Effects 0.000 description 5
- 241000700605 Viruses Species 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
- G06F21/562—Static detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L51/00—User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
- H04L51/21—Monitoring or handling of messages
- H04L51/212—Monitoring or handling of messages using filtering or selective blocking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/12—Applying verification of the received information
- H04L63/123—Applying verification of the received information received data contents, e.g. message integrity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/12—Applying verification of the received information
- H04L63/126—Applying verification of the received information the source of the received data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1425—Traffic logging, e.g. anomaly detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/145—Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/16—Implementing security features at a particular protocol layer
- H04L63/168—Implementing security features at a particular protocol layer above the transport layer
Definitions
- malware can attack various devices via a communication network.
- malware may include any program or file that is harmful to a computer user, such as bots, computer viruses, worms, Trojan horses, adware, spyware, or any programming that gathers information about a computer user or otherwise operates without permission.
- computers often include antivirus scanning software that scans a particular client device for viruses.
- Computers may also include spyware and/or adware scanning software. The scanning may be performed manually or based on a schedule specified by a user associated with the particular computer, a system administrator, and so forth.
- spyware and/or adware scanning software.
- the scanning may be performed manually or based on a schedule specified by a user associated with the particular computer, a system administrator, and so forth.
- a virus or spyware is detected by the scanning software, some damage on the particular computer or loss of privacy may have already occurred.
- it can take days or weeks for new Anti-Virus signatures to be manually created and for an anti-virus application to be updated, by which time malware authors will have already created new versions that evade the signatures.
- polymorphic exploits are also an issue that limits the effectiveness of some anti-virus applications.
- Malicious network content may be distributed over a network via web sites, e.g., servers operating on a network according to an HTTP standard. Malicious network content distributed in this manner may be actively downloaded and installed on a user's computer, without the approval or knowledge of the user, simply by accessing the web site hosting the malicious network content.
- the web site hosting the malicious network content may be referred to as a malicious web site.
- the malicious network content may be embedded within data associated with web pages hosted by the malicious web site.
- a web page may include JavaScript code, and malicious network content may be embedded within the JavaScript code.
- the malicious network content embedded within the JavaScript code may be obfuscated such that it is not apparent until the JavaScript code is executed that the JavaScript code contains malicious network content. Therefore, the malicious network content may attack or infect a user's computer before detection by antivirus software, firewalls, intrusion detection systems, or the like.
- malicious network content may be distributed by electronic messages, including email, using such protocols as POP, SMTP, IMAP, and various forms of web-based email. Malicious content may be directly attached to the message (for example as a document capable of exploiting a document reading application, such as a malicious Microsoft Excel document).
- electronic messages may contain URL links to malicious content hosted on web servers elsewhere on the network. When target users click on such links, they may be infected from the web in the manner described above.
- the present technology analyzes an electronic message for malware contained in the message.
- Systems that analyze electronic messages typically analyze attached files for malware.
- the content of an electronic message itself may contain text, which is usually not examined by malware systems.
- the present technology analyzes text of an electronic message to detect and process malware content in the electronic message itself.
- the present technology may analyze an electronic message to detect a uniform resource location (URL), identify whether the URL is suspicious, and analyze all suspicious URLs to determine if they are malware.
- the analysis may include re-playing the suspicious URL in a virtual environment which simulates the intended computing device to receive the electronic message. If the re-played URL is determined to be malicious, the malicious URL is added to a black list which is updated throughout the computer system.
- URL uniform resource location
- malicious network content may be detected by a network content processing system by receiving an electronic message.
- the electronic message may be determined to include content determined to be suspicious.
- the suspicious electronic message content may be executed in a virtual environment.
- the suspicious electronic message content may be identified as malicious based on execution of the suspicious electronic message content in the virtual environment.
- FIG. 1 is a block diagram of an exemplary system for detecting malicious electronic messages.
- FIG. 2 is a block diagram of an exemplary e-mail malware detection module.
- FIG. 3 is a block diagram of an exemplary management server.
- FIG. 4 is a flowchart of an exemplary method for detecting malicious electronic messages.
- FIG. 5 is a flowchart of an exemplary method for identifying a suspicious URL.
- FIG. 6 is a flowchart of an exemplary method for identifying suspicious URLs.
- FIG. 7 is a flowchart of an exemplary method for updating a malware detection system.
- FIG. 8 is a block diagram of an exemplary computing device.
- the present technology analyzes electronic messages for malware contained in the message.
- Systems that analyze electronic messages typically analyze attached files for malware in synthetic environments such as a virtual environment.
- the present technology may analyze the content of an electronic message to detect malware in the message content.
- the content may include a uniform resource locator (URL) address.
- the URL address may be analyzed to determine if the URL address is associated with malware.
- the present technology may analyze attachments in a real operating system running in an instrumented virtual environment.
- the present technology may process attachments for emails that provide a location associated with malware.
- the attachments may include one or more files compatible with common applications, including Word, Excel and Powerpoint applications by Microsoft Corporation, of Redmond, Wash., and Adobe Reader application, by Adobe Systems Inc., of San Jose, Calif.
- Analysis of a suspicious URL may include re-playing the suspicious URL in a virtual environment which simulates the intended computing device to receive the electronic message.
- Re-playing a URL may include executing the URL by a virtual component in the virtual environment to request content located from the URL address.
- Content is received by the virtual environment in a URL request response, the received content is loaded into the virtual environment, and executed while the virtual environment is monitored. If the re-played URL is determined to be malicious, the malicious URL is added to a black list which is updated throughout the computer system.
- the electronic message content may be identified as malicious by a first device or module that processes electronic messages to detect malware.
- Other first devices or modules in the system may process network traffic to detect malware.
- a central device or module may communicate with both the network traffic malware module and the electronic message malware module.
- the central module may receive URLs detected to be malicious, may update a central URL blacklist based on the received URLs, and may transmit the updated URL blacklist to both the network traffic malware module and the electronic message malware module. This may cause a network malware module to examine more closely web traffic returning from requests to URLs passed in email, for example making it more likely that such web traffic was replayed in a virtual environment.
- FIG. 1 is block diagram of an exemplary system for detecting malicious electronic messages.
- the system of FIG. 1 includes source device 105 , network 110 and malware detection system 100 .
- Malware detection system 100 includes firewall 120 , web malware detection device 130 , electronic message server 140 , electronic message malware detection device 150 , exchange server 160 , management server 170 , client device 182 , client device 84 and client device 186 .
- blocks within system 100 may be discussed herein as different devices, such as web malware detection 130 and electronic message malware detection 150 , blocks of system 100 may be implemented as modules within a single device or combination of devices.
- Source device 105 may transmit electronic messages and content page content, such as web page content, to malware detection system 100 over network 110 .
- System 100 may receive network traffic content through firewall 120 and may receive electronic message content through electronic message server 140 via network 110 .
- Network 110 may transmit electronic message, content page, and other content between devices connected to network 110 , including web malware detection system 130 , electronic message malware detection system 150 , and source device 105 .
- Network 110 may include one or more private networks, public networks, LANs, WANs, intranets, the Internet, and a combination of these networks.
- Firewall 120 may be a device that consists of hardware and/or software that detects and prevents unauthorized network traffic from being received by or sent by client devices 182 , 184 and 186 . Firewall 120 may communicate with network 110 and web malware detection system 130 .
- Web malware detection 130 may communicate with management server 170 and client devices 182 - 186 .
- Web malware detection 130 may operate to intercept network traffic and analyze intercepted traffic to determine whether the traffic is malware.
- the intercepted traffic may be copied by web malware detection 130 and analyzed using heuristics and other techniques.
- the heuristics may be used to identify portions of the network traffic as suspicious. Portions of traffic not identified as suspicious are ignored and passed through web malware detection 130 .
- the suspicious network traffic portions may be analyzed by replaying the traffic in a virtual environment. The replay may be monitored and used to identify malware content by web malware detection 130 .
- a system for re-playing intercepted traffic in a virtual environment using virtual components is described in U.S.
- Electronic message server 140 may receive and send electronic messages between network 110 and electronic message malware detection 150 .
- Electronic message malware detection 150 may communicate with exchange server 160 , management server 170 , and email server 140 , and may be implemented on one or more devices such a mail transfer agents (MTAs). Electronic message malware detection 150 may intercept electronic message traffic directed towards client devices 182 - 186 . Electronic message malware detection 150 may include logic which analyzes electronic messages transmitted to and from electronic message 140 to identify malicious content within the electronic message. Identifying malware may include identifying an electronic message as suspicious, analyzing suspicious electronic messages to identify a malicious message, and communicating the malicious content to management server 170 to inform the remainder of system 100 . Analyzing the suspicious electronic message may include replaying a portion of the electronic message in a virtual environment and monitoring the replay of the content. In some embodiments, content examined by electronic message malware detection 150 may include a URL detected within the body or header of an electronic message received by system 100 .
- MTAs mail transfer agents
- Exchange server 160 may transfer mail between client devices 182 - 186 and electronic message malware detection 150 .
- Management server 170 may receive malicious URL notifications, aggregate the received URLs, and update a black list maintained at management server 170 .
- the malicious URL notification may be received from system 150 or system 130 .
- Management server 170 may also transmit the black list of URLs to web malware detection systems and electronic message malware detection systems throughout system 100 .
- Clients 182 , 184 and 186 may be any kind of device within a system 100 on which one or more users may execute programs to access network content such as a web page and transmit electronic messages such as an electronic message, instant message, or other electronic message.
- FIG. 2 is a block diagram of an exemplary electronic message malware detection system.
- the system of FIG. 2 includes network tap 210 , URL analyzer 220 , scheduler 230 , virtual environment component pool 240 , virtual environment 250 and URL database 260 .
- Network tap 210 may intercept electronic messages such as electronic message and instant messages transmitted between electronic message server 140 and exchange server 160 .
- Network tap 210 may make a copy of the electronic message to analyze within electronic message malware detection system 150 .
- electronic messages may include email as well as other types of messages, email will be discussed herein as merely an example.
- URL analyzer 220 may detect URLs within a detected electronic message. Detecting a URL may include parsing the header and the body of an electronic message to identify a URL within the electronic message. Upon detecting a URL within a message, URL analyzer determines if the URL is suspicious and initiates an analysis of any suspicious URL. A URL may be suspicious if it does not appear in a list of acceptable URLs (a white list) and does not appear in a list of malware URLs (black list).
- URL analyzer 220 Upon detecting a suspicious URL, URL analyzer 220 provides the URL to scheduler 230 .
- Scheduler 230 receives suspicious URLs and retrieves virtual environment components from virtual environment component pool 240 .
- the virtual environment components may include components intended to replicate the actual environment at a client device intended to receive the electronic message.
- the virtual environments may include a virtual operating system, virtual applications, and a virtual network intended to replicate those associated with a particular client device intended to receive the message.
- Scheduler 230 then provides the URL and the retrieved virtual environment components to a virtual environment 250 in order to replay the URL within a virtual environment.
- Virtual environment 250 receives the suspicious URL and virtual environment components and replays the URL within a virtual environment having the virtual components. Replaying the URL may be similar to performing a “click” operation on the suspicious URL.
- a request is sent to the URL for content, and the network server associated with the URL provides content and a response to the request.
- the content received in response to the request is then processed by the virtual environment and the environment is monitored to determine if any undesirable behavior occurs. If any undesirable behavior occurs in response to loading content associated with the URL, the URL is determined to be malware and added to a local black list by electronic message malware detection system 150 .
- Undesirable behavior may unauthorized requests for data, sending or receiving data over a network, processing and/or storing data, changing a registry value, installing a file, executing a file, or other operations.
- the internal malware black list is transmitted to management server 170 .
- URL database 260 includes black URL list 262 and white URL list 264 .
- URL analyzer may compare URLs detected in electronic messages to black URL list 262 to determine if there is a match. If there is a match, the URL is detected to be malware, and the electronic message may be blocked or the URL may be removed from the electronic message. If the URL is removed from the electronic message, an alert may be generated (e.g., within the message) indicating the URL has been removed and an administrator may be notified. If a detected URL matches a URL on the white URL list 264 , the URL is determined to be acceptable and no further action is taken. If a detected URL does not match a URL on black URL list 262 or white URL list 264 , the URL is identified as being suspicious and is processed in a virtual environment.
- FIG. 3 is a block diagram of an exemplary management server.
- Management server 180 of FIG. 3 includes URL aggregator 310 , URL black list 320 , and communication manager 330 .
- URL aggregator 310 aggregates received URLs and updates and stores URL black list 320 .
- URL black list 320 is a list of confirmed malicious URLs maintained by management server 180 .
- Communication manager 330 may receive URLs from electronic message malware detection systems and web malware detection systems within system 100 .
- Communication manager 330 may provide the URLs to URL aggregator 310 to aggregate the URLs and update URL black list 320 maintained on management server 180 .
- Communication manager 330 may also send the current URL black list to malware detection systems within system 100 .
- FIG. 4 is a flowchart of an exemplary method for detecting malicious electronic messages. Though FIG. 4 will be discussed in terms of an electronic message, other electronic messages, such as an instant message or other forms of communication, may be processed by the present technology.
- An electronic message is received at step 405 .
- the electronic message may be received by electronic message malware detection system 150 via electronic message server 140 .
- the electronic message and/or an attachment to the message may be scanned to detect a URL at step 410 .
- the electronic message may be scanned by a URL analyzer module to detect a URL in the electronic message header, body or other portion of the electronic message.
- the attachment may be scanned to detect a URL within the attachment. For example, if the attachment is a word processor or spreadsheet document, the attachment may be scanned to detect a URL in text of the word processor document or within a cell of the spreadsheet.
- Detected URLs may be transmitted to a malware detection system at step 415 .
- the malware detection system may be contained locally on electronic message malware detection system 150 or outside detection module 150 .
- electronic message malware detection system 150 may transmit detected URLs to web malware detection system 130 to process the URL to determine if the URL is malicious.
- a URL is simply stored locally at electronic message malware detection system 150 at step 415 for further processing.
- a suspicious URL may be identified from the detected URLs at step 420 .
- a URL may be identified as suspicious if the URL does not match a black list of URLs or a white list of URLs maintained at electronic message malware detection system 150 (or accessible by detection module 150 ). Identifying suspicious URLs is discussed in more detail below with respect to the method of FIG. 5 .
- Suspicious URLs are analyzed using virtual environment components to detect a malicious URL at step 425 .
- Analyzing a suspicious URL may include selecting virtual components such as a virtual operating system, virtual applications, and virtual network, populating and configuring a virtual environment with the virtual components, and processing the URL within the virtual environment.
- Processing the URL within the environment may include replaying the URL within the virtual environment by performing a “click” operation on the URL.
- the URL may be identified as malicious if content received in response to the click operation on the URL results in an undesirable behavior within the virtual environment.
- An undesirable behavior may include attempts to change an operating system setting or configuration, execute an executable file within the virtual environment, transmit undesirable data, or other actions.
- an undesirable behavior may include an unexpected behavior. If no undesirable behavior occurs in response to clicking the URL, the URL is determined to be acceptable and is added to a white list.
- a malware detection system may be updated based on the detected malware URL at step 430 . Updating may include communicating the malicious URL to other parts of a system. For example, electronic message malware detection system 150 may communicate one or more malicious URLs to management server 170 , and server 170 may communicate the URL via an updated black list to web malware detection systems and electronic message malware detection systems within system 100 . Updating a malware detection system is described in more detail below with respect to the method of FIG. 7 .
- any URL detected in an email may be transmitted by electronic message malware detection 150 to web malware detection 130 .
- the web malware detection 130 may increase the priority of the detected URL such that the URL is analyzed to determine if is suspicious and/or associated with malware.
- the URL may not be processed by the web malware detection 130 until it is determined that content is actually being requested from the URL.
- a large number of URLs may be detected by web malware detection 130 in network traffic travelling through firewall 120 .
- One or more detected URLs detected by web malware detection 130 may be assigned a priority for analysis. Higher prioritized URLs are analyzed to determine if they are suspicious or associated with malware before lower priority URLs.
- URLs detected in email are provided a lower priority than those detected as part of network traffic by web malware detection 130 .
- the priority of a URL may be increased once it is determined to be present in both an email and network traffic (i.e., detected by both electronic message malware detection 150 and web malware detection 130 , in any order). The level of priority increase may depend on the resources available to process URLs.
- the level of priority increase may be less if there are a small number of virtual environments or components available to process a suspicious URL. If there is a large number of virtual environments and/or virtual components available to process a URL, there may be a large level of priority increase.
- the priority of URLS to be processed by may adjusted in such a way to avoid degradation of the normal functioning of web malware detection 130 under heavy load, while allowing thorough examination of all email URLs where load permits
- FIG. 5 is a flowchart of an exemplary method for identifying a suspicious URL.
- the method of FIG. 5 provides more detail for step 420 in the method of FIG. 4 .
- Each detected URL in an electronic message is compared to a URL white list at step 505 .
- the URL white list may be maintained on electronic message malware detection system 150 and may include a list of acceptable URLs or URL domains. URLs that match the URL white list are ignored at step 510 .
- the URLs that match the white list are determined to not be malicious and therefore are allowed to pass through to their intended client device.
- Detected URLs which are not on the white list are then compared to the URL black list at step 515 .
- URLs on the black list are known to be malicious and should not be passed through to a user associated with a client device. If a detected URL matches a URL on the black list, the URL is blocked and reported at step 520 , and thereby prevented from being provided to the recipient client device.
- a URL may be prevented from delivery by either blocking transmission of the entire electronic message, removing the URL from the electronic message, or in some other manner.
- URLs that do not match a URL on the white list or a URL on the black list are identified as suspicious URLs at step 526 . The remaining URLs are characterized as suspicious because it is unknown whether they are acceptable or malicious.
- FIG. 6 is a flowchart of an exemplary method for identifying malicious URLs.
- the method of FIG. 6 provides more detail for step 525 of the method of FIG. 5 .
- a suspicious URL is selected to analyze in a virtual environment at step 605 .
- Some URLs may be weighted with a higher priority to analyze.
- the higher priority URLs may be placed in a higher priority position in an analysis queue as opposed to lower priority URLs.
- a priority may be associated with a URL by a user, based on learning performed by the present system, or in some other manner.
- the priority may be associated with the URL domain, keywords in the URL, positioning within the electronic message for the URL, or other factors.
- the present system may configure a virtual environment application, operating system, and network components at step 610 . These virtual components may be retrieved from a component pool by a scheduler.
- a URL may be analyzed in the virtual environment configured with the virtual components at step 615 . Analyzing the URL may include replaying the URL by performing a “click” operation on the URL within the virtual environment.
- an application may send a content request message to the URL and receive a response message in response to the URL request.
- a network browser may be executed to provide the content received in response to the URL response received by the application. Actions performed within the virtual environment in response to receiving the URL content may be recorded and analyzed to determine if the URL is malicious.
- a malicious URL may be identified at step 620 .
- An identification as a malicious URL may be based on actions or changes that occur when a suspicious URL is replayed in the virtual environment. Actions that may indicate a malicious URL include changing an operating system configuration, performing requests or trying to install or execute file, or other actions performed in response to retrieving content from the URL location.
- FIG. 7 is a flowchart of an exemplary method for updating a malware detection system.
- the method of FIG. 7 provides more detail for step 430 of the method of FIG. 4 .
- a management server receives a malicious URL detected by electronic message malware detection system at step 705 .
- the malicious URLs are then aggregated by the management server at step 710 .
- a URL black list is updated with the aggregated malicious URLs at step 715 .
- the management server may then transmit the updated URL black list to electronic message malware detection systems and web malware detection systems at step 720 .
- the transmission of the updated URL black list may be performed upon request, periodically, or upon occurrence of a particular event, such as when a URL black list has undergone a threshold number of changes.
- the present invention also includes a dynamic method for setting the “email priority boost” used to enhance the priority of inspecting web content by noting the fraction of all the efforts of the web malware detection system devoted to examining URLs previously seen by the electronic message malware detection system.
- This “email priority boost” can be regulated to target a particular fraction of the virtual execution environments available on the web malware detection system, to avoid overloading the latter and causing loss of other web detection functionality, while still allowing complete examination of URLS seen in electronic messages where system load allows.
- FIG. 8 is a block diagram of an exemplary computing device.
- the computing device of FIG. 8 may be used to implement one or more devices in the system 100 of FIG. 1 , including but not limited to firewall 120 , web malware detection 130 , e-mail server 140 , e-mail malware detection 150 , management server 170 , exchange server 160 , or clients 182 - 186
- FIG. 8 is a block diagram of an exemplary malicious network content detection device.
- the method of FIG. 8 provides more detail for malicious network content detection system 125 of FIG. 1 .
- Malicious network content detection system 125 comprises at least one or more processors 805 , memory systems 810 , and storage systems 815 , each of which can be communicatively coupled with data bus 820 .
- data bus 820 may be implemented as one or more data buses.
- Malicious network content detection system 125 may also comprise communication network interface 825 , input/output (I/O) interface 830 , and display interface 835 .
- Communication network interface 825 may be communicatively coupled with network 120 via communication medium 840 .
- malicious network content detection system 125 may be communicatively coupled with a network tap, such as network tap 115 , which in turn may be communicatively coupled with network 120 .
- Bus 920 provides communications between communications network interface 825 , processor 805 , memory system 810 , storage system 815 , I/O interface 830 , and display interface 835 .
- Communications network interface 825 may communicate with other digital devices (not shown) via communications medium 840 .
- Processor 905 executes instructions which may be stored on a processor-readable storage medium.
- Memory system 810 may store data permanently or temporarily. Some examples of memory system 810 include RAM and ROM.
- Storage system 815 also permanently or temporarily stores data. Some examples of storage system 815 are hard discs and disc drives.
- I/O interface 830 may include any device that can receive input and provide output to a user. I/O interface 830 may include, but is not limited to, a keyboard, a mouse, a touch screen, a keypad, a biosensor, a compact disc (CD) drive, a digital video disc (DVD) drive, an optical disk drive, or a floppy disk drive.
- Display interface 835 may include an interface configured to support a display, monitor, or screen.
- malicious network content detection system 125 comprises a graphical user interface to be displayed to a user over a monitor in order to allow the user to control malicious network content detection system 125 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Information Transfer Between Computers (AREA)
- Computer And Data Communications (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- Presently, malicious network content (e.g., malicious software or malware) can attack various devices via a communication network. For example, malware may include any program or file that is harmful to a computer user, such as bots, computer viruses, worms, Trojan horses, adware, spyware, or any programming that gathers information about a computer user or otherwise operates without permission.
- Various processes and devices have been employed to prevent the problems that malicious network content can cause. For example, computers often include antivirus scanning software that scans a particular client device for viruses. Computers may also include spyware and/or adware scanning software. The scanning may be performed manually or based on a schedule specified by a user associated with the particular computer, a system administrator, and so forth. Unfortunately, by the time a virus or spyware is detected by the scanning software, some damage on the particular computer or loss of privacy may have already occurred. Additionally, it can take days or weeks for new Anti-Virus signatures to be manually created and for an anti-virus application to be updated, by which time malware authors will have already created new versions that evade the signatures. Moreover, polymorphic exploits are also an issue that limits the effectiveness of some anti-virus applications.
- Malicious network content may be distributed over a network via web sites, e.g., servers operating on a network according to an HTTP standard. Malicious network content distributed in this manner may be actively downloaded and installed on a user's computer, without the approval or knowledge of the user, simply by accessing the web site hosting the malicious network content. The web site hosting the malicious network content may be referred to as a malicious web site. The malicious network content may be embedded within data associated with web pages hosted by the malicious web site. For example, a web page may include JavaScript code, and malicious network content may be embedded within the JavaScript code. In this example, the malicious network content embedded within the JavaScript code may be obfuscated such that it is not apparent until the JavaScript code is executed that the JavaScript code contains malicious network content. Therefore, the malicious network content may attack or infect a user's computer before detection by antivirus software, firewalls, intrusion detection systems, or the like.
- Additionally, malicious network content may be distributed by electronic messages, including email, using such protocols as POP, SMTP, IMAP, and various forms of web-based email. Malicious content may be directly attached to the message (for example as a document capable of exploiting a document reading application, such as a malicious Microsoft Excel document). Alternatively, electronic messages may contain URL links to malicious content hosted on web servers elsewhere on the network. When target users click on such links, they may be infected from the web in the manner described above. These techniques for infecting user computers via electronic messages are often used to make targeted attacks on particular “high-value” users at organizations, such as executives or key technical or operational staff.
- What is needed is an improved system for detecting malicious content propagated in electronic messages.
- The present technology analyzes an electronic message for malware contained in the message. Systems that analyze electronic messages typically analyze attached files for malware. The content of an electronic message itself may contain text, which is usually not examined by malware systems. The present technology analyzes text of an electronic message to detect and process malware content in the electronic message itself. In some embodiments, the present technology may analyze an electronic message to detect a uniform resource location (URL), identify whether the URL is suspicious, and analyze all suspicious URLs to determine if they are malware. The analysis may include re-playing the suspicious URL in a virtual environment which simulates the intended computing device to receive the electronic message. If the re-played URL is determined to be malicious, the malicious URL is added to a black list which is updated throughout the computer system.
- In an embodiment, malicious network content may be detected by a network content processing system by receiving an electronic message. The electronic message may be determined to include content determined to be suspicious. The suspicious electronic message content may be executed in a virtual environment. The suspicious electronic message content may be identified as malicious based on execution of the suspicious electronic message content in the virtual environment.
-
FIG. 1 is a block diagram of an exemplary system for detecting malicious electronic messages. -
FIG. 2 is a block diagram of an exemplary e-mail malware detection module. -
FIG. 3 is a block diagram of an exemplary management server. -
FIG. 4 is a flowchart of an exemplary method for detecting malicious electronic messages. -
FIG. 5 is a flowchart of an exemplary method for identifying a suspicious URL. -
FIG. 6 is a flowchart of an exemplary method for identifying suspicious URLs. -
FIG. 7 is a flowchart of an exemplary method for updating a malware detection system. -
FIG. 8 is a block diagram of an exemplary computing device. - The present technology analyzes electronic messages for malware contained in the message. Systems that analyze electronic messages typically analyze attached files for malware in synthetic environments such as a virtual environment. Unlike prior systems, the present technology may analyze the content of an electronic message to detect malware in the message content. For example, the content may include a uniform resource locator (URL) address. The URL address may be analyzed to determine if the URL address is associated with malware. Additionally, the present technology may analyze attachments in a real operating system running in an instrumented virtual environment. In addition to analyzing the content within an email itself, the present technology may process attachments for emails that provide a location associated with malware. The attachments may include one or more files compatible with common applications, including Word, Excel and Powerpoint applications by Microsoft Corporation, of Redmond, Wash., and Adobe Reader application, by Adobe Systems Inc., of San Jose, Calif.
- In some embodiments, the present technology may analyze an electronic message to detect a URL, identify whether the URL is suspicious, and analyze the suspicious URL to determine if it describes a location associated with malware. Determining if the URL is suspicious may include if comparing the URL to one or more lists of URLs. For example, the URL may be compared to a white list of acceptable URLS, a black list of malware URLs, and/or a list having a combination of URLs. If the URL is not found on any list, the URL is not determined to be malware and not determined to be acceptable, and therefore may be determined to be suspicious.
- Analysis of a suspicious URL may include re-playing the suspicious URL in a virtual environment which simulates the intended computing device to receive the electronic message. Re-playing a URL may include executing the URL by a virtual component in the virtual environment to request content located from the URL address. Content is received by the virtual environment in a URL request response, the received content is loaded into the virtual environment, and executed while the virtual environment is monitored. If the re-played URL is determined to be malicious, the malicious URL is added to a black list which is updated throughout the computer system.
- The electronic message content, for example a URL, may be identified as malicious by a first device or module that processes electronic messages to detect malware. Other first devices or modules in the system may process network traffic to detect malware. A central device or module may communicate with both the network traffic malware module and the electronic message malware module. In some embodiments, the central module may receive URLs detected to be malicious, may update a central URL blacklist based on the received URLs, and may transmit the updated URL blacklist to both the network traffic malware module and the electronic message malware module. This may cause a network malware module to examine more closely web traffic returning from requests to URLs passed in email, for example making it more likely that such web traffic was replayed in a virtual environment.
-
FIG. 1 is block diagram of an exemplary system for detecting malicious electronic messages. The system ofFIG. 1 includessource device 105,network 110 andmalware detection system 100.Malware detection system 100 includesfirewall 120, webmalware detection device 130,electronic message server 140, electronic messagemalware detection device 150,exchange server 160,management server 170,client device 182, client device 84 andclient device 186. Though blocks withinsystem 100 may be discussed herein as different devices, such asweb malware detection 130 and electronicmessage malware detection 150, blocks ofsystem 100 may be implemented as modules within a single device or combination of devices. -
Source device 105 may transmit electronic messages and content page content, such as web page content, tomalware detection system 100 overnetwork 110.System 100 may receive network traffic content throughfirewall 120 and may receive electronic message content throughelectronic message server 140 vianetwork 110. -
Network 110 may transmit electronic message, content page, and other content between devices connected to network 110, including webmalware detection system 130, electronic messagemalware detection system 150, andsource device 105.Network 110 may include one or more private networks, public networks, LANs, WANs, intranets, the Internet, and a combination of these networks. -
Firewall 120 may be a device that consists of hardware and/or software that detects and prevents unauthorized network traffic from being received by or sent byclient devices Firewall 120 may communicate withnetwork 110 and webmalware detection system 130. -
Web malware detection 130 may communicate withmanagement server 170 and client devices 182-186.Web malware detection 130 may operate to intercept network traffic and analyze intercepted traffic to determine whether the traffic is malware. The intercepted traffic may be copied byweb malware detection 130 and analyzed using heuristics and other techniques. The heuristics may be used to identify portions of the network traffic as suspicious. Portions of traffic not identified as suspicious are ignored and passed throughweb malware detection 130. The suspicious network traffic portions may be analyzed by replaying the traffic in a virtual environment. The replay may be monitored and used to identify malware content byweb malware detection 130. A system for re-playing intercepted traffic in a virtual environment using virtual components is described in U.S. patent application Ser. No. 12/359,252, entitled “Detecting Malicious Network Content Using Virtual Environment Components”, filed Jan. 23, 2009, the disclosure of which is incorporated herein by reference. -
Electronic message server 140 may receive and send electronic messages betweennetwork 110 and electronicmessage malware detection 150. - Electronic
message malware detection 150 may communicate withexchange server 160,management server 170, andemail server 140, and may be implemented on one or more devices such a mail transfer agents (MTAs). Electronicmessage malware detection 150 may intercept electronic message traffic directed towards client devices 182-186. Electronicmessage malware detection 150 may include logic which analyzes electronic messages transmitted to and fromelectronic message 140 to identify malicious content within the electronic message. Identifying malware may include identifying an electronic message as suspicious, analyzing suspicious electronic messages to identify a malicious message, and communicating the malicious content tomanagement server 170 to inform the remainder ofsystem 100. Analyzing the suspicious electronic message may include replaying a portion of the electronic message in a virtual environment and monitoring the replay of the content. In some embodiments, content examined by electronicmessage malware detection 150 may include a URL detected within the body or header of an electronic message received bysystem 100. -
Exchange server 160 may transfer mail between client devices 182-186 and electronicmessage malware detection 150.Management server 170 may receive malicious URL notifications, aggregate the received URLs, and update a black list maintained atmanagement server 170. The malicious URL notification may be received fromsystem 150 orsystem 130.Management server 170 may also transmit the black list of URLs to web malware detection systems and electronic message malware detection systems throughoutsystem 100. -
Clients system 100 on which one or more users may execute programs to access network content such as a web page and transmit electronic messages such as an electronic message, instant message, or other electronic message. -
FIG. 2 is a block diagram of an exemplary electronic message malware detection system. The system ofFIG. 2 includesnetwork tap 210,URL analyzer 220,scheduler 230, virtualenvironment component pool 240,virtual environment 250 andURL database 260.Network tap 210 may intercept electronic messages such as electronic message and instant messages transmitted betweenelectronic message server 140 andexchange server 160.Network tap 210 may make a copy of the electronic message to analyze within electronic messagemalware detection system 150. Though electronic messages may include email as well as other types of messages, email will be discussed herein as merely an example. -
URL analyzer 220 may detect URLs within a detected electronic message. Detecting a URL may include parsing the header and the body of an electronic message to identify a URL within the electronic message. Upon detecting a URL within a message, URL analyzer determines if the URL is suspicious and initiates an analysis of any suspicious URL. A URL may be suspicious if it does not appear in a list of acceptable URLs (a white list) and does not appear in a list of malware URLs (black list). - Upon detecting a suspicious URL,
URL analyzer 220 provides the URL toscheduler 230.Scheduler 230 receives suspicious URLs and retrieves virtual environment components from virtualenvironment component pool 240. The virtual environment components may include components intended to replicate the actual environment at a client device intended to receive the electronic message. For example, the virtual environments may include a virtual operating system, virtual applications, and a virtual network intended to replicate those associated with a particular client device intended to receive the message.Scheduler 230 then provides the URL and the retrieved virtual environment components to avirtual environment 250 in order to replay the URL within a virtual environment. -
Virtual environment 250 receives the suspicious URL and virtual environment components and replays the URL within a virtual environment having the virtual components. Replaying the URL may be similar to performing a “click” operation on the suspicious URL. Upon performing a click on the URL, a request is sent to the URL for content, and the network server associated with the URL provides content and a response to the request. The content received in response to the request is then processed by the virtual environment and the environment is monitored to determine if any undesirable behavior occurs. If any undesirable behavior occurs in response to loading content associated with the URL, the URL is determined to be malware and added to a local black list by electronic messagemalware detection system 150. Undesirable behavior may unauthorized requests for data, sending or receiving data over a network, processing and/or storing data, changing a registry value, installing a file, executing a file, or other operations. The internal malware black list is transmitted tomanagement server 170. -
URL database 260 includesblack URL list 262 andwhite URL list 264. URL analyzer may compare URLs detected in electronic messages toblack URL list 262 to determine if there is a match. If there is a match, the URL is detected to be malware, and the electronic message may be blocked or the URL may be removed from the electronic message. If the URL is removed from the electronic message, an alert may be generated (e.g., within the message) indicating the URL has been removed and an administrator may be notified. If a detected URL matches a URL on thewhite URL list 264, the URL is determined to be acceptable and no further action is taken. If a detected URL does not match a URL onblack URL list 262 orwhite URL list 264, the URL is identified as being suspicious and is processed in a virtual environment. -
FIG. 3 is a block diagram of an exemplary management server.Management server 180 ofFIG. 3 includesURL aggregator 310, URLblack list 320, andcommunication manager 330.URL aggregator 310 aggregates received URLs and updates and stores URLblack list 320. URLblack list 320 is a list of confirmed malicious URLs maintained bymanagement server 180.Communication manager 330 may receive URLs from electronic message malware detection systems and web malware detection systems withinsystem 100.Communication manager 330 may provide the URLs toURL aggregator 310 to aggregate the URLs and update URLblack list 320 maintained onmanagement server 180.Communication manager 330 may also send the current URL black list to malware detection systems withinsystem 100. -
FIG. 4 is a flowchart of an exemplary method for detecting malicious electronic messages. ThoughFIG. 4 will be discussed in terms of an electronic message, other electronic messages, such as an instant message or other forms of communication, may be processed by the present technology. - An electronic message is received at
step 405. The electronic message may be received by electronic messagemalware detection system 150 viaelectronic message server 140. The electronic message and/or an attachment to the message may be scanned to detect a URL atstep 410. The electronic message may be scanned by a URL analyzer module to detect a URL in the electronic message header, body or other portion of the electronic message. The attachment may be scanned to detect a URL within the attachment. For example, if the attachment is a word processor or spreadsheet document, the attachment may be scanned to detect a URL in text of the word processor document or within a cell of the spreadsheet. - Detected URLs may be transmitted to a malware detection system at
step 415. The malware detection system may be contained locally on electronic messagemalware detection system 150 oroutside detection module 150. For example, electronic messagemalware detection system 150 may transmit detected URLs to webmalware detection system 130 to process the URL to determine if the URL is malicious. In some embodiments, a URL is simply stored locally at electronic messagemalware detection system 150 atstep 415 for further processing. - A suspicious URL may be identified from the detected URLs at
step 420. A URL may be identified as suspicious if the URL does not match a black list of URLs or a white list of URLs maintained at electronic message malware detection system 150 (or accessible by detection module 150). Identifying suspicious URLs is discussed in more detail below with respect to the method ofFIG. 5 . - Suspicious URLs are analyzed using virtual environment components to detect a malicious URL at
step 425. Analyzing a suspicious URL may include selecting virtual components such as a virtual operating system, virtual applications, and virtual network, populating and configuring a virtual environment with the virtual components, and processing the URL within the virtual environment. Processing the URL within the environment may include replaying the URL within the virtual environment by performing a “click” operation on the URL. The URL may be identified as malicious if content received in response to the click operation on the URL results in an undesirable behavior within the virtual environment. An undesirable behavior may include attempts to change an operating system setting or configuration, execute an executable file within the virtual environment, transmit undesirable data, or other actions. In some embodiments, an undesirable behavior may include an unexpected behavior. If no undesirable behavior occurs in response to clicking the URL, the URL is determined to be acceptable and is added to a white list. - A malware detection system may be updated based on the detected malware URL at
step 430. Updating may include communicating the malicious URL to other parts of a system. For example, electronic messagemalware detection system 150 may communicate one or more malicious URLs tomanagement server 170, andserver 170 may communicate the URL via an updated black list to web malware detection systems and electronic message malware detection systems withinsystem 100. Updating a malware detection system is described in more detail below with respect to the method ofFIG. 7 . - One or more factors may affect how a URL is determined to be suspicious and/or processed to determine if it is associated with malware. In an embodiment, any URL detected in an email may be transmitted by electronic
message malware detection 150 toweb malware detection 130. Upon detecting that content is being requested from the URL, for example in response to a user selection or “click” on the URL, theweb malware detection 130 may increase the priority of the detected URL such that the URL is analyzed to determine if is suspicious and/or associated with malware. In this embodiment, the URL may not be processed by theweb malware detection 130 until it is determined that content is actually being requested from the URL. - A large number of URLs may be detected by
web malware detection 130 in network traffic travelling throughfirewall 120. One or more detected URLs detected byweb malware detection 130 may be assigned a priority for analysis. Higher prioritized URLs are analyzed to determine if they are suspicious or associated with malware before lower priority URLs. In some embodiments, URLs detected in email are provided a lower priority than those detected as part of network traffic byweb malware detection 130. The priority of a URL may be increased once it is determined to be present in both an email and network traffic (i.e., detected by both electronicmessage malware detection 150 andweb malware detection 130, in any order). The level of priority increase may depend on the resources available to process URLs. For example, the level of priority increase may be less if there are a small number of virtual environments or components available to process a suspicious URL. If there is a large number of virtual environments and/or virtual components available to process a URL, there may be a large level of priority increase. Hence, the priority of URLS to be processed by may adjusted in such a way to avoid degradation of the normal functioning ofweb malware detection 130 under heavy load, while allowing thorough examination of all email URLs where load permits -
FIG. 5 is a flowchart of an exemplary method for identifying a suspicious URL. In some embodiments, the method ofFIG. 5 provides more detail forstep 420 in the method ofFIG. 4 . Each detected URL in an electronic message is compared to a URL white list atstep 505. The URL white list may be maintained on electronic messagemalware detection system 150 and may include a list of acceptable URLs or URL domains. URLs that match the URL white list are ignored atstep 510. The URLs that match the white list are determined to not be malicious and therefore are allowed to pass through to their intended client device. - Detected URLs which are not on the white list are then compared to the URL black list at
step 515. URLs on the black list are known to be malicious and should not be passed through to a user associated with a client device. If a detected URL matches a URL on the black list, the URL is blocked and reported atstep 520, and thereby prevented from being provided to the recipient client device. A URL may be prevented from delivery by either blocking transmission of the entire electronic message, removing the URL from the electronic message, or in some other manner. URLs that do not match a URL on the white list or a URL on the black list are identified as suspicious URLs at step 526. The remaining URLs are characterized as suspicious because it is unknown whether they are acceptable or malicious. -
FIG. 6 is a flowchart of an exemplary method for identifying malicious URLs. The method ofFIG. 6 provides more detail forstep 525 of the method ofFIG. 5 . First, a suspicious URL is selected to analyze in a virtual environment atstep 605. Some URLs may be weighted with a higher priority to analyze. The higher priority URLs may be placed in a higher priority position in an analysis queue as opposed to lower priority URLs. A priority may be associated with a URL by a user, based on learning performed by the present system, or in some other manner. The priority may be associated with the URL domain, keywords in the URL, positioning within the electronic message for the URL, or other factors. - The present system may configure a virtual environment application, operating system, and network components at
step 610. These virtual components may be retrieved from a component pool by a scheduler. A URL may be analyzed in the virtual environment configured with the virtual components atstep 615. Analyzing the URL may include replaying the URL by performing a “click” operation on the URL within the virtual environment. Upon performing the click operation, an application may send a content request message to the URL and receive a response message in response to the URL request. For example, a network browser may be executed to provide the content received in response to the URL response received by the application. Actions performed within the virtual environment in response to receiving the URL content may be recorded and analyzed to determine if the URL is malicious. - A malicious URL may be identified at
step 620. An identification as a malicious URL may be based on actions or changes that occur when a suspicious URL is replayed in the virtual environment. Actions that may indicate a malicious URL include changing an operating system configuration, performing requests or trying to install or execute file, or other actions performed in response to retrieving content from the URL location. -
FIG. 7 is a flowchart of an exemplary method for updating a malware detection system. The method ofFIG. 7 provides more detail forstep 430 of the method ofFIG. 4 . First, a management server receives a malicious URL detected by electronic message malware detection system atstep 705. The malicious URLs are then aggregated by the management server atstep 710. A URL black list is updated with the aggregated malicious URLs atstep 715. The management server may then transmit the updated URL black list to electronic message malware detection systems and web malware detection systems atstep 720. The transmission of the updated URL black list may be performed upon request, periodically, or upon occurrence of a particular event, such as when a URL black list has undergone a threshold number of changes. - In some applications of this technology, it may not be desired to fetch content from every URL seen in incoming electronic messages where such “clicks” may have undesired side effects on applications using the web (HTTP) as a communication protocol. Therefore, an alternative method can be used in such cases, in which all URLs received in electronic messages are forwarded to a web malware detection system, and are used to raise the probability of examining any particular piece of web content if it has previously been seen in electronic messages (e.g., email). Thus “targeted spear phishing” attacks in which malicious URLs are sent to particular email addresses in an effort to induce the recipient to click on the link will be examined by the malware detection system only in the event that the recipient does actually so click.
- Since many URLs seen in electronic messages are also accessed via the web, the present invention also includes a dynamic method for setting the “email priority boost” used to enhance the priority of inspecting web content by noting the fraction of all the efforts of the web malware detection system devoted to examining URLs previously seen by the electronic message malware detection system. This “email priority boost” can be regulated to target a particular fraction of the virtual execution environments available on the web malware detection system, to avoid overloading the latter and causing loss of other web detection functionality, while still allowing complete examination of URLS seen in electronic messages where system load allows.
-
FIG. 8 is a block diagram of an exemplary computing device. The computing device ofFIG. 8 may be used to implement one or more devices in thesystem 100 ofFIG. 1 , including but not limited tofirewall 120,web malware detection 130,e-mail server 140,e-mail malware detection 150,management server 170,exchange server 160, or clients 182-186FIG. 8 is a block diagram of an exemplary malicious network content detection device. In some embodiments, the method ofFIG. 8 provides more detail for malicious network content detection system 125 ofFIG. 1 . Malicious network content detection system 125 comprises at least one or more processors 805, memory systems 810, and storage systems 815, each of which can be communicatively coupled with data bus 820. In some embodiments, data bus 820 may be implemented as one or more data buses. Malicious network content detection system 125 may also comprise communication network interface 825, input/output (I/O) interface 830, and display interface 835. Communication network interface 825 may be communicatively coupled withnetwork 120 via communication medium 840. In some embodiments, malicious network content detection system 125 may be communicatively coupled with a network tap, such as network tap 115, which in turn may be communicatively coupled withnetwork 120.Bus 920 provides communications between communications network interface 825, processor 805, memory system 810, storage system 815, I/O interface 830, and display interface 835. - Communications network interface 825 may communicate with other digital devices (not shown) via communications medium 840.
Processor 905 executes instructions which may be stored on a processor-readable storage medium. Memory system 810 may store data permanently or temporarily. Some examples of memory system 810 include RAM and ROM. Storage system 815 also permanently or temporarily stores data. Some examples of storage system 815 are hard discs and disc drives. I/O interface 830 may include any device that can receive input and provide output to a user. I/O interface 830 may include, but is not limited to, a keyboard, a mouse, a touch screen, a keypad, a biosensor, a compact disc (CD) drive, a digital video disc (DVD) drive, an optical disk drive, or a floppy disk drive. Display interface 835 may include an interface configured to support a display, monitor, or screen. In some embodiments, malicious network content detection system 125 comprises a graphical user interface to be displayed to a user over a monitor in order to allow the user to control malicious network content detection system 125. - The foregoing detailed description of the technology herein has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the technology to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the technology and its practical application to thereby enable others skilled in the art to best utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the technology be defined by the claims appended hereto.
Claims (28)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/089,191 US9106694B2 (en) | 2004-04-01 | 2011-04-18 | Electronic message analysis for malware detection |
EP17206478.4A EP3319005A1 (en) | 2011-04-18 | 2012-02-23 | Electronic message analysis for malware detection |
EP12774315.1A EP2700009A4 (en) | 2011-04-18 | 2012-02-23 | Electronic message analysis for malware detection |
JP2014506405A JP6013455B2 (en) | 2011-04-18 | 2012-02-23 | Electronic message analysis for malware detection |
PCT/US2012/026402 WO2012145066A1 (en) | 2011-04-18 | 2012-02-23 | Electronic message analysis for malware detection |
US14/745,903 US10027690B2 (en) | 2004-04-01 | 2015-06-22 | Electronic message analysis for malware detection |
US16/036,870 US10757120B1 (en) | 2004-04-01 | 2018-07-16 | Malicious network content detection |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55919804P | 2004-04-01 | 2004-04-01 | |
US57991004P | 2004-06-14 | 2004-06-14 | |
US57995304P | 2004-06-14 | 2004-06-14 | |
US11/096,287 US8528086B1 (en) | 2004-04-01 | 2005-03-31 | System and method of detecting computer worms |
US11/151,812 US8549638B2 (en) | 2004-06-14 | 2005-06-13 | System and method of containing computer worms |
US11/152,286 US8006305B2 (en) | 2004-06-14 | 2005-06-13 | Computer worm defense system and method |
US11/409,355 US8171553B2 (en) | 2004-04-01 | 2006-04-20 | Heuristic based capture with replay to virtual machine |
US11/471,072 US8584239B2 (en) | 2004-04-01 | 2006-06-19 | Virtual machine with dynamic data flow analysis |
US11/494,990 US8375444B2 (en) | 2006-04-20 | 2006-07-28 | Dynamic signature creation and enforcement |
US11/717,474 US8898788B1 (en) | 2004-04-01 | 2007-03-12 | Systems and methods for malware attack prevention |
US13/089,191 US9106694B2 (en) | 2004-04-01 | 2011-04-18 | Electronic message analysis for malware detection |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/717,474 Continuation-In-Part US8898788B1 (en) | 2004-04-01 | 2007-03-12 | Systems and methods for malware attack prevention |
US11/717,474 Continuation US8898788B1 (en) | 2004-04-01 | 2007-03-12 | Systems and methods for malware attack prevention |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/745,903 Continuation US10027690B2 (en) | 2004-04-01 | 2015-06-22 | Electronic message analysis for malware detection |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110314546A1 true US20110314546A1 (en) | 2011-12-22 |
US9106694B2 US9106694B2 (en) | 2015-08-11 |
Family
ID=47041870
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/089,191 Active 2025-11-10 US9106694B2 (en) | 2004-04-01 | 2011-04-18 | Electronic message analysis for malware detection |
US14/745,903 Expired - Lifetime US10027690B2 (en) | 2004-04-01 | 2015-06-22 | Electronic message analysis for malware detection |
US16/036,870 Expired - Lifetime US10757120B1 (en) | 2004-04-01 | 2018-07-16 | Malicious network content detection |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/745,903 Expired - Lifetime US10027690B2 (en) | 2004-04-01 | 2015-06-22 | Electronic message analysis for malware detection |
US16/036,870 Expired - Lifetime US10757120B1 (en) | 2004-04-01 | 2018-07-16 | Malicious network content detection |
Country Status (4)
Country | Link |
---|---|
US (3) | US9106694B2 (en) |
EP (2) | EP2700009A4 (en) |
JP (1) | JP6013455B2 (en) |
WO (1) | WO2012145066A1 (en) |
Cited By (260)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110252478A1 (en) * | 2006-07-10 | 2011-10-13 | Websense, Inc. | System and method of analyzing web content |
US8171553B2 (en) | 2004-04-01 | 2012-05-01 | Fireeye, Inc. | Heuristic based capture with replay to virtual machine |
US8204984B1 (en) | 2004-04-01 | 2012-06-19 | Fireeye, Inc. | Systems and methods for detecting encrypted bot command and control communication channels |
US20120304287A1 (en) * | 2011-05-26 | 2012-11-29 | Microsoft Corporation | Automatic detection of search results poisoning attacks |
US20120304291A1 (en) * | 2011-05-26 | 2012-11-29 | International Business Machines Corporation | Rotation of web site content to prevent e-mail spam/phishing attacks |
US8375444B2 (en) | 2006-04-20 | 2013-02-12 | Fireeye, Inc. | Dynamic signature creation and enforcement |
US20130055403A1 (en) * | 2005-01-25 | 2013-02-28 | Whitehat Security, Inc. | System for detecting vulnerabilities in web applications using client-side application interfaces |
CN103186739A (en) * | 2012-01-03 | 2013-07-03 | 国际商业机器公司 | Method for secure web browsing |
US8528086B1 (en) | 2004-04-01 | 2013-09-03 | Fireeye, Inc. | System and method of detecting computer worms |
US8539582B1 (en) | 2004-04-01 | 2013-09-17 | Fireeye, Inc. | Malware containment and security analysis on connection |
US8549638B2 (en) | 2004-06-14 | 2013-10-01 | Fireeye, Inc. | System and method of containing computer worms |
US8561177B1 (en) | 2004-04-01 | 2013-10-15 | Fireeye, Inc. | Systems and methods for detecting communication channels of bots |
US8566946B1 (en) | 2006-04-20 | 2013-10-22 | Fireeye, Inc. | Malware containment on connection |
US8584239B2 (en) | 2004-04-01 | 2013-11-12 | Fireeye, Inc. | Virtual machine with dynamic data flow analysis |
US20130312081A1 (en) * | 2012-05-18 | 2013-11-21 | Estsecurity Co., Ltd. | Malicious code blocking system |
US8793787B2 (en) | 2004-04-01 | 2014-07-29 | Fireeye, Inc. | Detecting malicious network content using virtual environment components |
US8832829B2 (en) | 2009-09-30 | 2014-09-09 | Fireeye, Inc. | Network-based binary file extraction and analysis for malware detection |
US8850571B2 (en) | 2008-11-03 | 2014-09-30 | Fireeye, Inc. | Systems and methods for detecting malicious network content |
US8881282B1 (en) | 2004-04-01 | 2014-11-04 | Fireeye, Inc. | Systems and methods for malware attack detection and identification |
US8898788B1 (en) | 2004-04-01 | 2014-11-25 | Fireeye, Inc. | Systems and methods for malware attack prevention |
US20150007312A1 (en) * | 2013-06-28 | 2015-01-01 | Vinay Pidathala | System and method for detecting malicious links in electronic messages |
US20150074810A1 (en) * | 2013-09-11 | 2015-03-12 | NSS Labs, Inc. | Malware and exploit campaign detection system and method |
KR20150029973A (en) * | 2013-09-11 | 2015-03-19 | 삼성전자주식회사 | Method for controlling an url and an electronic device |
US8990944B1 (en) | 2013-02-23 | 2015-03-24 | Fireeye, Inc. | Systems and methods for automatically detecting backdoors |
US20150089655A1 (en) * | 2013-09-23 | 2015-03-26 | Electronics And Telecommunications Research Institute | System and method for detecting malware based on virtual host |
US8997219B2 (en) | 2008-11-03 | 2015-03-31 | Fireeye, Inc. | Systems and methods for detecting malicious PDF network content |
US9003524B2 (en) | 2006-07-10 | 2015-04-07 | Websense, Inc. | System and method for analyzing web content |
US9009822B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for multi-phase analysis of mobile applications |
US9009823B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications installed on mobile devices |
US9027135B1 (en) | 2004-04-01 | 2015-05-05 | Fireeye, Inc. | Prospective client identification using malware attack detection |
WO2015081034A1 (en) * | 2013-11-27 | 2015-06-04 | Cisco Technology, Inc. | Cloud-assisted threat defense for connected vehicles |
US20150163236A1 (en) * | 2013-12-09 | 2015-06-11 | F-Secure Corporation | Unauthorised/malicious redirection |
JP2015132942A (en) * | 2014-01-10 | 2015-07-23 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Connection destination information determination device, connection destination information determination method, and program |
US9106694B2 (en) | 2004-04-01 | 2015-08-11 | Fireeye, Inc. | Electronic message analysis for malware detection |
US9104867B1 (en) | 2013-03-13 | 2015-08-11 | Fireeye, Inc. | Malicious content analysis using simulated user interaction without user involvement |
US20150244661A1 (en) * | 2012-11-14 | 2015-08-27 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for displaying rich text message on network platform, and computer storage medium |
WO2015126924A1 (en) * | 2014-02-18 | 2015-08-27 | Proofpoint, Inc. | Targeted attack protection using predictive sandboxing |
US20150281262A1 (en) * | 2012-11-07 | 2015-10-01 | Beijing Qihoo Technology Company Limited | Multi-core browser and method for intercepting malicious network address in multi-core browser |
US9159035B1 (en) | 2013-02-23 | 2015-10-13 | Fireeye, Inc. | Framework for computer application analysis of sensitive information tracking |
US9171160B2 (en) | 2013-09-30 | 2015-10-27 | Fireeye, Inc. | Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses |
US9176843B1 (en) | 2013-02-23 | 2015-11-03 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications |
US9189627B1 (en) | 2013-11-21 | 2015-11-17 | Fireeye, Inc. | System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection |
US9195829B1 (en) | 2013-02-23 | 2015-11-24 | Fireeye, Inc. | User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications |
US9223972B1 (en) | 2014-03-31 | 2015-12-29 | Fireeye, Inc. | Dynamically remote tuning of a malware content detection system |
US9241010B1 (en) | 2014-03-20 | 2016-01-19 | Fireeye, Inc. | System and method for network behavior detection |
US9251343B1 (en) | 2013-03-15 | 2016-02-02 | Fireeye, Inc. | Detecting bootkits resident on compromised computers |
US9262635B2 (en) | 2014-02-05 | 2016-02-16 | Fireeye, Inc. | Detection efficacy of virtual machine-based analysis with application specific events |
US9294501B2 (en) | 2013-09-30 | 2016-03-22 | Fireeye, Inc. | Fuzzy hash of behavioral results |
US9292686B2 (en) | 2014-01-16 | 2016-03-22 | Fireeye, Inc. | Micro-virtualization architecture for threat-aware microvisor deployment in a node of a network environment |
US9306974B1 (en) | 2013-12-26 | 2016-04-05 | Fireeye, Inc. | System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits |
US9311479B1 (en) | 2013-03-14 | 2016-04-12 | Fireeye, Inc. | Correlation and consolidation of analytic data for holistic view of a malware attack |
US20160142352A1 (en) * | 2014-11-17 | 2016-05-19 | At&T Intellectual Property I, L.P. | System and Method for Cloud Based IP Mobile Messaging Spam Detection and Defense |
US9355247B1 (en) | 2013-03-13 | 2016-05-31 | Fireeye, Inc. | File extraction from memory dump for malicious content analysis |
US9363280B1 (en) | 2014-08-22 | 2016-06-07 | Fireeye, Inc. | System and method of detecting delivery of malware using cross-customer data |
US9367681B1 (en) | 2013-02-23 | 2016-06-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications using symbolic execution to reach regions of interest within an application |
US9378282B2 (en) | 2008-06-30 | 2016-06-28 | Raytheon Company | System and method for dynamic and real-time categorization of webpages |
EP2949077A4 (en) * | 2013-01-23 | 2016-07-06 | Mcafee Inc | SYSTEM AND METHOD FOR FIREWALL WITH HARDWARE ASSISTANCE ON A NETWORK END POINT IN A SECURITY ENVIRONMENT |
US9398028B1 (en) | 2014-06-26 | 2016-07-19 | Fireeye, Inc. | System, device and method for detecting a malicious attack based on communcations between remotely hosted virtual machines and malicious web servers |
US9430646B1 (en) | 2013-03-14 | 2016-08-30 | Fireeye, Inc. | Distributed systems and methods for automatically detecting unknown bots and botnets |
US9432389B1 (en) | 2014-03-31 | 2016-08-30 | Fireeye, Inc. | System, apparatus and method for detecting a malicious attack based on static analysis of a multi-flow object |
US9438613B1 (en) | 2015-03-30 | 2016-09-06 | Fireeye, Inc. | Dynamic content activation for automated analysis of embedded objects |
US9438623B1 (en) | 2014-06-06 | 2016-09-06 | Fireeye, Inc. | Computer exploit detection using heap spray pattern matching |
US9456000B1 (en) * | 2015-08-06 | 2016-09-27 | Palantir Technologies Inc. | Systems, methods, user interfaces, and computer-readable media for investigating potential malicious communications |
US9473439B2 (en) | 2007-05-18 | 2016-10-18 | Forcepoint Uk Limited | Method and apparatus for electronic mail filtering |
US9483644B1 (en) | 2015-03-31 | 2016-11-01 | Fireeye, Inc. | Methods for detecting file altering malware in VM based analysis |
US9497213B2 (en) | 2013-03-15 | 2016-11-15 | Fireeye, Inc. | System and method to manage sinkholes |
US9495180B2 (en) | 2013-05-10 | 2016-11-15 | Fireeye, Inc. | Optimized resource allocation for virtual machines within a malware content detection system |
US20160337394A1 (en) * | 2015-05-11 | 2016-11-17 | The Boeing Company | Newborn domain screening of electronic mail messages |
US9519782B2 (en) | 2012-02-24 | 2016-12-13 | Fireeye, Inc. | Detecting malicious network content |
US9536091B2 (en) | 2013-06-24 | 2017-01-03 | Fireeye, Inc. | System and method for detecting time-bomb malware |
US9535974B1 (en) | 2014-06-30 | 2017-01-03 | Palantir Technologies Inc. | Systems and methods for identifying key phrase clusters within documents |
US9558352B1 (en) | 2014-11-06 | 2017-01-31 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US9565202B1 (en) | 2013-03-13 | 2017-02-07 | Fireeye, Inc. | System and method for detecting exfiltration content |
US9591015B1 (en) | 2014-03-28 | 2017-03-07 | Fireeye, Inc. | System and method for offloading packet processing and static analysis operations |
US9594904B1 (en) | 2015-04-23 | 2017-03-14 | Fireeye, Inc. | Detecting malware based on reflection |
US9594912B1 (en) | 2014-06-06 | 2017-03-14 | Fireeye, Inc. | Return-oriented programming detection |
US9602539B1 (en) * | 2012-09-28 | 2017-03-21 | Palo Alto Networks, Inc. | Externally defined objects in security policy |
US9626509B1 (en) | 2013-03-13 | 2017-04-18 | Fireeye, Inc. | Malicious content analysis with multi-version application support within single operating environment |
US9628507B2 (en) | 2013-09-30 | 2017-04-18 | Fireeye, Inc. | Advanced persistent threat (APT) detection center |
US9628498B1 (en) | 2004-04-01 | 2017-04-18 | Fireeye, Inc. | System and method for bot detection |
US20170111321A1 (en) * | 2015-10-14 | 2017-04-20 | Adp, Llc | Customized Web Services Gateway |
US9635039B1 (en) | 2013-05-13 | 2017-04-25 | Fireeye, Inc. | Classifying sets of malicious indicators for detecting command and control communications associated with malware |
US9654495B2 (en) | 2006-12-01 | 2017-05-16 | Websense, Llc | System and method of analyzing web addresses |
US20170149811A1 (en) * | 2015-11-25 | 2017-05-25 | Symantec Corporation | Systems and methods for identifying compromised devices within industrial control systems |
CN106796637A (en) * | 2014-10-14 | 2017-05-31 | 日本电信电话株式会社 | Analytical equipment, analysis method and analysis program |
US9686297B2 (en) | 2012-06-07 | 2017-06-20 | Proofpoint, Inc. | Malicious message detection and processing |
US9690606B1 (en) | 2015-03-25 | 2017-06-27 | Fireeye, Inc. | Selective system call monitoring |
US9690933B1 (en) | 2014-12-22 | 2017-06-27 | Fireeye, Inc. | Framework for classifying an object as malicious with machine learning for deploying updated predictive models |
US9690936B1 (en) | 2013-09-30 | 2017-06-27 | Fireeye, Inc. | Multistage system and method for analyzing obfuscated content for malware |
US9736179B2 (en) | 2013-09-30 | 2017-08-15 | Fireeye, Inc. | System, apparatus and method for using malware analysis results to drive adaptive instrumentation of virtual machines to improve exploit detection |
US20170237750A1 (en) * | 2014-11-07 | 2017-08-17 | Suhjun Park | Protective system, apparatus, and method for protecting electronic communication device |
US9747446B1 (en) | 2013-12-26 | 2017-08-29 | Fireeye, Inc. | System and method for run-time object classification |
JP2017168146A (en) * | 2017-06-28 | 2017-09-21 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Connection destination information determination device, connection destination information determination method, and program |
US9773112B1 (en) | 2014-09-29 | 2017-09-26 | Fireeye, Inc. | Exploit detection of malware and malware families |
US9817563B1 (en) | 2014-12-29 | 2017-11-14 | Palantir Technologies Inc. | System and method of generating data points from one or more data stores of data items for chart creation and manipulation |
US9824216B1 (en) | 2015-12-31 | 2017-11-21 | Fireeye, Inc. | Susceptible environment detection system |
US9824209B1 (en) | 2013-02-23 | 2017-11-21 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications that is usable to harden in the field code |
US9825989B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Cyber attack early warning system |
US9825976B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Detection and classification of exploit kits |
US9838417B1 (en) | 2014-12-30 | 2017-12-05 | Fireeye, Inc. | Intelligent context aware user interaction for malware detection |
US9843594B1 (en) | 2014-10-28 | 2017-12-12 | Symantec Corporation | Systems and methods for detecting anomalous messages in automobile networks |
US9860346B2 (en) | 2015-10-14 | 2018-01-02 | Adp, Llc | Dynamic application programming interface builder |
US20180026999A1 (en) * | 2014-01-10 | 2018-01-25 | Tower-Sec Ltd. | Security system for machine to machine cyber attack detection and prevention |
US9888016B1 (en) | 2013-06-28 | 2018-02-06 | Fireeye, Inc. | System and method for detecting phishing using password prediction |
US9898528B2 (en) | 2014-12-22 | 2018-02-20 | Palantir Technologies Inc. | Concept indexing among database of documents using machine learning techniques |
US9906545B1 (en) | 2016-11-22 | 2018-02-27 | Symantec Corporation | Systems and methods for identifying message payload bit fields in electronic communications |
US9912681B1 (en) | 2015-03-31 | 2018-03-06 | Fireeye, Inc. | Injection of content processing delay in an endpoint |
US9912644B2 (en) | 2014-08-05 | 2018-03-06 | Fireeye, Inc. | System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology |
US9922191B1 (en) * | 2017-01-05 | 2018-03-20 | Votiro Cybersec Ltd. | Determining malware prevention based on retrospective content scan |
US9921978B1 (en) | 2013-11-08 | 2018-03-20 | Fireeye, Inc. | System and method for enhanced security of storage devices |
EP3297221A1 (en) * | 2016-09-19 | 2018-03-21 | retarus GmbH | Technique for detecting suspicious electronic messages |
US9934376B1 (en) | 2014-12-29 | 2018-04-03 | Fireeye, Inc. | Malware detection appliance architecture |
US9973531B1 (en) | 2014-06-06 | 2018-05-15 | Fireeye, Inc. | Shellcode detection |
US10027689B1 (en) | 2014-09-29 | 2018-07-17 | Fireeye, Inc. | Interactive infection visualization for improved exploit detection and signature generation for malware and malware families |
US10033759B1 (en) | 2015-09-28 | 2018-07-24 | Fireeye, Inc. | System and method of threat detection under hypervisor control |
US10033747B1 (en) | 2015-09-29 | 2018-07-24 | Fireeye, Inc. | System and method for detecting interpreter-based exploit attacks |
CN108345795A (en) * | 2017-01-23 | 2018-07-31 | 西普霍特公司 | System and method for the Malware that detects and classify |
US10050998B1 (en) | 2015-12-30 | 2018-08-14 | Fireeye, Inc. | Malicious message analysis system |
US10075455B2 (en) | 2014-12-26 | 2018-09-11 | Fireeye, Inc. | Zero-day rotating guest image profile |
US10084813B2 (en) | 2014-06-24 | 2018-09-25 | Fireeye, Inc. | Intrusion prevention and remedy system |
US10091077B1 (en) | 2016-06-27 | 2018-10-02 | Symantec Corporation | Systems and methods for detecting transactional message sequences that are obscured in multicast communications |
US10089461B1 (en) | 2013-09-30 | 2018-10-02 | Fireeye, Inc. | Page replacement code injection |
US10104100B1 (en) | 2016-03-03 | 2018-10-16 | Symantec Corporation | Systems and methods for detecting anomalies that are potentially indicative of malicious attacks |
US10104102B1 (en) | 2015-04-13 | 2018-10-16 | Fireeye, Inc. | Analytic-based security with learning adaptability |
US10108446B1 (en) | 2015-12-11 | 2018-10-23 | Fireeye, Inc. | Late load technique for deploying a virtualization layer underneath a running operating system |
US10133866B1 (en) | 2015-12-30 | 2018-11-20 | Fireeye, Inc. | System and method for triggering analysis of an object for malware in response to modification of that object |
US10133863B2 (en) | 2013-06-24 | 2018-11-20 | Fireeye, Inc. | Zero-day discovery system |
US10146893B1 (en) | 2015-03-27 | 2018-12-04 | Symantec Corporation | Systems and methods for evaluating electronic control units within vehicle emulations |
US10148693B2 (en) | 2015-03-25 | 2018-12-04 | Fireeye, Inc. | Exploit detection system |
US10169585B1 (en) | 2016-06-22 | 2019-01-01 | Fireeye, Inc. | System and methods for advanced malware detection through placement of transition events |
US10176321B2 (en) | 2015-09-22 | 2019-01-08 | Fireeye, Inc. | Leveraging behavior-based rules for malware family classification |
US20190026465A1 (en) * | 2016-01-26 | 2019-01-24 | Aruba Networks, Inc. | Malware Detection |
US10191861B1 (en) | 2016-09-06 | 2019-01-29 | Fireeye, Inc. | Technique for implementing memory views using a layered virtualization architecture |
US10193903B1 (en) | 2016-04-29 | 2019-01-29 | Symantec Corporation | Systems and methods for detecting suspicious microcontroller messages |
US10192052B1 (en) | 2013-09-30 | 2019-01-29 | Fireeye, Inc. | System, apparatus and method for classifying a file as malicious using static scanning |
US10200259B1 (en) | 2016-09-21 | 2019-02-05 | Symantec Corporation | Systems and methods for detecting obscure cyclic application-layer message sequences in transport-layer message sequences |
US10210329B1 (en) | 2015-09-30 | 2019-02-19 | Fireeye, Inc. | Method to detect application execution hijacking using memory protection |
US10216927B1 (en) | 2015-06-30 | 2019-02-26 | Fireeye, Inc. | System and method for protecting memory pages associated with a process using a virtualization layer |
US10223748B2 (en) | 2015-07-30 | 2019-03-05 | Palantir Technologies Inc. | Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data |
US10230746B2 (en) | 2014-01-03 | 2019-03-12 | Palantir Technologies Inc. | System and method for evaluating network threats and usage |
US10235461B2 (en) | 2017-05-02 | 2019-03-19 | Palantir Technologies Inc. | Automated assistance for generating relevant and valuable search results for an entity of interest |
US10242185B1 (en) | 2014-03-21 | 2019-03-26 | Fireeye, Inc. | Dynamic guest image creation and rollback |
US20190104155A1 (en) * | 2017-10-02 | 2019-04-04 | Servicenow, Inc. | Automated Mitigation of Electronic Message Based Security Threats |
US10284575B2 (en) | 2015-11-10 | 2019-05-07 | Fireeye, Inc. | Launcher for setting analysis environment variations for malware detection |
US20190166080A1 (en) * | 2017-11-27 | 2019-05-30 | Fuji Xerox Co.,Ltd. | Information processing apparatus and non-transitory computer readable medium |
US10318630B1 (en) | 2016-11-21 | 2019-06-11 | Palantir Technologies Inc. | Analysis of large bodies of textual data |
US10326788B1 (en) | 2017-05-05 | 2019-06-18 | Symantec Corporation | Systems and methods for identifying suspicious controller area network messages |
US10325224B1 (en) | 2017-03-23 | 2019-06-18 | Palantir Technologies Inc. | Systems and methods for selecting machine learning training data |
US20190188383A1 (en) * | 2017-12-20 | 2019-06-20 | F-Secure Corporation | Method of Detecting Malware in a Sandbox Environment |
US20190190929A1 (en) * | 2017-12-20 | 2019-06-20 | Sophos Limited | Electronic mail security using root cause analysis |
WO2019122832A1 (en) * | 2017-12-20 | 2019-06-27 | Sophos Limited | Electronic mail security using a user-based inquiry |
US10341365B1 (en) | 2015-12-30 | 2019-07-02 | Fireeye, Inc. | Methods and system for hiding transition events for malware detection |
US10348816B2 (en) | 2015-10-14 | 2019-07-09 | Adp, Llc | Dynamic proxy server |
US10395029B1 (en) | 2015-06-30 | 2019-08-27 | Fireeye, Inc. | Virtual system and method with threat protection |
US10417031B2 (en) | 2015-03-31 | 2019-09-17 | Fireeye, Inc. | Selective virtualization for security threat detection |
US10432720B1 (en) | 2014-06-25 | 2019-10-01 | Symantec Corporation | Systems and methods for strong information about transmission control protocol connections |
US10447728B1 (en) | 2015-12-10 | 2019-10-15 | Fireeye, Inc. | Technique for protecting guest processes using a layered virtualization architecture |
US10454950B1 (en) | 2015-06-30 | 2019-10-22 | Fireeye, Inc. | Centralized aggregation technique for detecting lateral movement of stealthy cyber-attacks |
US10462173B1 (en) | 2016-06-30 | 2019-10-29 | Fireeye, Inc. | Malware detection verification and enhancement by coordinating endpoint and malware detection systems |
US10474813B1 (en) | 2015-03-31 | 2019-11-12 | Fireeye, Inc. | Code injection technique for remediation at an endpoint of a network |
US10476906B1 (en) | 2016-03-25 | 2019-11-12 | Fireeye, Inc. | System and method for managing formation and modification of a cluster within a malware detection system |
US10482382B2 (en) | 2017-05-09 | 2019-11-19 | Palantir Technologies Inc. | Systems and methods for reducing manufacturing failure rates |
US10491627B1 (en) | 2016-09-29 | 2019-11-26 | Fireeye, Inc. | Advanced malware detection using similarity analysis |
US10489391B1 (en) | 2015-08-17 | 2019-11-26 | Palantir Technologies Inc. | Systems and methods for grouping and enriching data items accessed from one or more databases for presentation in a user interface |
US10503904B1 (en) | 2017-06-29 | 2019-12-10 | Fireeye, Inc. | Ransomware detection and mitigation |
US10515214B1 (en) | 2013-09-30 | 2019-12-24 | Fireeye, Inc. | System and method for classifying malware within content created during analysis of a specimen |
CN110637302A (en) * | 2017-05-19 | 2019-12-31 | 软件营地株式会社 | Checking Method and Checking System for Malicious Hyperlinks in E-mail Body |
US10523609B1 (en) | 2016-12-27 | 2019-12-31 | Fireeye, Inc. | Multi-vector malware detection and analysis |
EP3599753A1 (en) * | 2018-07-25 | 2020-01-29 | Cyren Inc. | Phishing detection system and method |
US10552994B2 (en) | 2014-12-22 | 2020-02-04 | Palantir Technologies Inc. | Systems and interactive user interfaces for dynamic retrieval, analysis, and triage of data items |
US10554507B1 (en) | 2017-03-30 | 2020-02-04 | Fireeye, Inc. | Multi-level control for enhanced resource and object evaluation management of malware detection system |
US10552610B1 (en) | 2016-12-22 | 2020-02-04 | Fireeye, Inc. | Adaptive virtual machine snapshot update framework for malware behavioral analysis |
US10565378B1 (en) | 2015-12-30 | 2020-02-18 | Fireeye, Inc. | Exploit of privilege detection framework |
US10572487B1 (en) | 2015-10-30 | 2020-02-25 | Palantir Technologies Inc. | Periodic database search manager for multiple data sources |
US10572665B2 (en) | 2012-12-28 | 2020-02-25 | Fireeye, Inc. | System and method to create a number of breakpoints in a virtual machine via virtual machine trapping events |
US10581874B1 (en) | 2015-12-31 | 2020-03-03 | Fireeye, Inc. | Malware detection system with contextual analysis |
US10579647B1 (en) | 2013-12-16 | 2020-03-03 | Palantir Technologies Inc. | Methods and systems for analyzing entity performance |
US10581879B1 (en) | 2016-12-22 | 2020-03-03 | Fireeye, Inc. | Enhanced malware detection for generated objects |
US10587647B1 (en) | 2016-11-22 | 2020-03-10 | Fireeye, Inc. | Technique for malware detection capability comparison of network security devices |
US10592678B1 (en) | 2016-09-09 | 2020-03-17 | Fireeye, Inc. | Secure communications between peers using a verified virtual trusted platform module |
US10601848B1 (en) | 2017-06-29 | 2020-03-24 | Fireeye, Inc. | Cyber-security system and method for weak indicator detection and correlation to generate strong indicators |
US10601865B1 (en) | 2015-09-30 | 2020-03-24 | Fireeye, Inc. | Detection of credential spearphishing attacks using email analysis |
US10601863B1 (en) | 2016-03-25 | 2020-03-24 | Fireeye, Inc. | System and method for managing sensor enrollment |
US10606866B1 (en) | 2017-03-30 | 2020-03-31 | Palantir Technologies Inc. | Framework for exposing network activities |
US10616265B2 (en) | 2013-10-03 | 2020-04-07 | Fireeye, Inc. | Dynamic adaptive defense for cyber-security threats |
US10620618B2 (en) | 2016-12-20 | 2020-04-14 | Palantir Technologies Inc. | Systems and methods for determining relationships between defects |
US10623528B2 (en) | 2015-10-14 | 2020-04-14 | Adp, Llc | Enterprise application ecosystem operating system |
US10642753B1 (en) | 2015-06-30 | 2020-05-05 | Fireeye, Inc. | System and method for protecting a software component running in virtual machine using a virtualization layer |
US10671726B1 (en) | 2014-09-22 | 2020-06-02 | Fireeye Inc. | System and method for malware analysis using thread-level event monitoring |
US10671721B1 (en) | 2016-03-25 | 2020-06-02 | Fireeye, Inc. | Timeout management services |
US10686826B1 (en) | 2019-03-28 | 2020-06-16 | Vade Secure Inc. | Optical scanning parameters computation methods, devices and systems for malicious URL detection |
US10701091B1 (en) | 2013-03-15 | 2020-06-30 | Fireeye, Inc. | System and method for verifying a cyberthreat |
US10706149B1 (en) | 2015-09-30 | 2020-07-07 | Fireeye, Inc. | Detecting delayed activation malware using a primary controller and plural time controllers |
US10713358B2 (en) | 2013-03-15 | 2020-07-14 | Fireeye, Inc. | System and method to extract and utilize disassembly features to classify software intent |
US10715542B1 (en) | 2015-08-14 | 2020-07-14 | Fireeye, Inc. | Mobile application risk analysis |
US10719527B2 (en) | 2013-10-18 | 2020-07-21 | Palantir Technologies Inc. | Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores |
US10726127B1 (en) | 2015-06-30 | 2020-07-28 | Fireeye, Inc. | System and method for protecting a software component running in a virtual machine through virtual interrupts by the virtualization layer |
US10747872B1 (en) | 2017-09-27 | 2020-08-18 | Fireeye, Inc. | System and method for preventing malware evasion |
US10785255B1 (en) | 2016-03-25 | 2020-09-22 | Fireeye, Inc. | Cluster configuration within a scalable malware detection system |
US10791138B1 (en) | 2017-03-30 | 2020-09-29 | Fireeye, Inc. | Subscription-based malware detection |
US10798112B2 (en) | 2017-03-30 | 2020-10-06 | Fireeye, Inc. | Attribute-controlled malware detection |
US10795991B1 (en) | 2016-11-08 | 2020-10-06 | Fireeye, Inc. | Enterprise search |
US10805346B2 (en) | 2017-10-01 | 2020-10-13 | Fireeye, Inc. | Phishing attack detection |
US10805340B1 (en) * | 2014-06-26 | 2020-10-13 | Fireeye, Inc. | Infection vector and malware tracking with an interactive user display |
US10817606B1 (en) | 2015-09-30 | 2020-10-27 | Fireeye, Inc. | Detecting delayed activation malware using a run-time monitoring agent and time-dilation logic |
US10826931B1 (en) | 2018-03-29 | 2020-11-03 | Fireeye, Inc. | System and method for predicting and mitigating cybersecurity system misconfigurations |
US10846117B1 (en) | 2015-12-10 | 2020-11-24 | Fireeye, Inc. | Technique for establishing secure communication between host and guest processes of a virtualization architecture |
US10855700B1 (en) | 2017-06-29 | 2020-12-01 | Fireeye, Inc. | Post-intrusion detection of cyber-attacks during lateral movement within networks |
US10868821B2 (en) * | 2017-12-20 | 2020-12-15 | Sophos Limited | Electronic mail security using a heartbeat |
US10893068B1 (en) | 2017-06-30 | 2021-01-12 | Fireeye, Inc. | Ransomware file modification prevention technique |
US10893059B1 (en) | 2016-03-31 | 2021-01-12 | Fireeye, Inc. | Verification and enhancement using detection systems located at the network periphery and endpoint devices |
US10902119B1 (en) | 2017-03-30 | 2021-01-26 | Fireeye, Inc. | Data extraction system for malware analysis |
US10904286B1 (en) | 2017-03-24 | 2021-01-26 | Fireeye, Inc. | Detection of phishing attacks using similarity analysis |
US10956477B1 (en) | 2018-03-30 | 2021-03-23 | Fireeye, Inc. | System and method for detecting malicious scripts through natural language processing modeling |
US10986124B2 (en) | 2016-06-30 | 2021-04-20 | Sophos Limited | Baiting endpoints for improved detection of authentication attacks |
US10986134B2 (en) | 2015-06-22 | 2021-04-20 | Fireeye, Inc. | Methods and apparatus for graphical user interface environment for creating threat response courses of action for computer networks |
US11005860B1 (en) | 2017-12-28 | 2021-05-11 | Fireeye, Inc. | Method and system for efficient cybersecurity analysis of endpoint events |
US11003773B1 (en) | 2018-03-30 | 2021-05-11 | Fireeye, Inc. | System and method for automatically generating malware detection rule recommendations |
US11063897B2 (en) | 2019-03-01 | 2021-07-13 | Cdw Llc | Method and system for analyzing electronic communications and customer information to recognize and mitigate message-based attacks |
US11075930B1 (en) | 2018-06-27 | 2021-07-27 | Fireeye, Inc. | System and method for detecting repetitive cybersecurity attacks constituting an email campaign |
US11108809B2 (en) | 2017-10-27 | 2021-08-31 | Fireeye, Inc. | System and method for analyzing binary code for malware classification using artificial neural network techniques |
US11113086B1 (en) | 2015-06-30 | 2021-09-07 | Fireeye, Inc. | Virtual system and method for securing external network connectivity |
CN113472765A (en) * | 2021-06-24 | 2021-10-01 | 北京卫达信息技术有限公司 | Method for detecting malicious network content |
US11176251B1 (en) | 2018-12-21 | 2021-11-16 | Fireeye, Inc. | Determining malware via symbolic function hash analysis |
US11182473B1 (en) | 2018-09-13 | 2021-11-23 | Fireeye Security Holdings Us Llc | System and method for mitigating cyberattacks against processor operability by a guest process |
US11228491B1 (en) | 2018-06-28 | 2022-01-18 | Fireeye Security Holdings Us Llc | System and method for distributed cluster configuration monitoring and management |
US11240275B1 (en) | 2017-12-28 | 2022-02-01 | Fireeye Security Holdings Us Llc | Platform and method for performing cybersecurity analyses employing an intelligence hub with a modular architecture |
US11244056B1 (en) | 2014-07-01 | 2022-02-08 | Fireeye Security Holdings Us Llc | Verification of trusted threat-aware visualization layer |
US11258806B1 (en) | 2019-06-24 | 2022-02-22 | Mandiant, Inc. | System and method for automatically associating cybersecurity intelligence to cyberthreat actors |
US11271955B2 (en) | 2017-12-28 | 2022-03-08 | Fireeye Security Holdings Us Llc | Platform and method for retroactive reclassification employing a cybersecurity-based global data store |
CN114238970A (en) * | 2021-12-06 | 2022-03-25 | 北京天融信网络安全技术有限公司 | Malicious behavior detection optimization method and device, intrusion prevention equipment and storage medium |
US11310238B1 (en) | 2019-03-26 | 2022-04-19 | FireEye Security Holdings, Inc. | System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources |
US11316900B1 (en) | 2018-06-29 | 2022-04-26 | FireEye Security Holdings Inc. | System and method for automatically prioritizing rules for cyber-threat detection and mitigation |
US11314859B1 (en) | 2018-06-27 | 2022-04-26 | FireEye Security Holdings, Inc. | Cyber-security system and method for detecting escalation of privileges within an access token |
US11341178B2 (en) | 2014-06-30 | 2022-05-24 | Palantir Technologies Inc. | Systems and methods for key phrase characterization of documents |
US11368475B1 (en) | 2018-12-21 | 2022-06-21 | Fireeye Security Holdings Us Llc | System and method for scanning remote services to locate stored objects with malware |
US11392700B1 (en) | 2019-06-28 | 2022-07-19 | Fireeye Security Holdings Us Llc | System and method for supporting cross-platform data verification |
US11436327B1 (en) | 2019-12-24 | 2022-09-06 | Fireeye Security Holdings Us Llc | System and method for circumventing evasive code for cyberthreat detection |
US11522884B1 (en) | 2019-12-24 | 2022-12-06 | Fireeye Security Holdings Us Llc | Subscription and key management system |
US11552986B1 (en) | 2015-12-31 | 2023-01-10 | Fireeye Security Holdings Us Llc | Cyber-security framework for application of virtual features |
US11556640B1 (en) | 2019-06-27 | 2023-01-17 | Mandiant, Inc. | Systems and methods for automated cybersecurity analysis of extracted binary string sets |
US11558401B1 (en) | 2018-03-30 | 2023-01-17 | Fireeye Security Holdings Us Llc | Multi-vector malware detection data sharing system for improved detection |
DE102019129253B4 (en) | 2019-10-30 | 2023-02-09 | Hans-Jürgen Kuhn | Method and computer system for defending against an attack by malicious software via electronic messages |
US11588840B2 (en) * | 2020-01-31 | 2023-02-21 | Salesforce, Inc. | Automated encryption degradation detection, reporting and remediation |
US11601444B1 (en) | 2018-12-31 | 2023-03-07 | Fireeye Security Holdings Us Llc | Automated system for triage of customer issues |
US11636198B1 (en) | 2019-03-30 | 2023-04-25 | Fireeye Security Holdings Us Llc | System and method for cybersecurity analyzer update and concurrent management system |
US11637862B1 (en) | 2019-09-30 | 2023-04-25 | Mandiant, Inc. | System and method for surfacing cyber-security threats with a self-learning recommendation engine |
US11677786B1 (en) | 2019-03-29 | 2023-06-13 | Fireeye Security Holdings Us Llc | System and method for detecting and protecting against cybersecurity attacks on servers |
US11743290B2 (en) | 2018-12-21 | 2023-08-29 | Fireeye Security Holdings Us Llc | System and method for detecting cyberattacks impersonating legitimate sources |
US11763004B1 (en) | 2018-09-27 | 2023-09-19 | Fireeye Security Holdings Us Llc | System and method for bootkit detection |
US11762990B2 (en) * | 2020-04-07 | 2023-09-19 | Microsoft Technology Licensing, Llc | Unstructured text classification |
US11762984B1 (en) * | 2014-09-26 | 2023-09-19 | Amazon Technologies, Inc. | Inbound link handling |
US11838300B1 (en) | 2019-12-24 | 2023-12-05 | Musarubra Us Llc | Run-time configurable cybersecurity system |
US20230412546A1 (en) * | 2022-05-26 | 2023-12-21 | Avaya Management L.P. | Reminder notification for permission/access to links in electronic mail transmissions |
US11886585B1 (en) | 2019-09-27 | 2024-01-30 | Musarubra Us Llc | System and method for identifying and mitigating cyberattacks through malicious position-independent code execution |
US11979428B1 (en) | 2016-03-31 | 2024-05-07 | Musarubra Us Llc | Technique for verifying exploit/malware at malware detection appliance through correlation with endpoints |
US12003535B2 (en) | 2021-03-01 | 2024-06-04 | Microsoft Technology Licensing, Llc | Phishing URL detection using transformers |
US12074887B1 (en) | 2018-12-21 | 2024-08-27 | Musarubra Us Llc | System and method for selectively processing content after identification and removal of malicious content |
US12200013B2 (en) | 2019-08-07 | 2025-01-14 | Musarubra Us Llc | System and method for detecting cyberattacks impersonating legitimate sources |
US12309200B2 (en) | 2023-03-02 | 2025-05-20 | Sophos Limited | Detecting phishing attacks |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8806647B1 (en) * | 2011-04-25 | 2014-08-12 | Twitter, Inc. | Behavioral scanning of mobile applications |
US9824211B2 (en) | 2013-03-15 | 2017-11-21 | Fireeye, Inc. | System and method to visualize user sessions |
US10728287B2 (en) * | 2013-07-23 | 2020-07-28 | Zscaler, Inc. | Cloud based security using DNS |
KR101540672B1 (en) * | 2014-01-13 | 2015-07-31 | 주식회사 엔피코어 | A system and method for protecting from hacking of mobile terminal |
US20160094564A1 (en) * | 2014-09-26 | 2016-03-31 | Mcafee, Inc | Taxonomic malware detection and mitigation |
CN106686599B (en) | 2015-11-05 | 2020-10-20 | 创新先进技术有限公司 | Method and equipment for risk management of application information |
US9817974B1 (en) | 2015-11-10 | 2017-11-14 | Trend Micro Incorporated | Anti-malware program with stalling code detection |
US9917855B1 (en) * | 2016-03-03 | 2018-03-13 | Trend Micro Incorporated | Mixed analysys-based virtual machine sandbox |
WO2018039792A1 (en) | 2016-08-31 | 2018-03-08 | Wedge Networks Inc. | Apparatus and methods for network-based line-rate detection of unknown malware |
US20180084002A1 (en) * | 2016-09-20 | 2018-03-22 | Re-Sec Technologies Ltd. | Malicious hyperlink protection |
US10162966B1 (en) | 2016-10-19 | 2018-12-25 | Trend Micro Incorporated | Anti-malware system with evasion code detection and rectification |
KR101847381B1 (en) * | 2017-02-02 | 2018-04-12 | (주)리투인소프트웨어 | System and method for offering e-mail in security network |
JP6533823B2 (en) * | 2017-05-08 | 2019-06-19 | デジタルア−ツ株式会社 | INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING SYSTEM, PROGRAM, RECORDING MEDIUM, AND INFORMATION PROCESSING METHOD |
US10419377B2 (en) * | 2017-05-31 | 2019-09-17 | Apple Inc. | Method and system for categorizing instant messages |
CN109214182B (en) * | 2017-07-03 | 2022-04-15 | 阿里巴巴集团控股有限公司 | Method for processing Lesox software in running of virtual machine under cloud platform |
US10521588B1 (en) | 2017-08-30 | 2019-12-31 | Trend Micro Incorporated | Dynamic analysis of malware that has evasion code |
JP6500955B2 (en) * | 2017-08-31 | 2019-04-17 | キヤノンマーケティングジャパン株式会社 | Information processing system, control method thereof |
JP6504218B2 (en) * | 2017-09-15 | 2019-04-24 | キヤノンマーケティングジャパン株式会社 | INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING SYSTEM, CONTROL METHOD, AND PROGRAM |
US10693891B2 (en) | 2017-12-06 | 2020-06-23 | Chicago Mercantile Exchange Inc. | Electronic mail security system |
JP6992975B2 (en) * | 2018-02-23 | 2022-01-13 | Necソリューションイノベータ株式会社 | Information transfer device, information transfer method and information transfer program |
EP3777311B1 (en) | 2018-04-03 | 2023-06-28 | LG Electronics Inc. | Method and apparatus for transmitting signals by tm rlc entity of transmission end in wireless communication system |
JP6504300B1 (en) * | 2018-04-19 | 2019-04-24 | キヤノンマーケティングジャパン株式会社 | INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING SYSTEM, CONTROL METHOD, AND PROGRAM |
US10754951B1 (en) | 2018-06-15 | 2020-08-25 | Trend Micro Incorporated | Dynamic evaluation of executable files in a lightweight executor |
JP6861196B2 (en) * | 2018-06-18 | 2021-04-21 | エーオー カスペルスキー ラボAO Kaspersky Lab | Systems and methods to adapt the dangerous behavior patterns of a program to the user's computer system |
US10664656B2 (en) | 2018-06-20 | 2020-05-26 | Vade Secure Inc. | Methods, devices and systems for data augmentation to improve fraud detection |
RU2697960C1 (en) | 2018-06-29 | 2019-08-21 | Акционерное общество "Лаборатория Касперского" | Method of determining unknown attributes of web data fragments when launching a web page in a browser |
JP6614321B2 (en) * | 2018-12-28 | 2019-12-04 | キヤノンマーケティングジャパン株式会社 | Information processing system, access relay device, control method thereof, and program |
CN110489951B (en) * | 2019-07-08 | 2021-06-11 | 招联消费金融有限公司 | Risk identification method and device, computer equipment and storage medium |
JP2021117797A (en) * | 2020-01-28 | 2021-08-10 | 株式会社サテライトオフィス | Message transmission/reception application software, and message transmission/reception system |
US11425151B2 (en) * | 2020-08-05 | 2022-08-23 | Paypal, Inc. | Client-side attack detection via simulation |
US11886587B2 (en) | 2020-10-13 | 2024-01-30 | Kyndryl, Inc | Malware detection by distributed telemetry data analysis |
US12244553B2 (en) | 2022-06-13 | 2025-03-04 | Bank Of America Corporation | System for identifying and blocking suspect electronic communications based on Artificial Intelligence |
US20240205256A1 (en) * | 2022-12-16 | 2024-06-20 | Acronis International Gmbh | System and method of anomaly detection with configuration-related activity profiles |
US20240267410A1 (en) * | 2023-02-03 | 2024-08-08 | Bank Of America Corporation | Analyzing messages for malicious content using a cloud computing system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070174915A1 (en) * | 2006-01-23 | 2007-07-26 | University Of Washington | Detection of spyware threats within virtual machine |
US20100077481A1 (en) * | 2008-09-22 | 2010-03-25 | Microsoft Corporation | Collecting and analyzing malware data |
US20100281102A1 (en) * | 2009-05-02 | 2010-11-04 | Chinta Madhav | Methods and systems for launching applications into existing isolation environments |
Family Cites Families (549)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2851871C2 (en) | 1978-11-30 | 1984-06-07 | Siemens AG, 1000 Berlin und 8000 München | Circuit arrangement for damping power fluctuations in networks |
GB9003890D0 (en) | 1990-02-21 | 1990-04-18 | Rodime Plc | Method and apparatus for controlling access to and corruption of information in computer systems |
US5319776A (en) | 1990-04-19 | 1994-06-07 | Hilgraeve Corporation | In transit detection of computer virus with safeguard |
US5175732A (en) | 1991-02-15 | 1992-12-29 | Standard Microsystems Corp. | Method and apparatus for controlling data communication operations within stations of a local-area network |
US5390325A (en) | 1992-12-23 | 1995-02-14 | Taligent, Inc. | Automated testing system |
US5440723A (en) | 1993-01-19 | 1995-08-08 | International Business Machines Corporation | Automatic immune system for computers and computer networks |
CA2191205A1 (en) | 1994-06-01 | 1995-12-07 | John Schnurer | Computer virus trap |
GB2303947A (en) | 1995-07-31 | 1997-03-05 | Ibm | Boot sector virus protection in computer systems |
US7058822B2 (en) | 2000-03-30 | 2006-06-06 | Finjan Software, Ltd. | Malicious mobile code runtime monitoring system and methods |
US6167520A (en) | 1996-11-08 | 2000-12-26 | Finjan Software, Inc. | System and method for protecting a client during runtime from hostile downloadables |
US6154844A (en) | 1996-11-08 | 2000-11-28 | Finjan Software, Ltd. | System and method for attaching a downloadable security profile to a downloadable |
US6424627B1 (en) | 1997-02-24 | 2002-07-23 | Metrobility Optical Systems | Full-duplex medium tap apparatus and system |
US5960170A (en) | 1997-03-18 | 1999-09-28 | Trend Micro, Inc. | Event triggered iterative virus detection |
US6094677A (en) | 1997-05-30 | 2000-07-25 | International Business Machines Corporation | Methods, systems and computer program products for providing insertions during delays in interactive systems |
US5978917A (en) | 1997-08-14 | 1999-11-02 | Symantec Corporation | Detection and elimination of macro viruses |
US5983348A (en) | 1997-09-10 | 1999-11-09 | Trend Micro Incorporated | Computer network malicious code scanner |
US6357008B1 (en) | 1997-09-23 | 2002-03-12 | Symantec Corporation | Dynamic heuristic method for detecting computer viruses using decryption exploration and evaluation phases |
IL121898A0 (en) | 1997-10-07 | 1998-03-10 | Cidon Israel | A method and apparatus for active testing and fault allocation of communication networks |
US6108799A (en) | 1997-11-21 | 2000-08-22 | International Business Machines Corporation | Automated sample creation of polymorphic and non-polymorphic marcro viruses |
US6088803A (en) | 1997-12-30 | 2000-07-11 | Intel Corporation | System for virus-checking network data during download to a client device |
US6279113B1 (en) | 1998-03-16 | 2001-08-21 | Internet Tools, Inc. | Dynamic signature inspection-based network intrusion detection |
US6298445B1 (en) | 1998-04-30 | 2001-10-02 | Netect, Ltd. | Computer security |
US7711714B2 (en) | 1998-09-22 | 2010-05-04 | Hitachi, Ltd. | Method and a device for sterilizing downloaded files |
US6550012B1 (en) | 1998-12-11 | 2003-04-15 | Network Associates, Inc. | Active firewall system and methodology |
US6487666B1 (en) | 1999-01-15 | 2002-11-26 | Cisco Technology, Inc. | Intrusion detection signature analysis using regular expressions and logical operators |
US6484315B1 (en) | 1999-02-01 | 2002-11-19 | Cisco Technology, Inc. | Method and system for dynamically distributing updates in a network |
US20030191957A1 (en) | 1999-02-19 | 2003-10-09 | Ari Hypponen | Distributed computer virus detection and scanning |
US7240368B1 (en) | 1999-04-14 | 2007-07-03 | Verizon Corporate Services Group Inc. | Intrusion and misuse deterrence system employing a virtual network |
US6430691B1 (en) | 1999-06-21 | 2002-08-06 | Copytele, Inc. | Stand-alone telecommunications security device |
US6442696B1 (en) | 1999-10-05 | 2002-08-27 | Authoriszor, Inc. | System and method for extensible positive client identification |
US6493756B1 (en) | 1999-10-28 | 2002-12-10 | Networks Associates, Inc. | System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing |
US7249175B1 (en) | 1999-11-23 | 2007-07-24 | Escom Corporation | Method and system for blocking e-mail having a nonexistent sender address |
US6775657B1 (en) | 1999-12-22 | 2004-08-10 | Cisco Technology, Inc. | Multilayered intrusion detection system and method |
GB2353372B (en) | 1999-12-24 | 2001-08-22 | F Secure Oyj | Remote computer virus scanning |
US6832367B1 (en) | 2000-03-06 | 2004-12-14 | International Business Machines Corporation | Method and system for recording and replaying the execution of distributed java programs |
US20010047326A1 (en) | 2000-03-14 | 2001-11-29 | Broadbent David F. | Interface system for a mortgage loan originator compliance engine |
US20040006473A1 (en) | 2002-07-02 | 2004-01-08 | Sbc Technology Resources, Inc. | Method and system for automated categorization of statements |
US6831893B1 (en) | 2000-04-03 | 2004-12-14 | P-Cube, Ltd. | Apparatus and method for wire-speed classification and pre-processing of data packets in a full duplex network |
US7054943B1 (en) | 2000-04-28 | 2006-05-30 | International Business Machines Corporation | Method and apparatus for dynamically adjusting resources assigned to plurality of customers, for meeting service level agreements (slas) with minimal resources, and allowing common pools of resources to be used across plural customers on a demand basis |
US6880110B2 (en) | 2000-05-19 | 2005-04-12 | Self Repairing Computers, Inc. | Self-repairing computer having protected software template and isolated trusted computing environment for automated recovery from virus and hacker attack |
US7240364B1 (en) | 2000-05-20 | 2007-07-03 | Ciena Corporation | Network device identity authentication |
US6907396B1 (en) | 2000-06-01 | 2005-06-14 | Networks Associates Technology, Inc. | Detecting computer viruses or malicious software by patching instructions into an emulator |
US6971097B1 (en) | 2000-06-09 | 2005-11-29 | Sun Microsystems, Inc. | Method and apparatus for implementing concurrently running jobs on an extended virtual machine using different heaps managers |
US7080407B1 (en) | 2000-06-27 | 2006-07-18 | Cisco Technology, Inc. | Virus detection and removal system and method for network-based systems |
US7093239B1 (en) | 2000-07-14 | 2006-08-15 | Internet Security Systems, Inc. | Computer immune system and method for detecting unwanted code in a computer system |
JP2002035109A (en) | 2000-07-21 | 2002-02-05 | Tadashi Kokubo | Anti-thrombotic material and method for manufacturing the same |
US6981279B1 (en) | 2000-08-17 | 2005-12-27 | International Business Machines Corporation | Method and apparatus for replicating and analyzing worm programs |
US20020038430A1 (en) | 2000-09-13 | 2002-03-28 | Charles Edwards | System and method of data collection, processing, analysis, and annotation for monitoring cyber-threats and the notification thereof to subscribers |
GB0022485D0 (en) | 2000-09-13 | 2000-11-01 | Apl Financial Services Oversea | Monitoring network activity |
US7496960B1 (en) | 2000-10-30 | 2009-02-24 | Trend Micro, Inc. | Tracking and reporting of computer virus information |
US20020091819A1 (en) | 2001-01-05 | 2002-07-11 | Daniel Melchione | System and method for configuring computer applications and devices using inheritance |
US20060047665A1 (en) | 2001-01-09 | 2006-03-02 | Tim Neil | System and method for simulating an application for subsequent deployment to a device in communication with a transaction server |
US20020095607A1 (en) | 2001-01-18 | 2002-07-18 | Catherine Lin-Hendel | Security protection for computers and computer-networks |
US7290283B2 (en) | 2001-01-31 | 2007-10-30 | Lancope, Inc. | Network port profiling |
GB0103416D0 (en) | 2001-02-12 | 2001-03-28 | Nokia Networks Oy | Message authentication |
US7281267B2 (en) | 2001-02-20 | 2007-10-09 | Mcafee, Inc. | Software audit system |
WO2002071227A1 (en) | 2001-03-01 | 2002-09-12 | Cyber Operations, Llc | System and method for anti-network terrorism |
US20030074206A1 (en) | 2001-03-23 | 2003-04-17 | Restaurant Services, Inc. | System, method and computer program product for utilizing market demand information for generating revenue |
US7770223B2 (en) | 2001-04-12 | 2010-08-03 | Computer Associates Think, Inc. | Method and apparatus for security management via vicarious network devices |
CN1147795C (en) | 2001-04-29 | 2004-04-28 | 北京瑞星科技股份有限公司 | Method, system and medium for detecting and clearing known and anknown computer virus |
AU2002305490B2 (en) | 2001-05-09 | 2008-11-06 | Sca Ipla Holdings, Inc. | Systems and methods for the prevention of unauthorized use and manipulation of digital content |
US7043757B2 (en) | 2001-05-22 | 2006-05-09 | Mci, Llc | System and method for malicious code detection |
US20020194490A1 (en) | 2001-06-18 | 2002-12-19 | Avner Halperin | System and method of virus containment in computer networks |
US7657419B2 (en) | 2001-06-19 | 2010-02-02 | International Business Machines Corporation | Analytical virtual machine |
US7028179B2 (en) | 2001-07-03 | 2006-04-11 | Intel Corporation | Apparatus and method for secure, automated response to distributed denial of service attacks |
US20030021728A1 (en) | 2001-07-26 | 2003-01-30 | Sharpe Richard R. | Method of and apparatus for object-oriented real-time mechanical control of automated chemistry instruments |
US7861303B2 (en) | 2001-08-01 | 2010-12-28 | Mcafee, Inc. | Malware scanning wireless service agent system and method |
US8438241B2 (en) | 2001-08-14 | 2013-05-07 | Cisco Technology, Inc. | Detecting and protecting against worm traffic on a network |
US7356736B2 (en) | 2001-09-25 | 2008-04-08 | Norman Asa | Simulated computer system for monitoring of software performance |
US7107617B2 (en) | 2001-10-15 | 2006-09-12 | Mcafee, Inc. | Malware scanning of compressed computer files |
US20030074578A1 (en) | 2001-10-16 | 2003-04-17 | Richard Ford | Computer virus containment |
US7007107B1 (en) | 2001-10-22 | 2006-02-28 | United Electronic Industries | Methods and apparatus for performing data acquisition and control |
US20030084318A1 (en) | 2001-10-31 | 2003-05-01 | Schertz Richard L. | System and method of graphically correlating data for an intrusion protection system |
US7320142B1 (en) | 2001-11-09 | 2008-01-15 | Cisco Technology, Inc. | Method and system for configurable network intrusion detection |
US20030101381A1 (en) | 2001-11-29 | 2003-05-29 | Nikolay Mateev | System and method for virus checking software |
US7080408B1 (en) | 2001-11-30 | 2006-07-18 | Mcafee, Inc. | Delayed-delivery quarantining of network communications having suspicious contents |
US7512980B2 (en) | 2001-11-30 | 2009-03-31 | Lancope, Inc. | Packet sampling flow-based detection of network intrusions |
US7062553B2 (en) | 2001-12-04 | 2006-06-13 | Trend Micro, Inc. | Virus epidemic damage control system and method for network environment |
US6895550B2 (en) | 2001-12-05 | 2005-05-17 | I2 Technologies Us, Inc. | Computer-implemented PDF document management |
US7093002B2 (en) | 2001-12-06 | 2006-08-15 | Mcafee, Inc. | Handling of malware scanning of files stored within a file storage device of a computer network |
NZ516346A (en) | 2001-12-21 | 2004-09-24 | Esphion Ltd | A device for evaluating traffic on a computer network to detect traffic abnormalities such as a denial of service attack |
US7607171B1 (en) | 2002-01-17 | 2009-10-20 | Avinti, Inc. | Virus detection by executing e-mail code in a virtual machine |
US7100201B2 (en) | 2002-01-24 | 2006-08-29 | Arxceo Corporation | Undetectable firewall |
US7448084B1 (en) | 2002-01-25 | 2008-11-04 | The Trustees Of Columbia University In The City Of New York | System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses |
US7069316B1 (en) | 2002-02-19 | 2006-06-27 | Mcafee, Inc. | Automated Internet Relay Chat malware monitoring and interception |
EP2068516B1 (en) | 2002-02-19 | 2018-09-05 | Google LLC | E-mail management services |
JP3713491B2 (en) | 2002-02-28 | 2005-11-09 | 株式会社エヌ・ティ・ティ・ドコモ | Server apparatus and information processing method |
JP4031264B2 (en) | 2002-03-06 | 2008-01-09 | 株式会社富士通ソーシアルサイエンスラボラトリ | Filtering management method, filtering management program, filtering management method for filtering device, and filtering management program for filtering device |
US7458098B2 (en) | 2002-03-08 | 2008-11-25 | Secure Computing Corporation | Systems and methods for enhancing electronic communication security |
US20030172291A1 (en) | 2002-03-08 | 2003-09-11 | Paul Judge | Systems and methods for automated whitelisting in monitored communications |
US20030188190A1 (en) | 2002-03-26 | 2003-10-02 | Aaron Jeffrey A. | System and method of intrusion detection employing broad-scope monitoring |
US7370360B2 (en) | 2002-05-13 | 2008-05-06 | International Business Machines Corporation | Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine |
US7415723B2 (en) | 2002-06-11 | 2008-08-19 | Pandya Ashish A | Distributed network security system and a hardware processor therefor |
US8539580B2 (en) | 2002-06-19 | 2013-09-17 | International Business Machines Corporation | Method, system and program product for detecting intrusion of a wireless network |
US8423374B2 (en) | 2002-06-27 | 2013-04-16 | Siebel Systems, Inc. | Method and system for processing intelligence information |
US7124327B2 (en) | 2002-06-29 | 2006-10-17 | Intel Corporation | Control over faults occurring during the operation of guest software in the virtual-machine architecture |
US8789183B1 (en) | 2002-07-19 | 2014-07-22 | Fortinet, Inc. | Detecting network traffic content |
US7418729B2 (en) | 2002-07-19 | 2008-08-26 | Symantec Corporation | Heuristic detection of malicious computer code by page tracking |
US7487543B2 (en) | 2002-07-23 | 2009-02-03 | International Business Machines Corporation | Method and apparatus for the automatic determination of potentially worm-like behavior of a program |
JP3794491B2 (en) | 2002-08-20 | 2006-07-05 | 日本電気株式会社 | Attack defense system and attack defense method |
US7251215B1 (en) | 2002-08-26 | 2007-07-31 | Juniper Networks, Inc. | Adaptive network router |
US20040047356A1 (en) | 2002-09-06 | 2004-03-11 | Bauer Blaine D. | Network traffic monitoring |
US7467408B1 (en) | 2002-09-09 | 2008-12-16 | Cisco Technology, Inc. | Method and apparatus for capturing and filtering datagrams for network security monitoring |
GB0220907D0 (en) | 2002-09-10 | 2002-10-16 | Ingenia Holdings Ltd | Security device and system |
US8909926B2 (en) | 2002-10-21 | 2014-12-09 | Rockwell Automation Technologies, Inc. | System and methodology providing automation security analysis, validation, and learning in an industrial controller environment |
US7159149B2 (en) | 2002-10-24 | 2007-01-02 | Symantec Corporation | Heuristic detection and termination of fast spreading network worm attacks |
US20050033989A1 (en) | 2002-11-04 | 2005-02-10 | Poletto Massimiliano Antonio | Detection of scanning attacks |
US7363656B2 (en) | 2002-11-04 | 2008-04-22 | Mazu Networks, Inc. | Event detection/anomaly correlation heuristics |
US7353539B2 (en) | 2002-11-04 | 2008-04-01 | Hewlett-Packard Development Company, L.P. | Signal level propagation mechanism for distribution of a payload to vulnerable systems |
US7454499B2 (en) | 2002-11-07 | 2008-11-18 | Tippingpoint Technologies, Inc. | Active network defense system and method |
US20040111531A1 (en) | 2002-12-06 | 2004-06-10 | Stuart Staniford | Method and system for reducing the rate of infection of a communications network by a software worm |
US7428300B1 (en) | 2002-12-09 | 2008-09-23 | Verizon Laboratories Inc. | Diagnosing fault patterns in telecommunication networks |
US20040128355A1 (en) | 2002-12-25 | 2004-07-01 | Kuo-Jen Chao | Community-based message classification and self-amending system for a messaging system |
KR100486821B1 (en) | 2003-02-08 | 2005-04-29 | 디프소프트 주식회사 | Method for automatically blocking spam mail by connection of link url |
US7546638B2 (en) | 2003-03-18 | 2009-06-09 | Symantec Corporation | Automated identification and clean-up of malicious computer code |
US7949785B2 (en) | 2003-03-31 | 2011-05-24 | Inpro Network Facility, Llc | Secure virtual community network system |
US6898632B2 (en) | 2003-03-31 | 2005-05-24 | Finisar Corporation | Network security tap for use with intrusion detection system |
US7607010B2 (en) | 2003-04-12 | 2009-10-20 | Deep Nines, Inc. | System and method for network edge data protection |
US8640234B2 (en) | 2003-05-07 | 2014-01-28 | Trustwave Holdings, Inc. | Method and apparatus for predictive and actual intrusion detection on a network |
US7308716B2 (en) | 2003-05-20 | 2007-12-11 | International Business Machines Corporation | Applying blocking measures progressively to malicious network traffic |
US7464404B2 (en) | 2003-05-20 | 2008-12-09 | International Business Machines Corporation | Method of responding to a truncated secure session attack |
US7543051B2 (en) | 2003-05-30 | 2009-06-02 | Borland Software Corporation | Method of non-intrusive analysis of secure and non-secure web application traffic in real-time |
US7231667B2 (en) | 2003-05-29 | 2007-06-12 | Computer Associates Think, Inc. | System and method for computer virus detection utilizing heuristic analysis |
JP4734240B2 (en) | 2003-06-18 | 2011-07-27 | インテリシンク コーポレイション | System and method for providing notification to a remote device |
US20050108562A1 (en) | 2003-06-18 | 2005-05-19 | Khazan Roger I. | Technique for detecting executable malicious code using a combination of static and dynamic analyses |
US8627457B2 (en) | 2003-06-30 | 2014-01-07 | Verizon Business Global Llc | Integrated security system |
US20070256132A2 (en) | 2003-07-01 | 2007-11-01 | Securityprofiling, Inc. | Vulnerability and remediation database |
JP2005056048A (en) | 2003-08-01 | 2005-03-03 | Fact-Real:Kk | Electronic mail monitoring system, electronic mail monitoring program and electronic mail monitoring method |
US20050050334A1 (en) | 2003-08-29 | 2005-03-03 | Trend Micro Incorporated, A Japanese Corporation | Network traffic management by a virus/worm monitor in a distributed network |
US7392542B2 (en) | 2003-08-29 | 2008-06-24 | Seagate Technology Llc | Restoration of data corrupted by viruses using pre-infected copy of data |
KR100432675B1 (en) | 2003-09-19 | 2004-05-27 | 주식회사 아이앤아이맥스 | Method of controlling communication between equipments on a network and apparatus for the same |
US7644441B2 (en) | 2003-09-26 | 2010-01-05 | Cigital, Inc. | Methods for identifying malicious software |
WO2006109236A2 (en) | 2005-04-13 | 2006-10-19 | Netmask (El-Mar) Internet Technologies Ltd. | Dynamic content conversion |
US7496961B2 (en) | 2003-10-15 | 2009-02-24 | Intel Corporation | Methods and apparatus to provide network traffic support and physical security support |
US7694328B2 (en) | 2003-10-21 | 2010-04-06 | Google Inc. | Systems and methods for secure client applications |
US7584455B2 (en) | 2003-10-23 | 2009-09-01 | Microsoft Corporation | Predicate-based test coverage and generation |
JP4051020B2 (en) | 2003-10-28 | 2008-02-20 | 富士通株式会社 | Worm determination program, computer-readable storage medium storing worm determination program, worm determination method, and worm determination device |
JP3999188B2 (en) | 2003-10-28 | 2007-10-31 | 富士通株式会社 | Unauthorized access detection device, unauthorized access detection method, and unauthorized access detection program |
US7421689B2 (en) | 2003-10-28 | 2008-09-02 | Hewlett-Packard Development Company, L.P. | Processor-architecture for facilitating a virtual machine monitor |
WO2005048470A2 (en) | 2003-11-12 | 2005-05-26 | The Trustees Of Columbia University In The City Ofnew York | Apparatus method and medium for tracing the origin of network transmissions using n-gram distribution of data |
US20050114663A1 (en) | 2003-11-21 | 2005-05-26 | Finisar Corporation | Secure network access devices with data encryption |
US20050201297A1 (en) | 2003-12-12 | 2005-09-15 | Cyrus Peikari | Diagnosis of embedded, wireless mesh networks with real-time, flexible, location-specific signaling |
EP1712064A1 (en) | 2004-01-20 | 2006-10-18 | Intrusic, Inc | Systems and methods for monitoring data transmissions to detect a compromised network |
JP2007528059A (en) | 2004-01-22 | 2007-10-04 | エヌイーシー ラボラトリーズ アメリカ インク | Systems and methods for software modeling, abstraction, and analysis |
US7610627B1 (en) | 2004-01-23 | 2009-10-27 | Acxiom Corporation | Secure data exchange technique |
US8220055B1 (en) | 2004-02-06 | 2012-07-10 | Symantec Corporation | Behavior blocking utilizing positive behavior system and method |
US7530104B1 (en) | 2004-02-09 | 2009-05-05 | Symantec Corporation | Threat analysis |
US20050183143A1 (en) | 2004-02-13 | 2005-08-18 | Anderholm Eric J. | Methods and systems for monitoring user, application or device activity |
US8171553B2 (en) | 2004-04-01 | 2012-05-01 | Fireeye, Inc. | Heuristic based capture with replay to virtual machine |
US8584239B2 (en) | 2004-04-01 | 2013-11-12 | Fireeye, Inc. | Virtual machine with dynamic data flow analysis |
US8561177B1 (en) | 2004-04-01 | 2013-10-15 | Fireeye, Inc. | Systems and methods for detecting communication channels of bots |
US8549638B2 (en) | 2004-06-14 | 2013-10-01 | Fireeye, Inc. | System and method of containing computer worms |
US8006305B2 (en) | 2004-06-14 | 2011-08-23 | Fireeye, Inc. | Computer worm defense system and method |
US8793787B2 (en) | 2004-04-01 | 2014-07-29 | Fireeye, Inc. | Detecting malicious network content using virtual environment components |
US9027135B1 (en) | 2004-04-01 | 2015-05-05 | Fireeye, Inc. | Prospective client identification using malware attack detection |
US8566946B1 (en) | 2006-04-20 | 2013-10-22 | Fireeye, Inc. | Malware containment on connection |
US8375444B2 (en) | 2006-04-20 | 2013-02-12 | Fireeye, Inc. | Dynamic signature creation and enforcement |
US8528086B1 (en) | 2004-04-01 | 2013-09-03 | Fireeye, Inc. | System and method of detecting computer worms |
US8204984B1 (en) | 2004-04-01 | 2012-06-19 | Fireeye, Inc. | Systems and methods for detecting encrypted bot command and control communication channels |
US7587537B1 (en) | 2007-11-30 | 2009-09-08 | Altera Corporation | Serializer-deserializer circuits formed from input-output circuit registers |
US8881282B1 (en) | 2004-04-01 | 2014-11-04 | Fireeye, Inc. | Systems and methods for malware attack detection and identification |
US9106694B2 (en) | 2004-04-01 | 2015-08-11 | Fireeye, Inc. | Electronic message analysis for malware detection |
US8898788B1 (en) | 2004-04-01 | 2014-11-25 | Fireeye, Inc. | Systems and methods for malware attack prevention |
US8539582B1 (en) | 2004-04-01 | 2013-09-17 | Fireeye, Inc. | Malware containment and security analysis on connection |
US7966658B2 (en) | 2004-04-08 | 2011-06-21 | The Regents Of The University Of California | Detecting public network attacks using signatures and fast content analysis |
US7533415B2 (en) | 2004-04-21 | 2009-05-12 | Trend Micro Incorporated | Method and apparatus for controlling traffic in a computer network |
US20050240781A1 (en) | 2004-04-22 | 2005-10-27 | Gassoway Paul A | Prioritizing intrusion detection logs |
US7779463B2 (en) | 2004-05-11 | 2010-08-17 | The Trustees Of Columbia University In The City Of New York | Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems |
WO2005114955A1 (en) | 2004-05-21 | 2005-12-01 | Computer Associates Think, Inc. | Systems and methods of computer security |
US7441272B2 (en) | 2004-06-09 | 2008-10-21 | Intel Corporation | Techniques for self-isolation of networked devices |
US7908653B2 (en) | 2004-06-29 | 2011-03-15 | Intel Corporation | Method of improving computer security through sandboxing |
US20060010495A1 (en) | 2004-07-06 | 2006-01-12 | Oded Cohen | Method for protecting a computer from suspicious objects |
US20060015715A1 (en) | 2004-07-16 | 2006-01-19 | Eric Anderson | Automatically protecting network service from network attack |
US20070271446A1 (en) | 2004-07-16 | 2007-11-22 | Tomonori Nakamura | Application Execution Device and Application Execution Device Application Execution Method |
US7444521B2 (en) | 2004-07-16 | 2008-10-28 | Red Hat, Inc. | System and method for detecting computer virus |
US7603715B2 (en) | 2004-07-21 | 2009-10-13 | Microsoft Corporation | Containment of worms |
US20060031476A1 (en) | 2004-08-05 | 2006-02-09 | Mathes Marvin L | Apparatus and method for remotely monitoring a computer network |
US7949849B2 (en) | 2004-08-24 | 2011-05-24 | Mcafee, Inc. | File system for a capture system |
US8214901B2 (en) | 2004-09-17 | 2012-07-03 | Sri International | Method and apparatus for combating malicious code |
US7434261B2 (en) | 2004-09-27 | 2008-10-07 | Microsoft Corporation | System and method of identifying the source of an attack on a computer network |
US20060101516A1 (en) | 2004-10-12 | 2006-05-11 | Sushanthan Sudaharan | Honeynet farms as an early warning system for production networks |
US7478428B1 (en) | 2004-10-12 | 2009-01-13 | Microsoft Corporation | Adapting input to find integer overflows |
US7849506B1 (en) | 2004-10-12 | 2010-12-07 | Avaya Inc. | Switching device, method, and computer program for efficient intrusion detection |
US7610375B2 (en) | 2004-10-28 | 2009-10-27 | Cisco Technology, Inc. | Intrusion detection in a data center environment |
US20060101517A1 (en) | 2004-10-28 | 2006-05-11 | Banzhof Carl E | Inventory management-based computer vulnerability resolution system |
US20090328185A1 (en) | 2004-11-04 | 2009-12-31 | Eric Van Den Berg | Detecting exploit code in network flows |
US20060101277A1 (en) | 2004-11-10 | 2006-05-11 | Meenan Patrick A | Detecting and remedying unauthorized computer programs |
US7540025B2 (en) | 2004-11-18 | 2009-05-26 | Cisco Technology, Inc. | Mitigating network attacks using automatic signature generation |
US7784097B1 (en) | 2004-11-24 | 2010-08-24 | The Trustees Of Columbia University In The City Of New York | Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems |
US20060117385A1 (en) | 2004-11-30 | 2006-06-01 | Mester Michael L | Monitoring propagation protection within a network |
US7987272B2 (en) | 2004-12-06 | 2011-07-26 | Cisco Technology, Inc. | Performing message payload processing functions in a network element on behalf of an application |
US20060161989A1 (en) | 2004-12-13 | 2006-07-20 | Eran Reshef | System and method for deterring rogue users from attacking protected legitimate users |
US7937761B1 (en) | 2004-12-17 | 2011-05-03 | Symantec Corporation | Differential threat detection processing |
US20060143709A1 (en) | 2004-12-27 | 2006-06-29 | Raytheon Company | Network intrusion prevention |
US7725938B2 (en) | 2005-01-20 | 2010-05-25 | Cisco Technology, Inc. | Inline intrusion detection |
US20060164199A1 (en) | 2005-01-26 | 2006-07-27 | Lockdown Networks, Inc. | Network appliance for securely quarantining a node on a network |
US7676841B2 (en) | 2005-02-01 | 2010-03-09 | Fmr Llc | Network intrusion mitigation |
US7668962B2 (en) | 2005-02-07 | 2010-02-23 | Symantec Operating Corporation | System and method for connection failover using redirection |
US7904518B2 (en) | 2005-02-15 | 2011-03-08 | Gytheion Networks Llc | Apparatus and method for analyzing and filtering email and for providing web related services |
US7784099B2 (en) | 2005-02-18 | 2010-08-24 | Pace University | System for intrusion detection and vulnerability assessment in a computer network using simulation and machine learning |
US7516488B1 (en) | 2005-02-23 | 2009-04-07 | Symantec Corporation | Preventing data from being submitted to a remote system in response to a malicious e-mail |
JP4576265B2 (en) * | 2005-03-14 | 2010-11-04 | 富士通株式会社 | URL risk determination device and URL risk determination system |
JP2006270193A (en) | 2005-03-22 | 2006-10-05 | Fuji Xerox Co Ltd | Image forming system and method, and image forming apparatus |
US20060221956A1 (en) | 2005-03-31 | 2006-10-05 | Narayan Harsha L | Methods for performing packet classification via prefix pair bit vectors |
JP4630706B2 (en) | 2005-03-31 | 2011-02-09 | 富士通株式会社 | Service device, client device connection destination switching control method and program by service device |
US7650639B2 (en) | 2005-03-31 | 2010-01-19 | Microsoft Corporation | System and method for protecting a limited resource computer from malware |
US7568233B1 (en) | 2005-04-01 | 2009-07-28 | Symantec Corporation | Detecting malicious software through process dump scanning |
WO2006107712A2 (en) | 2005-04-04 | 2006-10-12 | Bae Systems Information And Electronic Systems Integration Inc. | Method and apparatus for defending against zero-day worm-based attacks |
CN101185063A (en) | 2005-04-18 | 2008-05-21 | 纽约市哥伦比亚大学理事会 | System and method for detecting and preventing attacks using "honeypots" |
US7603712B2 (en) | 2005-04-21 | 2009-10-13 | Microsoft Corporation | Protecting a computer that provides a Web service from malware |
US8069250B2 (en) | 2005-04-28 | 2011-11-29 | Vmware, Inc. | One-way proxy system |
US7480773B1 (en) | 2005-05-02 | 2009-01-20 | Sprint Communications Company L.P. | Virtual machine use and optimization of hardware configurations |
US7493602B2 (en) | 2005-05-02 | 2009-02-17 | International Business Machines Corporation | Methods and arrangements for unified program analysis |
CN101495969B (en) | 2005-05-05 | 2012-10-10 | 思科埃恩波特系统有限公司 | Identifying threats in electronic messages |
US7930738B1 (en) | 2005-06-02 | 2011-04-19 | Adobe Systems Incorporated | Method and apparatus for secure execution of code |
WO2006131475A1 (en) | 2005-06-06 | 2006-12-14 | International Business Machines Corporation | Computer network intrusion detection system and method |
US20060288417A1 (en) | 2005-06-21 | 2006-12-21 | Sbc Knowledge Ventures Lp | Method and apparatus for mitigating the effects of malicious software in a communication network |
US7877803B2 (en) | 2005-06-27 | 2011-01-25 | Hewlett-Packard Development Company, L.P. | Automated immune response for a computer |
US7636938B2 (en) | 2005-06-30 | 2009-12-22 | Microsoft Corporation | Controlling network access |
JP4200453B2 (en) * | 2005-07-08 | 2008-12-24 | 株式会社クローバー・ネットワーク・コム | Fraud prevention program and computer-readable storage medium |
US20070016951A1 (en) | 2005-07-13 | 2007-01-18 | Piccard Paul L | Systems and methods for identifying sources of malware |
JP2007025422A (en) | 2005-07-20 | 2007-02-01 | Alps Electric Co Ltd | Wavelength branching filter and optical communication module |
US7984493B2 (en) | 2005-07-22 | 2011-07-19 | Alcatel-Lucent | DNS based enforcement for confinement and detection of network malicious activities |
US7797387B2 (en) | 2005-08-15 | 2010-09-14 | Cisco Technology, Inc. | Interactive text communication system |
WO2007022454A2 (en) | 2005-08-18 | 2007-02-22 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media protecting a digital data processing device from attack |
US8347392B2 (en) | 2005-08-25 | 2013-01-01 | Hewlett-Packard Development Company, L.P. | Apparatus and method for analyzing and supplementing a program to provide security |
US7739740B1 (en) | 2005-09-22 | 2010-06-15 | Symantec Corporation | Detecting polymorphic threats |
US7725737B2 (en) | 2005-10-14 | 2010-05-25 | Check Point Software Technologies, Inc. | System and methodology providing secure workspace environment |
CN100428157C (en) | 2005-10-19 | 2008-10-22 | 联想(北京)有限公司 | A computer system and method to check completely |
US7730011B1 (en) | 2005-10-19 | 2010-06-01 | Mcafee, Inc. | Attributes of captured objects in a capture system |
US7971256B2 (en) | 2005-10-20 | 2011-06-28 | Cisco Technology, Inc. | Mechanism to correlate the presence of worms in a network |
US9055093B2 (en) | 2005-10-21 | 2015-06-09 | Kevin R. Borders | Method, system and computer program product for detecting at least one of security threats and undesirable computer files |
US8566928B2 (en) | 2005-10-27 | 2013-10-22 | Georgia Tech Research Corporation | Method and system for detecting and responding to attacking networks |
KR100735411B1 (en) | 2005-12-07 | 2007-07-04 | 삼성전기주식회사 | Method for manufacturing wiring board and wiring board |
US7698548B2 (en) | 2005-12-08 | 2010-04-13 | Microsoft Corporation | Communications traffic segregation for security purposes |
US7577424B2 (en) | 2005-12-19 | 2009-08-18 | Airdefense, Inc. | Systems and methods for wireless vulnerability analysis |
US20070143827A1 (en) | 2005-12-21 | 2007-06-21 | Fiberlink | Methods and systems for intelligently controlling access to computing resources |
US20080018122A1 (en) | 2005-12-28 | 2008-01-24 | Robert Zierler | Rifle Sling and Method of Use Thereof |
US7849143B2 (en) | 2005-12-29 | 2010-12-07 | Research In Motion Limited | System and method of dynamic management of spam |
WO2007076624A1 (en) | 2005-12-30 | 2007-07-12 | Intel Corporation | Virtual machine to detect malicious code |
US8533680B2 (en) | 2005-12-30 | 2013-09-10 | Microsoft Corporation | Approximating finite domains in symbolic state exploration |
US8255996B2 (en) | 2005-12-30 | 2012-08-28 | Extreme Networks, Inc. | Network threat detection and mitigation |
US8209667B2 (en) | 2006-01-11 | 2012-06-26 | International Business Machines Corporation | Software verification using hybrid explicit and symbolic model checking |
US8018845B2 (en) | 2006-01-25 | 2011-09-13 | Cisco Technology, Inc | Sampling rate-limited traffic |
US20070192858A1 (en) | 2006-02-16 | 2007-08-16 | Infoexpress, Inc. | Peer based network access control |
US20070192500A1 (en) | 2006-02-16 | 2007-08-16 | Infoexpress, Inc. | Network access control including dynamic policy enforcement point |
US8176480B1 (en) | 2006-02-27 | 2012-05-08 | Symantec Operating Corporation | Adaptive instrumentation through dynamic recompilation |
WO2007100915A2 (en) | 2006-02-28 | 2007-09-07 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media for outputting data based on anomaly detection |
US7774459B2 (en) | 2006-03-01 | 2010-08-10 | Microsoft Corporation | Honey monkey network exploration |
US8443446B2 (en) | 2006-03-27 | 2013-05-14 | Telecom Italia S.P.A. | Method and system for identifying malicious messages in mobile communication networks, related network and computer program product therefor |
US7757112B2 (en) | 2006-03-29 | 2010-07-13 | Lenovo (Singapore) Pte. Ltd. | System and method for booting alternate MBR in event of virus attack |
US8479174B2 (en) | 2006-04-05 | 2013-07-02 | Prevx Limited | Method, computer program and computer for analyzing an executable computer file |
US9064115B2 (en) | 2006-04-06 | 2015-06-23 | Pulse Secure, Llc | Malware detection system and method for limited access mobile platforms |
US8510827B1 (en) | 2006-05-18 | 2013-08-13 | Vmware, Inc. | Taint tracking mechanism for computer security |
US8365286B2 (en) | 2006-06-30 | 2013-01-29 | Sophos Plc | Method and system for classification of software using characteristics and combinations of such characteristics |
US8261344B2 (en) | 2006-06-30 | 2012-09-04 | Sophos Plc | Method and system for classification of software using characteristics and combinations of such characteristics |
US8020206B2 (en) | 2006-07-10 | 2011-09-13 | Websense, Inc. | System and method of analyzing web content |
US7870612B2 (en) | 2006-09-11 | 2011-01-11 | Fujian Eastern Micropoint Info-Tech Co., Ltd | Antivirus protection system and method for computers |
US8789172B2 (en) | 2006-09-18 | 2014-07-22 | The Trustees Of Columbia University In The City Of New York | Methods, media, and systems for detecting attack on a digital processing device |
US20080077793A1 (en) | 2006-09-21 | 2008-03-27 | Sensory Networks, Inc. | Apparatus and method for high throughput network security systems |
US8533819B2 (en) | 2006-09-29 | 2013-09-10 | At&T Intellectual Property Ii, L.P. | Method and apparatus for detecting compromised host computers |
EP2080100A4 (en) | 2006-10-04 | 2011-03-02 | Trek 2000 Int Ltd | Method, apparatus and system for authentication of external storage devices |
DE102006047979B4 (en) | 2006-10-10 | 2009-07-16 | OCé PRINTING SYSTEMS GMBH | A data processing system, method and computer program product for executing a test routine in conjunction with an operating system |
US7832008B1 (en) | 2006-10-11 | 2010-11-09 | Cisco Technology, Inc. | Protection of computer resources |
US8234640B1 (en) | 2006-10-17 | 2012-07-31 | Manageiq, Inc. | Compliance-based adaptations in managed virtual systems |
US8949826B2 (en) | 2006-10-17 | 2015-02-03 | Managelq, Inc. | Control and management of virtual systems |
US8042184B1 (en) | 2006-10-18 | 2011-10-18 | Kaspersky Lab, Zao | Rapid analysis of data stream for malware presence |
US20080141376A1 (en) | 2006-10-24 | 2008-06-12 | Pc Tools Technology Pty Ltd. | Determining maliciousness of software |
US8656495B2 (en) | 2006-11-17 | 2014-02-18 | Hewlett-Packard Development Company, L.P. | Web application assessment based on intelligent generation of attack strings |
KR100922579B1 (en) | 2006-11-30 | 2009-10-21 | 한국전자통신연구원 | Apparatus and method for detecting network attack |
GB2444514A (en) | 2006-12-04 | 2008-06-11 | Glasswall | Electronic file re-generation |
WO2008079990A2 (en) | 2006-12-20 | 2008-07-03 | The Penn State Research Foundation | Proactive worm containment (pwc) for enterprise networks |
ATE438151T1 (en) | 2006-12-21 | 2009-08-15 | Ericsson Telefon Ab L M | OCCASIONING COMPUTER PROGRAM CODES |
WO2008084569A1 (en) | 2006-12-26 | 2008-07-17 | Sharp Kabushiki Kaisha | Backlight device, display, and tv receiver |
US7996836B1 (en) | 2006-12-29 | 2011-08-09 | Symantec Corporation | Using a hypervisor to provide computer security |
GB2458094A (en) | 2007-01-09 | 2009-09-09 | Surfcontrol On Demand Ltd | URL interception and categorization in firewalls |
US8069484B2 (en) | 2007-01-25 | 2011-11-29 | Mandiant Corporation | System and method for determining data entropy to identify malware |
US8380987B2 (en) | 2007-01-25 | 2013-02-19 | Microsoft Corporation | Protection agents and privilege modes |
US7908660B2 (en) | 2007-02-06 | 2011-03-15 | Microsoft Corporation | Dynamic risk management |
US20080201778A1 (en) | 2007-02-21 | 2008-08-21 | Matsushita Electric Industrial Co., Ltd. | Intrusion detection using system call monitors on a bayesian network |
US9021590B2 (en) | 2007-02-28 | 2015-04-28 | Microsoft Technology Licensing, Llc | Spyware detection mechanism |
US20080222729A1 (en) | 2007-03-05 | 2008-09-11 | Songqing Chen | Containment of Unknown and Polymorphic Fast Spreading Worms |
US20080222728A1 (en) | 2007-03-05 | 2008-09-11 | Paula Natasha Chavez | Methods and interfaces for executable code analysis |
US8392997B2 (en) | 2007-03-12 | 2013-03-05 | University Of Southern California | Value-adaptive security threat modeling and vulnerability ranking |
US20080320594A1 (en) | 2007-03-19 | 2008-12-25 | Xuxian Jiang | Malware Detector |
US8955122B2 (en) | 2007-04-04 | 2015-02-10 | Sri International | Method and apparatus for detecting malware infection |
US9083712B2 (en) | 2007-04-04 | 2015-07-14 | Sri International | Method and apparatus for generating highly predictive blacklists |
US7904961B2 (en) | 2007-04-20 | 2011-03-08 | Juniper Networks, Inc. | Network attack detection using partial deterministic finite automaton pattern matching |
US20080295172A1 (en) | 2007-05-22 | 2008-11-27 | Khushboo Bohacek | Method, system and computer-readable media for reducing undesired intrusion alarms in electronic communications systems and networks |
US8402529B1 (en) | 2007-05-30 | 2013-03-19 | M86 Security, Inc. | Preventing propagation of malicious software during execution in a virtual machine |
GB2449852A (en) | 2007-06-04 | 2008-12-10 | Agilent Technologies Inc | Monitoring network attacks using pattern matching |
US7853689B2 (en) | 2007-06-15 | 2010-12-14 | Broadcom Corporation | Multi-stage deep packet inspection for lightweight devices |
US20090007100A1 (en) | 2007-06-28 | 2009-01-01 | Microsoft Corporation | Suspending a Running Operating System to Enable Security Scanning |
US8584094B2 (en) | 2007-06-29 | 2013-11-12 | Microsoft Corporation | Dynamically computing reputation scores for objects |
US8135007B2 (en) | 2007-06-29 | 2012-03-13 | Extreme Networks, Inc. | Method and mechanism for port redirects in a network switch |
US7836502B1 (en) | 2007-07-03 | 2010-11-16 | Trend Micro Inc. | Scheduled gateway scanning arrangement and methods thereof |
US20090013408A1 (en) | 2007-07-06 | 2009-01-08 | Messagelabs Limited | Detection of exploits in files |
US8060074B2 (en) | 2007-07-30 | 2011-11-15 | Mobile Iron, Inc. | Virtual instance architecture for mobile device management systems |
US8448161B2 (en) | 2007-07-30 | 2013-05-21 | Adobe Systems Incorporated | Application tracking for application execution environment |
US8621610B2 (en) | 2007-08-06 | 2013-12-31 | The Regents Of The University Of Michigan | Network service for the detection, analysis and quarantine of malicious and unwanted files |
US8763115B2 (en) | 2007-08-08 | 2014-06-24 | Vmware, Inc. | Impeding progress of malicious guest software |
US8601451B2 (en) | 2007-08-29 | 2013-12-03 | Mcafee, Inc. | System, method, and computer program product for determining whether code is unwanted based on the decompilation thereof |
KR101377014B1 (en) | 2007-09-04 | 2014-03-26 | 삼성전자주식회사 | System and Method of Malware Diagnosis Mechanism Based on Immune Database |
US8307443B2 (en) | 2007-09-28 | 2012-11-06 | Microsoft Corporation | Securing anti-virus software with virtualization |
US7614084B2 (en) | 2007-10-02 | 2009-11-03 | Kaspersky Lab Zao | System and method for detecting multi-component malware |
US8019700B2 (en) | 2007-10-05 | 2011-09-13 | Google Inc. | Detecting an intrusive landing page |
US8261265B2 (en) | 2007-10-30 | 2012-09-04 | Vmware, Inc. | Transparent VMM-assisted user-mode execution control transfer |
US8302080B2 (en) | 2007-11-08 | 2012-10-30 | Ntt Docomo, Inc. | Automated test input generation for web applications |
US8045458B2 (en) | 2007-11-08 | 2011-10-25 | Mcafee, Inc. | Prioritizing network traffic |
KR100942795B1 (en) | 2007-11-21 | 2010-02-18 | 한국전자통신연구원 | Malware detection device and method |
US7797748B2 (en) | 2007-12-12 | 2010-09-14 | Vmware, Inc. | On-access anti-virus mechanism for virtual machine architecture |
US7996904B1 (en) | 2007-12-19 | 2011-08-09 | Symantec Corporation | Automated unpacking of executables packed by multiple layers of arbitrary packers |
US8510828B1 (en) | 2007-12-31 | 2013-08-13 | Symantec Corporation | Enforcing the execution exception to prevent packers from evading the scanning of dynamically created code |
US8225288B2 (en) | 2008-01-29 | 2012-07-17 | Intuit Inc. | Model-based testing using branches, decisions, and options |
US8566476B2 (en) | 2008-02-01 | 2013-10-22 | Mandiant Corporation | Method and system for analyzing data related to an event |
US9106630B2 (en) | 2008-02-01 | 2015-08-11 | Mandiant, Llc | Method and system for collaboration during an event |
US7937387B2 (en) | 2008-02-01 | 2011-05-03 | Mandiant | System and method for data preservation and retrieval |
US8949257B2 (en) | 2008-02-01 | 2015-02-03 | Mandiant, Llc | Method and system for collecting and organizing data corresponding to an event |
US20100031353A1 (en) | 2008-02-04 | 2010-02-04 | Microsoft Corporation | Malware Detection Using Code Analysis and Behavior Monitoring |
US8595834B2 (en) | 2008-02-04 | 2013-11-26 | Samsung Electronics Co., Ltd | Detecting unauthorized use of computing devices based on behavioral patterns |
US8201246B1 (en) | 2008-02-25 | 2012-06-12 | Trend Micro Incorporated | Preventing malicious codes from performing malicious actions in a computer system |
US8805947B1 (en) | 2008-02-27 | 2014-08-12 | Parallels IP Holdings GmbH | Method and system for remote device access in virtual environment |
US20090228233A1 (en) | 2008-03-06 | 2009-09-10 | Anderson Gary F | Rank-based evaluation |
JP5102659B2 (en) * | 2008-03-13 | 2012-12-19 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Malignant website determining device, malignant website determining system, method and program thereof |
US8407784B2 (en) | 2008-03-19 | 2013-03-26 | Websense, Inc. | Method and system for protection against information stealing software |
US9264441B2 (en) | 2008-03-24 | 2016-02-16 | Hewlett Packard Enterprise Development Lp | System and method for securing a network from zero-day vulnerability exploits |
US8239944B1 (en) | 2008-03-28 | 2012-08-07 | Symantec Corporation | Reducing malware signature set size through server-side processing |
US8549486B2 (en) | 2008-04-21 | 2013-10-01 | Microsoft Corporation | Active property checking |
US9123027B2 (en) | 2010-10-19 | 2015-09-01 | QinetiQ North America, Inc. | Social engineering protection appliance |
US8844033B2 (en) | 2008-05-27 | 2014-09-23 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media for detecting network anomalies using a trained probabilistic model |
US8732825B2 (en) | 2008-05-28 | 2014-05-20 | Symantec Corporation | Intelligent hashes for centralized malware detection |
US8516478B1 (en) | 2008-06-12 | 2013-08-20 | Mcafee, Inc. | Subsequent processing of scanning task utilizing subset of virtual machines predetermined to have scanner process and adjusting amount of subsequest VMs processing based on load |
US8234709B2 (en) | 2008-06-20 | 2012-07-31 | Symantec Operating Corporation | Streaming malware definition updates |
US8850570B1 (en) | 2008-06-30 | 2014-09-30 | Symantec Corporation | Filter-based identification of malicious websites |
US8381298B2 (en) | 2008-06-30 | 2013-02-19 | Microsoft Corporation | Malware detention for suspected malware |
US8087086B1 (en) | 2008-06-30 | 2011-12-27 | Symantec Corporation | Method for mitigating false positive generation in antivirus software |
US7996475B2 (en) | 2008-07-03 | 2011-08-09 | Barracuda Networks Inc | Facilitating transmission of email by checking email parameters with a database of well behaved senders |
US8881271B2 (en) | 2008-08-01 | 2014-11-04 | Mandiant, Llc | System and method for forensic identification of elements within a computer system |
US10027688B2 (en) | 2008-08-11 | 2018-07-17 | Damballa, Inc. | Method and system for detecting malicious and/or botnet-related domain names |
JP5446167B2 (en) | 2008-08-13 | 2014-03-19 | 富士通株式会社 | Antivirus method, computer, and program |
US20100058474A1 (en) | 2008-08-29 | 2010-03-04 | Avg Technologies Cz, S.R.O. | System and method for the detection of malware |
JP4521456B2 (en) | 2008-09-05 | 2010-08-11 | 株式会社東芝 | Information processing system and control method of information processing system |
US8931086B2 (en) | 2008-09-26 | 2015-01-06 | Symantec Corporation | Method and apparatus for reducing false positive detection of malware |
US8028338B1 (en) | 2008-09-30 | 2011-09-27 | Symantec Corporation | Modeling goodware characteristics to reduce false positive malware signatures |
US8171201B1 (en) | 2008-10-07 | 2012-05-01 | Vizioncore, Inc. | Systems and methods for improving virtual machine performance |
US20110173460A1 (en) | 2008-10-10 | 2011-07-14 | Takayuki Ito | Information processing device, method, program, and integrated circuit |
US20100100718A1 (en) | 2008-10-20 | 2010-04-22 | Novell, Inc. | In-the-flow security services for guested virtual machines |
US8347386B2 (en) | 2008-10-21 | 2013-01-01 | Lookout, Inc. | System and method for server-coupled malware prevention |
US8984628B2 (en) | 2008-10-21 | 2015-03-17 | Lookout, Inc. | System and method for adverse mobile application identification |
US9367680B2 (en) | 2008-10-21 | 2016-06-14 | Lookout, Inc. | System and method for mobile communication device application advisement |
US8850571B2 (en) | 2008-11-03 | 2014-09-30 | Fireeye, Inc. | Systems and methods for detecting malicious network content |
US8997219B2 (en) | 2008-11-03 | 2015-03-31 | Fireeye, Inc. | Systems and methods for detecting malicious PDF network content |
US8484727B2 (en) | 2008-11-26 | 2013-07-09 | Kaspersky Lab Zao | System and method for computer malware detection |
JP5274227B2 (en) * | 2008-12-10 | 2013-08-28 | 株式会社ラック | Web page inspection apparatus, computer system, web page inspection method, and program |
US8161556B2 (en) | 2008-12-17 | 2012-04-17 | Symantec Corporation | Context-aware real-time computer-protection systems and methods |
US8635694B2 (en) | 2009-01-10 | 2014-01-21 | Kaspersky Lab Zao | Systems and methods for malware classification |
JP5324934B2 (en) | 2009-01-16 | 2013-10-23 | 株式会社ソニー・コンピュータエンタテインメント | Information processing apparatus and information processing method |
US8233620B2 (en) | 2009-02-27 | 2012-07-31 | Inside Secure | Key recovery mechanism for cryptographic systems |
US8370835B2 (en) | 2009-03-12 | 2013-02-05 | Arend Erich Dittmer | Method for dynamically generating a configuration for a virtual machine with a virtual hard disk in an external storage device |
AU2010223873B2 (en) | 2009-03-13 | 2016-08-11 | Docusign, Inc. | Systems and methods for document management transformation and security |
US20100251104A1 (en) | 2009-03-27 | 2010-09-30 | Litera Technology Llc. | System and method for reflowing content in a structured portable document format (pdf) file |
US8935773B2 (en) | 2009-04-09 | 2015-01-13 | George Mason Research Foundation, Inc. | Malware detector |
US8555391B1 (en) | 2009-04-25 | 2013-10-08 | Dasient, Inc. | Adaptive scanning |
US8516590B1 (en) | 2009-04-25 | 2013-08-20 | Dasient, Inc. | Malicious advertisement detection and remediation |
US9154364B1 (en) | 2009-04-25 | 2015-10-06 | Dasient, Inc. | Monitoring for problems and detecting malware |
US8370945B2 (en) | 2009-05-20 | 2013-02-05 | International Business Machines Corporation | Identifying security breaches caused by web-enabled software applications |
US20120066698A1 (en) | 2009-05-20 | 2012-03-15 | Nec Corporation | Dynamic data flow tracking method, dynamic data flow tracking program, and dynamic data flow tracking apparatus |
US8527466B2 (en) | 2009-05-31 | 2013-09-03 | Red Hat Israel, Ltd. | Handling temporary files of a virtual machine |
US8233882B2 (en) | 2009-06-26 | 2012-07-31 | Vmware, Inc. | Providing security in mobile devices via a virtualization software layer |
US8225061B2 (en) | 2009-07-02 | 2012-07-17 | Apple Inc. | Method and apparatus for protected content data processing |
US8266091B1 (en) | 2009-07-21 | 2012-09-11 | Symantec Corporation | Systems and methods for emulating the behavior of a user in a computer-human interaction environment |
US8522348B2 (en) | 2009-07-29 | 2013-08-27 | Northwestern University | Matching with a large vulnerability signature ruleset for high performance network defense |
US8390454B2 (en) | 2009-07-31 | 2013-03-05 | Hewlett-Packard Development Company, L.P. | USB hosted sensor module |
US8789178B2 (en) | 2009-08-03 | 2014-07-22 | Barracuda Networks, Inc. | Method for detecting malicious javascript |
US20110041179A1 (en) | 2009-08-11 | 2011-02-17 | F-Secure Oyj | Malware detection |
WO2011027352A1 (en) | 2009-09-03 | 2011-03-10 | Mcafee, Inc. | Network access control |
US8832829B2 (en) | 2009-09-30 | 2014-09-09 | Fireeye, Inc. | Network-based binary file extraction and analysis for malware detection |
US20110145934A1 (en) | 2009-10-13 | 2011-06-16 | Miron Abramovici | Autonomous distributed programmable logic for monitoring and securing electronic systems |
US8713681B2 (en) | 2009-10-27 | 2014-04-29 | Mandiant, Llc | System and method for detecting executable machine instructions in a data stream |
US20110113231A1 (en) | 2009-11-12 | 2011-05-12 | Daniel Kaminsky | System and method for providing secure reception and viewing of transmitted data over a network |
US8479286B2 (en) | 2009-12-15 | 2013-07-02 | Mcafee, Inc. | Systems and methods for behavioral sandboxing |
US8893280B2 (en) | 2009-12-15 | 2014-11-18 | Intel Corporation | Sensitive data tracking using dynamic taint analysis |
US8528091B2 (en) | 2009-12-31 | 2013-09-03 | The Trustees Of Columbia University In The City Of New York | Methods, systems, and media for detecting covert malware |
US8307435B1 (en) | 2010-02-18 | 2012-11-06 | Symantec Corporation | Software object corruption detection |
US20110219449A1 (en) | 2010-03-04 | 2011-09-08 | St Neitzel Michael | Malware detection method, system and computer program product |
US8863279B2 (en) | 2010-03-08 | 2014-10-14 | Raytheon Company | System and method for malware detection |
US8468602B2 (en) | 2010-03-08 | 2013-06-18 | Raytheon Company | System and method for host-level malware detection |
US9501644B2 (en) | 2010-03-15 | 2016-11-22 | F-Secure Oyj | Malware protection |
US8938782B2 (en) | 2010-03-15 | 2015-01-20 | Symantec Corporation | Systems and methods for providing network access control in virtual environments |
US8566944B2 (en) | 2010-04-27 | 2013-10-22 | Microsoft Corporation | Malware investigation by analyzing computer memory |
US8914879B2 (en) | 2010-06-11 | 2014-12-16 | Trustwave Holdings, Inc. | System and method for improving coverage for web code |
US8260914B1 (en) | 2010-06-22 | 2012-09-04 | Narus, Inc. | Detecting DNS fast-flux anomalies |
US8627476B1 (en) | 2010-07-05 | 2014-01-07 | Symantec Corporation | Altering application behavior based on content provider reputation |
US8584234B1 (en) | 2010-07-07 | 2013-11-12 | Symantec Corporation | Secure network cache content |
RU2446459C1 (en) | 2010-07-23 | 2012-03-27 | Закрытое акционерное общество "Лаборатория Касперского" | System and method for checking web resources for presence of malicious components |
US20120023593A1 (en) | 2010-07-26 | 2012-01-26 | Puder George | System and method for filtering internet content & blocking undesired websites by secure network appliance |
EP2609537A1 (en) | 2010-08-26 | 2013-07-03 | Verisign, Inc. | Method and system for automatic detection and analysis of malware |
US8661544B2 (en) | 2010-08-31 | 2014-02-25 | Cisco Technology, Inc. | Detecting botnets |
US8869277B2 (en) | 2010-09-30 | 2014-10-21 | Microsoft Corporation | Realtime multiple engine selection and combining |
US8479291B1 (en) | 2010-10-28 | 2013-07-02 | Symantec Corporation | Systems and methods for identifying polymorphic malware |
RU2449348C1 (en) | 2010-11-01 | 2012-04-27 | Закрытое акционерное общество "Лаборатория Касперского" | System and method for virus-checking data downloaded from network at server side |
US8412984B2 (en) | 2010-11-12 | 2013-04-02 | Microsoft Corporation | Debugging in a cluster processing network |
US8682054B2 (en) | 2010-11-15 | 2014-03-25 | Siemens Aktiengesellschaft | Method and system for propagation of myocardial infarction from delayed enhanced cardiac imaging to cine magnetic resonance imaging using hybrid image registration |
US8875286B2 (en) | 2010-12-01 | 2014-10-28 | Cisco Technology, Inc. | Method and apparatus for detecting malicious software using machine learning techniques |
AU2011336466C1 (en) | 2010-12-01 | 2017-01-19 | Cisco Technology, Inc. | Detecting malicious software through contextual convictions, generic signatures and machine learning techniques |
US8682812B1 (en) | 2010-12-23 | 2014-03-25 | Narus, Inc. | Machine learning based botnet detection using real-time extracted traffic features |
US8479276B1 (en) | 2010-12-29 | 2013-07-02 | Emc Corporation | Malware detection using risk analysis based on file system and network activity |
US20120174196A1 (en) | 2010-12-30 | 2012-07-05 | Suresh Bhogavilli | Active validation for ddos and ssl ddos attacks |
US9118712B2 (en) | 2010-12-30 | 2015-08-25 | Everis, Inc. | Network communication system with improved security |
US8566648B2 (en) | 2011-02-02 | 2013-10-22 | Salesforce, Inc. | Automated testing on devices |
US9087199B2 (en) | 2011-03-31 | 2015-07-21 | Mcafee, Inc. | System and method for providing a secured operating system execution environment |
US8479295B2 (en) | 2011-03-30 | 2013-07-02 | Intel Corporation | Method and apparatus for transparently instrumenting an application program |
US8756693B2 (en) | 2011-04-05 | 2014-06-17 | The United States Of America As Represented By The Secretary Of The Air Force | Malware target recognition |
US8510842B2 (en) | 2011-04-13 | 2013-08-13 | International Business Machines Corporation | Pinpointing security vulnerabilities in computer software applications |
US8997233B2 (en) | 2011-04-13 | 2015-03-31 | Microsoft Technology Licensing, Llc | Detecting script-based malware using emulation and heuristics |
US8806647B1 (en) | 2011-04-25 | 2014-08-12 | Twitter, Inc. | Behavioral scanning of mobile applications |
WO2012149443A1 (en) | 2011-04-27 | 2012-11-01 | Seven Networks, Inc. | Detection and filtering of malware based on traffic observations made in a distributed mobile traffic management system |
US8695096B1 (en) | 2011-05-24 | 2014-04-08 | Palo Alto Networks, Inc. | Automatic signature generation for malicious PDF files |
US8640246B2 (en) | 2011-06-27 | 2014-01-28 | Raytheon Company | Distributed malware detection |
CN102339371B (en) | 2011-09-14 | 2013-12-25 | 奇智软件(北京)有限公司 | Method, device and virtual machine for detecting rogue program |
US9003532B2 (en) | 2011-09-15 | 2015-04-07 | Raytheon Company | Providing a network-accessible malware analysis |
US9672355B2 (en) | 2011-09-16 | 2017-06-06 | Veracode, Inc. | Automated behavioral and static analysis using an instrumented sandbox and machine learning classification for mobile security |
US8739280B2 (en) | 2011-09-29 | 2014-05-27 | Hewlett-Packard Development Company, L.P. | Context-sensitive taint analysis |
US8806639B2 (en) | 2011-09-30 | 2014-08-12 | Avaya Inc. | Contextual virtual machines for application quarantine and assessment method and system |
US9256735B2 (en) | 2011-10-10 | 2016-02-09 | Masergy Communications, Inc. | Detecting emergent behavior in communications networks |
US8677487B2 (en) | 2011-10-18 | 2014-03-18 | Mcafee, Inc. | System and method for detecting a malicious command and control channel |
JP5615445B2 (en) | 2011-10-21 | 2014-10-29 | 三菱電機株式会社 | Video information playback method and video information playback apparatus |
US8782792B1 (en) | 2011-10-27 | 2014-07-15 | Symantec Corporation | Systems and methods for detecting malware on mobile platforms |
US9021587B2 (en) | 2011-10-27 | 2015-04-28 | Microsoft Technology Licensing, Llc | Detecting software vulnerabilities in an isolated computing environment |
US9519781B2 (en) | 2011-11-03 | 2016-12-13 | Cyphort Inc. | Systems and methods for virtualization and emulation assisted malware detection |
KR20130051116A (en) | 2011-11-09 | 2013-05-20 | 한국전자통신연구원 | Apparatus for automatically inspecting security of applications and method thereof |
EP2592784B1 (en) | 2011-11-14 | 2013-09-18 | Alcatel Lucent | Apparatus, method and computer program for routing data packets |
US8590041B2 (en) | 2011-11-28 | 2013-11-19 | Mcafee, Inc. | Application sandboxing using a dynamic optimization framework |
KR101296716B1 (en) | 2011-12-14 | 2013-08-20 | 한국인터넷진흥원 | System and method for detecting malicious code of pdf document type |
US8533835B2 (en) | 2011-12-14 | 2013-09-10 | Mcafee, Inc. | Method and system for rapid signature search over encrypted content |
DE102011056502A1 (en) | 2011-12-15 | 2013-06-20 | Avira Holding GmbH | Method and apparatus for automatically generating virus descriptions |
US20130160130A1 (en) | 2011-12-20 | 2013-06-20 | Kirill Mendelev | Application security testing |
US10701097B2 (en) | 2011-12-20 | 2020-06-30 | Micro Focus Llc | Application security testing |
US8214905B1 (en) | 2011-12-21 | 2012-07-03 | Kaspersky Lab Zao | System and method for dynamically allocating computing resources for processing security information |
RU2472215C1 (en) | 2011-12-28 | 2013-01-10 | Закрытое акционерное общество "Лаборатория Касперского" | Method of detecting unknown programs by load process emulation |
US20130174214A1 (en) | 2011-12-29 | 2013-07-04 | Imation Corp. | Management Tracking Agent for Removable Media |
US20130185795A1 (en) | 2012-01-12 | 2013-07-18 | Arxceo Corporation | Methods and systems for providing network protection by progressive degradation of service |
US8533836B2 (en) | 2012-01-13 | 2013-09-10 | Accessdata Group, Llc | Identifying software execution behavior |
JP5711160B2 (en) | 2012-01-15 | 2015-04-30 | レノボ・シンガポール・プライベート・リミテッド | Method and computer for protecting passwords |
US9922190B2 (en) | 2012-01-25 | 2018-03-20 | Damballa, Inc. | Method and system for detecting DGA-based malware |
US8774761B2 (en) | 2012-01-27 | 2014-07-08 | Qualcomm Incorporated | Mobile device to detect unexpected behaviour |
US9519782B2 (en) | 2012-02-24 | 2016-12-13 | Fireeye, Inc. | Detecting malicious network content |
US9275229B2 (en) | 2012-03-15 | 2016-03-01 | Mandiant, Llc | System to bypass a compromised mass storage device driver stack and method thereof |
US8726392B1 (en) | 2012-03-29 | 2014-05-13 | Symantec Corporation | Systems and methods for combining static and dynamic code analysis |
US8850588B2 (en) | 2012-05-01 | 2014-09-30 | Taasera, Inc. | Systems and methods for providing mobile security based on dynamic attestation |
GB2490431B (en) | 2012-05-15 | 2014-03-26 | F Secure Corp | Foiling a document exploit attack |
US9268936B2 (en) | 2012-07-27 | 2016-02-23 | Mandiant, Llc | Physical memory forensics system and method |
US9747440B2 (en) | 2012-08-15 | 2017-08-29 | Qualcomm Incorporated | On-line behavioral analysis engine in mobile device with multiple analyzer model providers |
US9495537B2 (en) | 2012-08-15 | 2016-11-15 | Qualcomm Incorporated | Adaptive observation of behavioral features on a mobile device |
US8850581B2 (en) | 2012-11-07 | 2014-09-30 | Microsoft Corporation | Identification of malware detection signature candidate code |
US8910238B2 (en) | 2012-11-13 | 2014-12-09 | Bitdefender IPR Management Ltd. | Hypervisor-based enterprise endpoint protection |
US9277378B2 (en) | 2012-12-21 | 2016-03-01 | Verizon Patent And Licensing Inc. | Short message service validation engine |
RU2522019C1 (en) | 2012-12-25 | 2014-07-10 | Закрытое акционерное общество "Лаборатория Касперского" | System and method of detecting threat in code executed by virtual machine |
US9633134B2 (en) | 2012-12-26 | 2017-04-25 | Fireeye, Inc. | Timeline wrinkling system and method |
US10572665B2 (en) | 2012-12-28 | 2020-02-25 | Fireeye, Inc. | System and method to create a number of breakpoints in a virtual machine via virtual machine trapping events |
US9690935B2 (en) | 2012-12-31 | 2017-06-27 | Fireeye, Inc. | Identification of obfuscated computer items using visual algorithms |
US9195829B1 (en) | 2013-02-23 | 2015-11-24 | Fireeye, Inc. | User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications |
US8990944B1 (en) | 2013-02-23 | 2015-03-24 | Fireeye, Inc. | Systems and methods for automatically detecting backdoors |
US9824209B1 (en) | 2013-02-23 | 2017-11-21 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications that is usable to harden in the field code |
US9159035B1 (en) | 2013-02-23 | 2015-10-13 | Fireeye, Inc. | Framework for computer application analysis of sensitive information tracking |
US9367681B1 (en) | 2013-02-23 | 2016-06-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications using symbolic execution to reach regions of interest within an application |
US9009822B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for multi-phase analysis of mobile applications |
US9176843B1 (en) | 2013-02-23 | 2015-11-03 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications |
US9009823B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications installed on mobile devices |
US9565202B1 (en) | 2013-03-13 | 2017-02-07 | Fireeye, Inc. | System and method for detecting exfiltration content |
US9355247B1 (en) | 2013-03-13 | 2016-05-31 | Fireeye, Inc. | File extraction from memory dump for malicious content analysis |
US9104867B1 (en) | 2013-03-13 | 2015-08-11 | Fireeye, Inc. | Malicious content analysis using simulated user interaction without user involvement |
US9626509B1 (en) | 2013-03-13 | 2017-04-18 | Fireeye, Inc. | Malicious content analysis with multi-version application support within single operating environment |
US9311479B1 (en) | 2013-03-14 | 2016-04-12 | Fireeye, Inc. | Correlation and consolidation of analytic data for holistic view of a malware attack |
US9430646B1 (en) | 2013-03-14 | 2016-08-30 | Fireeye, Inc. | Distributed systems and methods for automatically detecting unknown bots and botnets |
US9497213B2 (en) | 2013-03-15 | 2016-11-15 | Fireeye, Inc. | System and method to manage sinkholes |
US9824211B2 (en) | 2013-03-15 | 2017-11-21 | Fireeye, Inc. | System and method to visualize user sessions |
WO2014145805A1 (en) | 2013-03-15 | 2014-09-18 | Mandiant, Llc | System and method employing structured intelligence to verify and contain threats at endpoints |
US9251343B1 (en) | 2013-03-15 | 2016-02-02 | Fireeye, Inc. | Detecting bootkits resident on compromised computers |
US10713358B2 (en) | 2013-03-15 | 2020-07-14 | Fireeye, Inc. | System and method to extract and utilize disassembly features to classify software intent |
US9495180B2 (en) | 2013-05-10 | 2016-11-15 | Fireeye, Inc. | Optimized resource allocation for virtual machines within a malware content detection system |
US9635039B1 (en) | 2013-05-13 | 2017-04-25 | Fireeye, Inc. | Classifying sets of malicious indicators for detecting command and control communications associated with malware |
US9536091B2 (en) | 2013-06-24 | 2017-01-03 | Fireeye, Inc. | System and method for detecting time-bomb malware |
US10133863B2 (en) | 2013-06-24 | 2018-11-20 | Fireeye, Inc. | Zero-day discovery system |
US9300686B2 (en) | 2013-06-28 | 2016-03-29 | Fireeye, Inc. | System and method for detecting malicious links in electronic messages |
US9888016B1 (en) | 2013-06-28 | 2018-02-06 | Fireeye, Inc. | System and method for detecting phishing using password prediction |
US9426071B1 (en) | 2013-08-22 | 2016-08-23 | Fireeye, Inc. | Storing network bidirectional flow data and metadata with efficient processing technique |
US10192052B1 (en) | 2013-09-30 | 2019-01-29 | Fireeye, Inc. | System, apparatus and method for classifying a file as malicious using static scanning |
US10089461B1 (en) | 2013-09-30 | 2018-10-02 | Fireeye, Inc. | Page replacement code injection |
US9628507B2 (en) | 2013-09-30 | 2017-04-18 | Fireeye, Inc. | Advanced persistent threat (APT) detection center |
US9294501B2 (en) | 2013-09-30 | 2016-03-22 | Fireeye, Inc. | Fuzzy hash of behavioral results |
US9736179B2 (en) | 2013-09-30 | 2017-08-15 | Fireeye, Inc. | System, apparatus and method for using malware analysis results to drive adaptive instrumentation of virtual machines to improve exploit detection |
US9690936B1 (en) | 2013-09-30 | 2017-06-27 | Fireeye, Inc. | Multistage system and method for analyzing obfuscated content for malware |
US9171160B2 (en) | 2013-09-30 | 2015-10-27 | Fireeye, Inc. | Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses |
US9921978B1 (en) | 2013-11-08 | 2018-03-20 | Fireeye, Inc. | System and method for enhanced security of storage devices |
US9189627B1 (en) | 2013-11-21 | 2015-11-17 | Fireeye, Inc. | System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection |
US9747446B1 (en) | 2013-12-26 | 2017-08-29 | Fireeye, Inc. | System and method for run-time object classification |
US9756074B2 (en) | 2013-12-26 | 2017-09-05 | Fireeye, Inc. | System and method for IPS and VM-based detection of suspicious objects |
US9740857B2 (en) | 2014-01-16 | 2017-08-22 | Fireeye, Inc. | Threat-aware microvisor |
US9262635B2 (en) | 2014-02-05 | 2016-02-16 | Fireeye, Inc. | Detection efficacy of virtual machine-based analysis with application specific events |
US9537972B1 (en) | 2014-02-20 | 2017-01-03 | Fireeye, Inc. | Efficient access to sparse packets in large repositories of stored network traffic |
US9241010B1 (en) | 2014-03-20 | 2016-01-19 | Fireeye, Inc. | System and method for network behavior detection |
US10242185B1 (en) | 2014-03-21 | 2019-03-26 | Fireeye, Inc. | Dynamic guest image creation and rollback |
US9591015B1 (en) | 2014-03-28 | 2017-03-07 | Fireeye, Inc. | System and method for offloading packet processing and static analysis operations |
US9432389B1 (en) | 2014-03-31 | 2016-08-30 | Fireeye, Inc. | System, apparatus and method for detecting a malicious attack based on static analysis of a multi-flow object |
US9223972B1 (en) | 2014-03-31 | 2015-12-29 | Fireeye, Inc. | Dynamically remote tuning of a malware content detection system |
US9594912B1 (en) | 2014-06-06 | 2017-03-14 | Fireeye, Inc. | Return-oriented programming detection |
US9973531B1 (en) | 2014-06-06 | 2018-05-15 | Fireeye, Inc. | Shellcode detection |
US9438623B1 (en) | 2014-06-06 | 2016-09-06 | Fireeye, Inc. | Computer exploit detection using heap spray pattern matching |
US10084813B2 (en) | 2014-06-24 | 2018-09-25 | Fireeye, Inc. | Intrusion prevention and remedy system |
US9398028B1 (en) | 2014-06-26 | 2016-07-19 | Fireeye, Inc. | System, device and method for detecting a malicious attack based on communcations between remotely hosted virtual machines and malicious web servers |
US10002252B2 (en) | 2014-07-01 | 2018-06-19 | Fireeye, Inc. | Verification of trusted threat-aware microvisor |
US9680862B2 (en) | 2014-07-01 | 2017-06-13 | Fireeye, Inc. | Trusted threat-aware microvisor |
US9912644B2 (en) | 2014-08-05 | 2018-03-06 | Fireeye, Inc. | System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology |
US9363280B1 (en) | 2014-08-22 | 2016-06-07 | Fireeye, Inc. | System and method of detecting delivery of malware using cross-customer data |
US9773112B1 (en) | 2014-09-29 | 2017-09-26 | Fireeye, Inc. | Exploit detection of malware and malware families |
US10027689B1 (en) | 2014-09-29 | 2018-07-17 | Fireeye, Inc. | Interactive infection visualization for improved exploit detection and signature generation for malware and malware families |
US9781144B1 (en) | 2014-09-30 | 2017-10-03 | Fireeye, Inc. | Determining duplicate objects for malware analysis using environmental/context information |
US9690933B1 (en) | 2014-12-22 | 2017-06-27 | Fireeye, Inc. | Framework for classifying an object as malicious with machine learning for deploying updated predictive models |
US9467460B1 (en) | 2014-12-23 | 2016-10-11 | Fireeye, Inc. | Modularized database architecture using vertical partitioning for a state machine |
US10075455B2 (en) | 2014-12-26 | 2018-09-11 | Fireeye, Inc. | Zero-day rotating guest image profile |
US20160191550A1 (en) | 2014-12-29 | 2016-06-30 | Fireeye, Inc. | Microvisor-based malware detection endpoint architecture |
US9934376B1 (en) | 2014-12-29 | 2018-04-03 | Fireeye, Inc. | Malware detection appliance architecture |
US9838417B1 (en) | 2014-12-30 | 2017-12-05 | Fireeye, Inc. | Intelligent context aware user interaction for malware detection |
US10148693B2 (en) | 2015-03-25 | 2018-12-04 | Fireeye, Inc. | Exploit detection system |
US9690606B1 (en) | 2015-03-25 | 2017-06-27 | Fireeye, Inc. | Selective system call monitoring |
US9438613B1 (en) | 2015-03-30 | 2016-09-06 | Fireeye, Inc. | Dynamic content activation for automated analysis of embedded objects |
US9483644B1 (en) | 2015-03-31 | 2016-11-01 | Fireeye, Inc. | Methods for detecting file altering malware in VM based analysis |
US9912681B1 (en) | 2015-03-31 | 2018-03-06 | Fireeye, Inc. | Injection of content processing delay in an endpoint |
US10417031B2 (en) | 2015-03-31 | 2019-09-17 | Fireeye, Inc. | Selective virtualization for security threat detection |
US9654485B1 (en) | 2015-04-13 | 2017-05-16 | Fireeye, Inc. | Analytics-based security monitoring system and method |
US9594904B1 (en) | 2015-04-23 | 2017-03-14 | Fireeye, Inc. | Detecting malware based on reflection |
US10216927B1 (en) | 2015-06-30 | 2019-02-26 | Fireeye, Inc. | System and method for protecting memory pages associated with a process using a virtualization layer |
US10176321B2 (en) | 2015-09-22 | 2019-01-08 | Fireeye, Inc. | Leveraging behavior-based rules for malware family classification |
US10033759B1 (en) | 2015-09-28 | 2018-07-24 | Fireeye, Inc. | System and method of threat detection under hypervisor control |
US10033747B1 (en) | 2015-09-29 | 2018-07-24 | Fireeye, Inc. | System and method for detecting interpreter-based exploit attacks |
US9825976B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Detection and classification of exploit kits |
US10210329B1 (en) | 2015-09-30 | 2019-02-19 | Fireeye, Inc. | Method to detect application execution hijacking using memory protection |
US9825989B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Cyber attack early warning system |
US10284575B2 (en) | 2015-11-10 | 2019-05-07 | Fireeye, Inc. | Launcher for setting analysis environment variations for malware detection |
US10108446B1 (en) | 2015-12-11 | 2018-10-23 | Fireeye, Inc. | Late load technique for deploying a virtualization layer underneath a running operating system |
US10050998B1 (en) | 2015-12-30 | 2018-08-14 | Fireeye, Inc. | Malicious message analysis system |
US10133866B1 (en) | 2015-12-30 | 2018-11-20 | Fireeye, Inc. | System and method for triggering analysis of an object for malware in response to modification of that object |
US9824216B1 (en) | 2015-12-31 | 2017-11-21 | Fireeye, Inc. | Susceptible environment detection system |
US10169585B1 (en) | 2016-06-22 | 2019-01-01 | Fireeye, Inc. | System and methods for advanced malware detection through placement of transition events |
US10121000B1 (en) | 2016-06-28 | 2018-11-06 | Fireeye, Inc. | System and method to detect premium attacks on electronic networks and electronic devices |
US10191861B1 (en) | 2016-09-06 | 2019-01-29 | Fireeye, Inc. | Technique for implementing memory views using a layered virtualization architecture |
US10025691B1 (en) | 2016-09-09 | 2018-07-17 | Fireeye, Inc. | Verification of complex software code using a modularized architecture |
US10798112B2 (en) | 2017-03-30 | 2020-10-06 | Fireeye, Inc. | Attribute-controlled malware detection |
-
2011
- 2011-04-18 US US13/089,191 patent/US9106694B2/en active Active
-
2012
- 2012-02-23 WO PCT/US2012/026402 patent/WO2012145066A1/en active Application Filing
- 2012-02-23 JP JP2014506405A patent/JP6013455B2/en active Active
- 2012-02-23 EP EP12774315.1A patent/EP2700009A4/en not_active Ceased
- 2012-02-23 EP EP17206478.4A patent/EP3319005A1/en not_active Withdrawn
-
2015
- 2015-06-22 US US14/745,903 patent/US10027690B2/en not_active Expired - Lifetime
-
2018
- 2018-07-16 US US16/036,870 patent/US10757120B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070174915A1 (en) * | 2006-01-23 | 2007-07-26 | University Of Washington | Detection of spyware threats within virtual machine |
US20100077481A1 (en) * | 2008-09-22 | 2010-03-25 | Microsoft Corporation | Collecting and analyzing malware data |
US20100281102A1 (en) * | 2009-05-02 | 2010-11-04 | Chinta Madhav | Methods and systems for launching applications into existing isolation environments |
Cited By (477)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11153341B1 (en) | 2004-04-01 | 2021-10-19 | Fireeye, Inc. | System and method for detecting malicious network content using virtual environment components |
US8561177B1 (en) | 2004-04-01 | 2013-10-15 | Fireeye, Inc. | Systems and methods for detecting communication channels of bots |
US8204984B1 (en) | 2004-04-01 | 2012-06-19 | Fireeye, Inc. | Systems and methods for detecting encrypted bot command and control communication channels |
US8291499B2 (en) | 2004-04-01 | 2012-10-16 | Fireeye, Inc. | Policy based capture with replay to virtual machine |
US9838411B1 (en) | 2004-04-01 | 2017-12-05 | Fireeye, Inc. | Subscriber based protection system |
US9197664B1 (en) | 2004-04-01 | 2015-11-24 | Fire Eye, Inc. | System and method for malware containment |
US9282109B1 (en) | 2004-04-01 | 2016-03-08 | Fireeye, Inc. | System and method for analyzing packets |
US9306960B1 (en) | 2004-04-01 | 2016-04-05 | Fireeye, Inc. | Systems and methods for unauthorized activity defense |
US10623434B1 (en) | 2004-04-01 | 2020-04-14 | Fireeye, Inc. | System and method for virtual analysis of network data |
US8528086B1 (en) | 2004-04-01 | 2013-09-03 | Fireeye, Inc. | System and method of detecting computer worms |
US8539582B1 (en) | 2004-04-01 | 2013-09-17 | Fireeye, Inc. | Malware containment and security analysis on connection |
US10284574B1 (en) | 2004-04-01 | 2019-05-07 | Fireeye, Inc. | System and method for threat detection and identification |
US9912684B1 (en) | 2004-04-01 | 2018-03-06 | Fireeye, Inc. | System and method for virtual analysis of network data |
US11082435B1 (en) | 2004-04-01 | 2021-08-03 | Fireeye, Inc. | System and method for threat detection and identification |
US8584239B2 (en) | 2004-04-01 | 2013-11-12 | Fireeye, Inc. | Virtual machine with dynamic data flow analysis |
US11637857B1 (en) | 2004-04-01 | 2023-04-25 | Fireeye Security Holdings Us Llc | System and method for detecting malicious traffic using a virtual machine configured with a select software environment |
US8635696B1 (en) | 2004-04-01 | 2014-01-21 | Fireeye, Inc. | System and method of detecting time-delayed malicious traffic |
US8776229B1 (en) | 2004-04-01 | 2014-07-08 | Fireeye, Inc. | System and method of detecting malicious traffic while reducing false positives |
US8793787B2 (en) | 2004-04-01 | 2014-07-29 | Fireeye, Inc. | Detecting malicious network content using virtual environment components |
US10587636B1 (en) | 2004-04-01 | 2020-03-10 | Fireeye, Inc. | System and method for bot detection |
US10567405B1 (en) | 2004-04-01 | 2020-02-18 | Fireeye, Inc. | System for detecting a presence of malware from behavioral analysis |
US8881282B1 (en) | 2004-04-01 | 2014-11-04 | Fireeye, Inc. | Systems and methods for malware attack detection and identification |
US9356944B1 (en) | 2004-04-01 | 2016-05-31 | Fireeye, Inc. | System and method for detecting malicious traffic using a virtual machine configured with a select software environment |
US8898788B1 (en) | 2004-04-01 | 2014-11-25 | Fireeye, Inc. | Systems and methods for malware attack prevention |
US8171553B2 (en) | 2004-04-01 | 2012-05-01 | Fireeye, Inc. | Heuristic based capture with replay to virtual machine |
US10097573B1 (en) | 2004-04-01 | 2018-10-09 | Fireeye, Inc. | Systems and methods for malware defense |
US10757120B1 (en) | 2004-04-01 | 2020-08-25 | Fireeye, Inc. | Malicious network content detection |
US9106694B2 (en) | 2004-04-01 | 2015-08-11 | Fireeye, Inc. | Electronic message analysis for malware detection |
US9661018B1 (en) | 2004-04-01 | 2017-05-23 | Fireeye, Inc. | System and method for detecting anomalous behaviors using a virtual machine environment |
US8984638B1 (en) | 2004-04-01 | 2015-03-17 | Fireeye, Inc. | System and method for analyzing suspicious network data |
US9071638B1 (en) | 2004-04-01 | 2015-06-30 | Fireeye, Inc. | System and method for malware containment |
US9628498B1 (en) | 2004-04-01 | 2017-04-18 | Fireeye, Inc. | System and method for bot detection |
US10511614B1 (en) | 2004-04-01 | 2019-12-17 | Fireeye, Inc. | Subscription based malware detection under management system control |
US10068091B1 (en) | 2004-04-01 | 2018-09-04 | Fireeye, Inc. | System and method for malware containment |
US9591020B1 (en) | 2004-04-01 | 2017-03-07 | Fireeye, Inc. | System and method for signature generation |
US10027690B2 (en) | 2004-04-01 | 2018-07-17 | Fireeye, Inc. | Electronic message analysis for malware detection |
US10165000B1 (en) | 2004-04-01 | 2018-12-25 | Fireeye, Inc. | Systems and methods for malware attack prevention by intercepting flows of information |
US9516057B2 (en) | 2004-04-01 | 2016-12-06 | Fireeye, Inc. | Systems and methods for computer worm defense |
US9027135B1 (en) | 2004-04-01 | 2015-05-05 | Fireeye, Inc. | Prospective client identification using malware attack detection |
US9838416B1 (en) | 2004-06-14 | 2017-12-05 | Fireeye, Inc. | System and method of detecting malicious content |
US8549638B2 (en) | 2004-06-14 | 2013-10-01 | Fireeye, Inc. | System and method of containing computer worms |
US8893282B2 (en) * | 2005-01-25 | 2014-11-18 | Whitehat Security, Inc. | System for detecting vulnerabilities in applications using client-side application interfaces |
US20130055403A1 (en) * | 2005-01-25 | 2013-02-28 | Whitehat Security, Inc. | System for detecting vulnerabilities in web applications using client-side application interfaces |
US8375444B2 (en) | 2006-04-20 | 2013-02-12 | Fireeye, Inc. | Dynamic signature creation and enforcement |
US8566946B1 (en) | 2006-04-20 | 2013-10-22 | Fireeye, Inc. | Malware containment on connection |
US9680866B2 (en) | 2006-07-10 | 2017-06-13 | Websense, Llc | System and method for analyzing web content |
US8978140B2 (en) * | 2006-07-10 | 2015-03-10 | Websense, Inc. | System and method of analyzing web content |
US20110252478A1 (en) * | 2006-07-10 | 2011-10-13 | Websense, Inc. | System and method of analyzing web content |
US9003524B2 (en) | 2006-07-10 | 2015-04-07 | Websense, Inc. | System and method for analyzing web content |
US9654495B2 (en) | 2006-12-01 | 2017-05-16 | Websense, Llc | System and method of analyzing web addresses |
US9473439B2 (en) | 2007-05-18 | 2016-10-18 | Forcepoint Uk Limited | Method and apparatus for electronic mail filtering |
US9378282B2 (en) | 2008-06-30 | 2016-06-28 | Raytheon Company | System and method for dynamic and real-time categorization of webpages |
US8997219B2 (en) | 2008-11-03 | 2015-03-31 | Fireeye, Inc. | Systems and methods for detecting malicious PDF network content |
US8850571B2 (en) | 2008-11-03 | 2014-09-30 | Fireeye, Inc. | Systems and methods for detecting malicious network content |
US9954890B1 (en) | 2008-11-03 | 2018-04-24 | Fireeye, Inc. | Systems and methods for analyzing PDF documents |
US8990939B2 (en) | 2008-11-03 | 2015-03-24 | Fireeye, Inc. | Systems and methods for scheduling analysis of network content for malware |
US9118715B2 (en) | 2008-11-03 | 2015-08-25 | Fireeye, Inc. | Systems and methods for detecting malicious PDF network content |
US9438622B1 (en) | 2008-11-03 | 2016-09-06 | Fireeye, Inc. | Systems and methods for analyzing malicious PDF network content |
US8935779B2 (en) | 2009-09-30 | 2015-01-13 | Fireeye, Inc. | Network-based binary file extraction and analysis for malware detection |
US8832829B2 (en) | 2009-09-30 | 2014-09-09 | Fireeye, Inc. | Network-based binary file extraction and analysis for malware detection |
US11381578B1 (en) | 2009-09-30 | 2022-07-05 | Fireeye Security Holdings Us Llc | Network-based binary file extraction and analysis for malware detection |
US20120304291A1 (en) * | 2011-05-26 | 2012-11-29 | International Business Machines Corporation | Rotation of web site content to prevent e-mail spam/phishing attacks |
US20120304287A1 (en) * | 2011-05-26 | 2012-11-29 | Microsoft Corporation | Automatic detection of search results poisoning attacks |
US8997220B2 (en) * | 2011-05-26 | 2015-03-31 | Microsoft Technology Licensing, Llc | Automatic detection of search results poisoning attacks |
US9148444B2 (en) * | 2011-05-26 | 2015-09-29 | International Business Machines Corporation | Rotation of web site content to prevent e-mail spam/phishing attacks |
US9813429B2 (en) | 2012-01-03 | 2017-11-07 | International Business Machines Corporation | Method for secure web browsing |
CN103186739A (en) * | 2012-01-03 | 2013-07-03 | 国际商业机器公司 | Method for secure web browsing |
US10282548B1 (en) | 2012-02-24 | 2019-05-07 | Fireeye, Inc. | Method for detecting malware within network content |
US9519782B2 (en) | 2012-02-24 | 2016-12-13 | Fireeye, Inc. | Detecting malicious network content |
US20130312081A1 (en) * | 2012-05-18 | 2013-11-21 | Estsecurity Co., Ltd. | Malicious code blocking system |
US9686297B2 (en) | 2012-06-07 | 2017-06-20 | Proofpoint, Inc. | Malicious message detection and processing |
US11019094B2 (en) | 2012-06-07 | 2021-05-25 | Proofpoint, Inc. | Methods and systems for malicious message detection and processing |
US10530806B2 (en) | 2012-06-07 | 2020-01-07 | Proofpoint, Inc. | Methods and systems for malicious message detection and processing |
US10326791B2 (en) | 2012-06-07 | 2019-06-18 | Proofpoint, Inc. | Malicious message detection and processing |
US10404750B2 (en) | 2012-09-28 | 2019-09-03 | Palo Alto Networks, Inc. | Externally defined objects in security policy |
US9602539B1 (en) * | 2012-09-28 | 2017-03-21 | Palo Alto Networks, Inc. | Externally defined objects in security policy |
US9832210B2 (en) * | 2012-11-07 | 2017-11-28 | Beijing Qihoo Technology Company Limited | Multi-core browser and method for intercepting malicious network address in multi-core browser |
US20150281262A1 (en) * | 2012-11-07 | 2015-10-01 | Beijing Qihoo Technology Company Limited | Multi-core browser and method for intercepting malicious network address in multi-core browser |
US20150244661A1 (en) * | 2012-11-14 | 2015-08-27 | Tencent Technology (Shenzhen) Company Limited | Method and apparatus for displaying rich text message on network platform, and computer storage medium |
US10572665B2 (en) | 2012-12-28 | 2020-02-25 | Fireeye, Inc. | System and method to create a number of breakpoints in a virtual machine via virtual machine trapping events |
EP2949077A4 (en) * | 2013-01-23 | 2016-07-06 | Mcafee Inc | SYSTEM AND METHOD FOR FIREWALL WITH HARDWARE ASSISTANCE ON A NETWORK END POINT IN A SECURITY ENVIRONMENT |
EP3736720A1 (en) * | 2013-01-23 | 2020-11-11 | McAfee, LLC | System and method for an endpoint hardware assisted network firewall in a security environment |
US10103892B2 (en) | 2013-01-23 | 2018-10-16 | Mcafee, Llc | System and method for an endpoint hardware assisted network firewall in a security environment |
US9560014B2 (en) | 2013-01-23 | 2017-01-31 | Mcafee, Inc. | System and method for an endpoint hardware assisted network firewall in a security environment |
US10929266B1 (en) | 2013-02-23 | 2021-02-23 | Fireeye, Inc. | Real-time visual playback with synchronous textual analysis log display and event/time indexing |
US10019338B1 (en) | 2013-02-23 | 2018-07-10 | Fireeye, Inc. | User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications |
US9009823B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications installed on mobile devices |
US9824209B1 (en) | 2013-02-23 | 2017-11-21 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications that is usable to harden in the field code |
US9792196B1 (en) | 2013-02-23 | 2017-10-17 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications |
US9159035B1 (en) | 2013-02-23 | 2015-10-13 | Fireeye, Inc. | Framework for computer application analysis of sensitive information tracking |
US9195829B1 (en) | 2013-02-23 | 2015-11-24 | Fireeye, Inc. | User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications |
US10296437B2 (en) | 2013-02-23 | 2019-05-21 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications |
US9009822B1 (en) | 2013-02-23 | 2015-04-14 | Fireeye, Inc. | Framework for multi-phase analysis of mobile applications |
US9225740B1 (en) | 2013-02-23 | 2015-12-29 | Fireeye, Inc. | Framework for iterative analysis of mobile software applications |
US9367681B1 (en) | 2013-02-23 | 2016-06-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications using symbolic execution to reach regions of interest within an application |
US8990944B1 (en) | 2013-02-23 | 2015-03-24 | Fireeye, Inc. | Systems and methods for automatically detecting backdoors |
US10181029B1 (en) | 2013-02-23 | 2019-01-15 | Fireeye, Inc. | Security cloud service framework for hardening in the field code of mobile software applications |
US9176843B1 (en) | 2013-02-23 | 2015-11-03 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications |
US9594905B1 (en) | 2013-02-23 | 2017-03-14 | Fireeye, Inc. | Framework for efficient security coverage of mobile software applications using machine learning |
US9355247B1 (en) | 2013-03-13 | 2016-05-31 | Fireeye, Inc. | File extraction from memory dump for malicious content analysis |
US9104867B1 (en) | 2013-03-13 | 2015-08-11 | Fireeye, Inc. | Malicious content analysis using simulated user interaction without user involvement |
US9912698B1 (en) | 2013-03-13 | 2018-03-06 | Fireeye, Inc. | Malicious content analysis using simulated user interaction without user involvement |
US10467414B1 (en) | 2013-03-13 | 2019-11-05 | Fireeye, Inc. | System and method for detecting exfiltration content |
US11210390B1 (en) | 2013-03-13 | 2021-12-28 | Fireeye Security Holdings Us Llc | Multi-version application support and registration within a single operating system environment |
US10025927B1 (en) | 2013-03-13 | 2018-07-17 | Fireeye, Inc. | Malicious content analysis with multi-version application support within single operating environment |
US10198574B1 (en) | 2013-03-13 | 2019-02-05 | Fireeye, Inc. | System and method for analysis of a memory dump associated with a potentially malicious content suspect |
US9934381B1 (en) | 2013-03-13 | 2018-04-03 | Fireeye, Inc. | System and method for detecting malicious activity based on at least one environmental property |
US9565202B1 (en) | 2013-03-13 | 2017-02-07 | Fireeye, Inc. | System and method for detecting exfiltration content |
US10848521B1 (en) | 2013-03-13 | 2020-11-24 | Fireeye, Inc. | Malicious content analysis using simulated user interaction without user involvement |
US9626509B1 (en) | 2013-03-13 | 2017-04-18 | Fireeye, Inc. | Malicious content analysis with multi-version application support within single operating environment |
US9311479B1 (en) | 2013-03-14 | 2016-04-12 | Fireeye, Inc. | Correlation and consolidation of analytic data for holistic view of a malware attack |
US10122746B1 (en) | 2013-03-14 | 2018-11-06 | Fireeye, Inc. | Correlation and consolidation of analytic data for holistic view of malware attack |
US9430646B1 (en) | 2013-03-14 | 2016-08-30 | Fireeye, Inc. | Distributed systems and methods for automatically detecting unknown bots and botnets |
US10200384B1 (en) | 2013-03-14 | 2019-02-05 | Fireeye, Inc. | Distributed systems and methods for automatically detecting unknown bots and botnets |
US10812513B1 (en) | 2013-03-14 | 2020-10-20 | Fireeye, Inc. | Correlation and consolidation holistic views of analytic data pertaining to a malware attack |
US9641546B1 (en) | 2013-03-14 | 2017-05-02 | Fireeye, Inc. | Electronic device for aggregation, correlation and consolidation of analysis attributes |
US10713358B2 (en) | 2013-03-15 | 2020-07-14 | Fireeye, Inc. | System and method to extract and utilize disassembly features to classify software intent |
US9497213B2 (en) | 2013-03-15 | 2016-11-15 | Fireeye, Inc. | System and method to manage sinkholes |
US10701091B1 (en) | 2013-03-15 | 2020-06-30 | Fireeye, Inc. | System and method for verifying a cyberthreat |
US9251343B1 (en) | 2013-03-15 | 2016-02-02 | Fireeye, Inc. | Detecting bootkits resident on compromised computers |
US9495180B2 (en) | 2013-05-10 | 2016-11-15 | Fireeye, Inc. | Optimized resource allocation for virtual machines within a malware content detection system |
US10469512B1 (en) | 2013-05-10 | 2019-11-05 | Fireeye, Inc. | Optimized resource allocation for virtual machines within a malware content detection system |
US9635039B1 (en) | 2013-05-13 | 2017-04-25 | Fireeye, Inc. | Classifying sets of malicious indicators for detecting command and control communications associated with malware |
US10033753B1 (en) | 2013-05-13 | 2018-07-24 | Fireeye, Inc. | System and method for detecting malicious activity and classifying a network communication based on different indicator types |
US10637880B1 (en) | 2013-05-13 | 2020-04-28 | Fireeye, Inc. | Classifying sets of malicious indicators for detecting command and control communications associated with malware |
US10083302B1 (en) | 2013-06-24 | 2018-09-25 | Fireeye, Inc. | System and method for detecting time-bomb malware |
US10335738B1 (en) * | 2013-06-24 | 2019-07-02 | Fireeye, Inc. | System and method for detecting time-bomb malware |
US9536091B2 (en) | 2013-06-24 | 2017-01-03 | Fireeye, Inc. | System and method for detecting time-bomb malware |
US10133863B2 (en) | 2013-06-24 | 2018-11-20 | Fireeye, Inc. | Zero-day discovery system |
US9888019B1 (en) | 2013-06-28 | 2018-02-06 | Fireeye, Inc. | System and method for detecting malicious links in electronic messages |
US9888016B1 (en) | 2013-06-28 | 2018-02-06 | Fireeye, Inc. | System and method for detecting phishing using password prediction |
US20150007312A1 (en) * | 2013-06-28 | 2015-01-01 | Vinay Pidathala | System and method for detecting malicious links in electronic messages |
US9300686B2 (en) * | 2013-06-28 | 2016-03-29 | Fireeye, Inc. | System and method for detecting malicious links in electronic messages |
WO2015009411A1 (en) * | 2013-06-28 | 2015-01-22 | Fireeye, Inc. | System and method for detecting malicious links in electronic messages |
US10505956B1 (en) * | 2013-06-28 | 2019-12-10 | Fireeye, Inc. | System and method for detecting malicious links in electronic messages |
US20190199747A1 (en) * | 2013-09-11 | 2019-06-27 | NSS Labs, Inc. | Malware and exploit campaign detection system and method |
US11522870B2 (en) | 2013-09-11 | 2022-12-06 | Samsung Electronics Co., Ltd. | Method for URL analysis and electronic device thereof |
US20150074810A1 (en) * | 2013-09-11 | 2015-03-12 | NSS Labs, Inc. | Malware and exploit campaign detection system and method |
KR20150029973A (en) * | 2013-09-11 | 2015-03-19 | 삼성전자주식회사 | Method for controlling an url and an electronic device |
KR102131943B1 (en) * | 2013-09-11 | 2020-07-08 | 삼성전자주식회사 | Method for controlling an url and an electronic device |
US10084817B2 (en) * | 2013-09-11 | 2018-09-25 | NSS Labs, Inc. | Malware and exploit campaign detection system and method |
US20150089655A1 (en) * | 2013-09-23 | 2015-03-26 | Electronics And Telecommunications Research Institute | System and method for detecting malware based on virtual host |
US9171160B2 (en) | 2013-09-30 | 2015-10-27 | Fireeye, Inc. | Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses |
US9912691B2 (en) | 2013-09-30 | 2018-03-06 | Fireeye, Inc. | Fuzzy hash of behavioral results |
US9628507B2 (en) | 2013-09-30 | 2017-04-18 | Fireeye, Inc. | Advanced persistent threat (APT) detection center |
US10657251B1 (en) | 2013-09-30 | 2020-05-19 | Fireeye, Inc. | Multistage system and method for analyzing obfuscated content for malware |
US10192052B1 (en) | 2013-09-30 | 2019-01-29 | Fireeye, Inc. | System, apparatus and method for classifying a file as malicious using static scanning |
US10735458B1 (en) | 2013-09-30 | 2020-08-04 | Fireeye, Inc. | Detection center to detect targeted malware |
US10515214B1 (en) | 2013-09-30 | 2019-12-24 | Fireeye, Inc. | System and method for classifying malware within content created during analysis of a specimen |
US10218740B1 (en) | 2013-09-30 | 2019-02-26 | Fireeye, Inc. | Fuzzy hash of behavioral results |
US11075945B2 (en) | 2013-09-30 | 2021-07-27 | Fireeye, Inc. | System, apparatus and method for reconfiguring virtual machines |
US10089461B1 (en) | 2013-09-30 | 2018-10-02 | Fireeye, Inc. | Page replacement code injection |
US10713362B1 (en) | 2013-09-30 | 2020-07-14 | Fireeye, Inc. | Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses |
US9690936B1 (en) | 2013-09-30 | 2017-06-27 | Fireeye, Inc. | Multistage system and method for analyzing obfuscated content for malware |
US9910988B1 (en) | 2013-09-30 | 2018-03-06 | Fireeye, Inc. | Malware analysis in accordance with an analysis plan |
US9294501B2 (en) | 2013-09-30 | 2016-03-22 | Fireeye, Inc. | Fuzzy hash of behavioral results |
US9736179B2 (en) | 2013-09-30 | 2017-08-15 | Fireeye, Inc. | System, apparatus and method for using malware analysis results to drive adaptive instrumentation of virtual machines to improve exploit detection |
US10616265B2 (en) | 2013-10-03 | 2020-04-07 | Fireeye, Inc. | Dynamic adaptive defense for cyber-security threats |
US11563769B2 (en) | 2013-10-03 | 2023-01-24 | Fireeye Security Holdings Us Llc | Dynamic adaptive defense for cyber-security threats |
US11985160B2 (en) | 2013-10-03 | 2024-05-14 | Musarubra Us Llc | Dynamic adaptive defense for cyber-security threats |
US10719527B2 (en) | 2013-10-18 | 2020-07-21 | Palantir Technologies Inc. | Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores |
US9921978B1 (en) | 2013-11-08 | 2018-03-20 | Fireeye, Inc. | System and method for enhanced security of storage devices |
US9560059B1 (en) | 2013-11-21 | 2017-01-31 | Fireeye, Inc. | System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection |
US9189627B1 (en) | 2013-11-21 | 2015-11-17 | Fireeye, Inc. | System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection |
CN105765940A (en) * | 2013-11-27 | 2016-07-13 | 思科技术公司 | Cloud-assisted threat defense for connected vehicles |
WO2015081034A1 (en) * | 2013-11-27 | 2015-06-04 | Cisco Technology, Inc. | Cloud-assisted threat defense for connected vehicles |
US9282110B2 (en) | 2013-11-27 | 2016-03-08 | Cisco Technology, Inc. | Cloud-assisted threat defense for connected vehicles |
US9407650B2 (en) * | 2013-12-09 | 2016-08-02 | F-Secure Corporation | Unauthorised/malicious redirection |
US20150163236A1 (en) * | 2013-12-09 | 2015-06-11 | F-Secure Corporation | Unauthorised/malicious redirection |
US10579647B1 (en) | 2013-12-16 | 2020-03-03 | Palantir Technologies Inc. | Methods and systems for analyzing entity performance |
US10476909B1 (en) | 2013-12-26 | 2019-11-12 | Fireeye, Inc. | System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits |
US9747446B1 (en) | 2013-12-26 | 2017-08-29 | Fireeye, Inc. | System and method for run-time object classification |
US9306974B1 (en) | 2013-12-26 | 2016-04-05 | Fireeye, Inc. | System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits |
US10467411B1 (en) | 2013-12-26 | 2019-11-05 | Fireeye, Inc. | System and method for generating a malware identifier |
US9756074B2 (en) | 2013-12-26 | 2017-09-05 | Fireeye, Inc. | System and method for IPS and VM-based detection of suspicious objects |
US11089057B1 (en) | 2013-12-26 | 2021-08-10 | Fireeye, Inc. | System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits |
US10230746B2 (en) | 2014-01-03 | 2019-03-12 | Palantir Technologies Inc. | System and method for evaluating network threats and usage |
US10805321B2 (en) | 2014-01-03 | 2020-10-13 | Palantir Technologies Inc. | System and method for evaluating network threats and usage |
US20180026999A1 (en) * | 2014-01-10 | 2018-01-25 | Tower-Sec Ltd. | Security system for machine to machine cyber attack detection and prevention |
JP2015132942A (en) * | 2014-01-10 | 2015-07-23 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Connection destination information determination device, connection destination information determination method, and program |
US10944765B2 (en) * | 2014-01-10 | 2021-03-09 | Red Bend Ltd. | Security system for machine to machine cyber attack detection and prevention |
US9740857B2 (en) | 2014-01-16 | 2017-08-22 | Fireeye, Inc. | Threat-aware microvisor |
US9507935B2 (en) | 2014-01-16 | 2016-11-29 | Fireeye, Inc. | Exploit detection system with threat-aware microvisor |
US9292686B2 (en) | 2014-01-16 | 2016-03-22 | Fireeye, Inc. | Micro-virtualization architecture for threat-aware microvisor deployment in a node of a network environment |
US10740456B1 (en) | 2014-01-16 | 2020-08-11 | Fireeye, Inc. | Threat-aware architecture |
US9946568B1 (en) | 2014-01-16 | 2018-04-17 | Fireeye, Inc. | Micro-virtualization architecture for threat-aware module deployment in a node of a network environment |
US9916440B1 (en) | 2014-02-05 | 2018-03-13 | Fireeye, Inc. | Detection efficacy of virtual machine-based analysis with application specific events |
US10534906B1 (en) | 2014-02-05 | 2020-01-14 | Fireeye, Inc. | Detection efficacy of virtual machine-based analysis with application specific events |
US9262635B2 (en) | 2014-02-05 | 2016-02-16 | Fireeye, Inc. | Detection efficacy of virtual machine-based analysis with application specific events |
US10419464B2 (en) | 2014-02-18 | 2019-09-17 | Proofpoint, Inc. | Systems and methods for targeted attack protection using predictive sandboxing |
US11811793B2 (en) | 2014-02-18 | 2023-11-07 | Proofpoint, Inc. | Targeted attack protection from malicious links in messages using predictive sandboxing |
US9762609B2 (en) | 2014-02-18 | 2017-09-12 | Proofpoint, Inc. | Targeted attack protection using predictive sandboxing |
US10009362B2 (en) | 2014-02-18 | 2018-06-26 | Proofpoint, Inc. | Systems and methods for targeted attack protection using predictive sandboxing |
WO2015126924A1 (en) * | 2014-02-18 | 2015-08-27 | Proofpoint, Inc. | Targeted attack protection using predictive sandboxing |
EP3108395A4 (en) * | 2014-02-18 | 2017-07-26 | Proofpoint, Inc. | Targeted attack protection using predictive sandboxing |
US10911467B2 (en) | 2014-02-18 | 2021-02-02 | Proofpoint, Inc. | Targeted attack protection from malicious links in messages using predictive sandboxing |
US9596264B2 (en) | 2014-02-18 | 2017-03-14 | Proofpoint, Inc. | Targeted attack protection using predictive sandboxing |
US10432649B1 (en) | 2014-03-20 | 2019-10-01 | Fireeye, Inc. | System and method for classifying an object based on an aggregated behavior results |
US9241010B1 (en) | 2014-03-20 | 2016-01-19 | Fireeye, Inc. | System and method for network behavior detection |
US10242185B1 (en) | 2014-03-21 | 2019-03-26 | Fireeye, Inc. | Dynamic guest image creation and rollback |
US11068587B1 (en) | 2014-03-21 | 2021-07-20 | Fireeye, Inc. | Dynamic guest image creation and rollback |
US11082436B1 (en) | 2014-03-28 | 2021-08-03 | Fireeye, Inc. | System and method for offloading packet processing and static analysis operations |
US10454953B1 (en) | 2014-03-28 | 2019-10-22 | Fireeye, Inc. | System and method for separated packet processing and static analysis |
US9591015B1 (en) | 2014-03-28 | 2017-03-07 | Fireeye, Inc. | System and method for offloading packet processing and static analysis operations |
US9787700B1 (en) | 2014-03-28 | 2017-10-10 | Fireeye, Inc. | System and method for offloading packet processing and static analysis operations |
US11949698B1 (en) | 2014-03-31 | 2024-04-02 | Musarubra Us Llc | Dynamically remote tuning of a malware content detection system |
US9223972B1 (en) | 2014-03-31 | 2015-12-29 | Fireeye, Inc. | Dynamically remote tuning of a malware content detection system |
US10341363B1 (en) | 2014-03-31 | 2019-07-02 | Fireeye, Inc. | Dynamically remote tuning of a malware content detection system |
US9432389B1 (en) | 2014-03-31 | 2016-08-30 | Fireeye, Inc. | System, apparatus and method for detecting a malicious attack based on static analysis of a multi-flow object |
US11297074B1 (en) | 2014-03-31 | 2022-04-05 | FireEye Security Holdings, Inc. | Dynamically remote tuning of a malware content detection system |
US9594912B1 (en) | 2014-06-06 | 2017-03-14 | Fireeye, Inc. | Return-oriented programming detection |
US9438623B1 (en) | 2014-06-06 | 2016-09-06 | Fireeye, Inc. | Computer exploit detection using heap spray pattern matching |
US9973531B1 (en) | 2014-06-06 | 2018-05-15 | Fireeye, Inc. | Shellcode detection |
US10084813B2 (en) | 2014-06-24 | 2018-09-25 | Fireeye, Inc. | Intrusion prevention and remedy system |
US10757134B1 (en) | 2014-06-24 | 2020-08-25 | Fireeye, Inc. | System and method for detecting and remediating a cybersecurity attack |
US10432720B1 (en) | 2014-06-25 | 2019-10-01 | Symantec Corporation | Systems and methods for strong information about transmission control protocol connections |
US10805340B1 (en) * | 2014-06-26 | 2020-10-13 | Fireeye, Inc. | Infection vector and malware tracking with an interactive user display |
US9661009B1 (en) | 2014-06-26 | 2017-05-23 | Fireeye, Inc. | Network-based malware detection |
US9838408B1 (en) | 2014-06-26 | 2017-12-05 | Fireeye, Inc. | System, device and method for detecting a malicious attack based on direct communications between remotely hosted virtual machines and malicious web servers |
US9398028B1 (en) | 2014-06-26 | 2016-07-19 | Fireeye, Inc. | System, device and method for detecting a malicious attack based on communcations between remotely hosted virtual machines and malicious web servers |
US10180929B1 (en) | 2014-06-30 | 2019-01-15 | Palantir Technologies, Inc. | Systems and methods for identifying key phrase clusters within documents |
US9535974B1 (en) | 2014-06-30 | 2017-01-03 | Palantir Technologies Inc. | Systems and methods for identifying key phrase clusters within documents |
US11341178B2 (en) | 2014-06-30 | 2022-05-24 | Palantir Technologies Inc. | Systems and methods for key phrase characterization of documents |
US11244056B1 (en) | 2014-07-01 | 2022-02-08 | Fireeye Security Holdings Us Llc | Verification of trusted threat-aware visualization layer |
US9912644B2 (en) | 2014-08-05 | 2018-03-06 | Fireeye, Inc. | System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology |
US10027696B1 (en) | 2014-08-22 | 2018-07-17 | Fireeye, Inc. | System and method for determining a threat based on correlation of indicators of compromise from other sources |
US9609007B1 (en) | 2014-08-22 | 2017-03-28 | Fireeye, Inc. | System and method of detecting delivery of malware based on indicators of compromise from different sources |
US9363280B1 (en) | 2014-08-22 | 2016-06-07 | Fireeye, Inc. | System and method of detecting delivery of malware using cross-customer data |
US10404725B1 (en) | 2014-08-22 | 2019-09-03 | Fireeye, Inc. | System and method of detecting delivery of malware using cross-customer data |
US10671726B1 (en) | 2014-09-22 | 2020-06-02 | Fireeye Inc. | System and method for malware analysis using thread-level event monitoring |
US11762984B1 (en) * | 2014-09-26 | 2023-09-19 | Amazon Technologies, Inc. | Inbound link handling |
US10027689B1 (en) | 2014-09-29 | 2018-07-17 | Fireeye, Inc. | Interactive infection visualization for improved exploit detection and signature generation for malware and malware families |
US9773112B1 (en) | 2014-09-29 | 2017-09-26 | Fireeye, Inc. | Exploit detection of malware and malware families |
US10868818B1 (en) | 2014-09-29 | 2020-12-15 | Fireeye, Inc. | Systems and methods for generation of signature generation using interactive infection visualizations |
US20170293477A1 (en) * | 2014-10-14 | 2017-10-12 | Nippon Telegraph And Telephone Corporation | Analysis device, analysis method, and analysis program |
US10416970B2 (en) * | 2014-10-14 | 2019-09-17 | Nippon Telegraph And Telephone Corporation | Analysis device, analysis method, and analysis program |
CN106796637A (en) * | 2014-10-14 | 2017-05-31 | 日本电信电话株式会社 | Analytical equipment, analysis method and analysis program |
US9843594B1 (en) | 2014-10-28 | 2017-12-12 | Symantec Corporation | Systems and methods for detecting anomalous messages in automobile networks |
US10135863B2 (en) | 2014-11-06 | 2018-11-20 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US10728277B2 (en) * | 2014-11-06 | 2020-07-28 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US9558352B1 (en) | 2014-11-06 | 2017-01-31 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US20190036945A1 (en) * | 2014-11-06 | 2019-01-31 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US20170237750A1 (en) * | 2014-11-07 | 2017-08-17 | Suhjun Park | Protective system, apparatus, and method for protecting electronic communication device |
US9942182B2 (en) * | 2014-11-17 | 2018-04-10 | At&T Intellectual Property I, L.P. | System and method for cloud based IP mobile messaging spam detection and defense |
US11539645B2 (en) | 2014-11-17 | 2022-12-27 | At&T Intellectual Property I, L.P. | Cloud-based spam detection |
US11038826B2 (en) | 2014-11-17 | 2021-06-15 | At&T Intellectual Property I, L.P. | Cloud-based spam detection |
US10721197B2 (en) | 2014-11-17 | 2020-07-21 | At&T Intellectual Property I, L.P. | Cloud-based spam detection |
US20160142352A1 (en) * | 2014-11-17 | 2016-05-19 | At&T Intellectual Property I, L.P. | System and Method for Cloud Based IP Mobile Messaging Spam Detection and Defense |
US9690933B1 (en) | 2014-12-22 | 2017-06-27 | Fireeye, Inc. | Framework for classifying an object as malicious with machine learning for deploying updated predictive models |
US10552994B2 (en) | 2014-12-22 | 2020-02-04 | Palantir Technologies Inc. | Systems and interactive user interfaces for dynamic retrieval, analysis, and triage of data items |
US9898528B2 (en) | 2014-12-22 | 2018-02-20 | Palantir Technologies Inc. | Concept indexing among database of documents using machine learning techniques |
US10366231B1 (en) | 2014-12-22 | 2019-07-30 | Fireeye, Inc. | Framework for classifying an object as malicious with machine learning for deploying updated predictive models |
US10902117B1 (en) | 2014-12-22 | 2021-01-26 | Fireeye, Inc. | Framework for classifying an object as malicious with machine learning for deploying updated predictive models |
US10075455B2 (en) | 2014-12-26 | 2018-09-11 | Fireeye, Inc. | Zero-day rotating guest image profile |
US9817563B1 (en) | 2014-12-29 | 2017-11-14 | Palantir Technologies Inc. | System and method of generating data points from one or more data stores of data items for chart creation and manipulation |
US9934376B1 (en) | 2014-12-29 | 2018-04-03 | Fireeye, Inc. | Malware detection appliance architecture |
US10528726B1 (en) | 2014-12-29 | 2020-01-07 | Fireeye, Inc. | Microvisor-based malware detection appliance architecture |
US10552998B2 (en) | 2014-12-29 | 2020-02-04 | Palantir Technologies Inc. | System and method of generating data points from one or more data stores of data items for chart creation and manipulation |
US9838417B1 (en) | 2014-12-30 | 2017-12-05 | Fireeye, Inc. | Intelligent context aware user interaction for malware detection |
US10798121B1 (en) | 2014-12-30 | 2020-10-06 | Fireeye, Inc. | Intelligent context aware user interaction for malware detection |
US9690606B1 (en) | 2015-03-25 | 2017-06-27 | Fireeye, Inc. | Selective system call monitoring |
US10148693B2 (en) | 2015-03-25 | 2018-12-04 | Fireeye, Inc. | Exploit detection system |
US10666686B1 (en) | 2015-03-25 | 2020-05-26 | Fireeye, Inc. | Virtualized exploit detection system |
US10146893B1 (en) | 2015-03-27 | 2018-12-04 | Symantec Corporation | Systems and methods for evaluating electronic control units within vehicle emulations |
US9438613B1 (en) | 2015-03-30 | 2016-09-06 | Fireeye, Inc. | Dynamic content activation for automated analysis of embedded objects |
US11868795B1 (en) | 2015-03-31 | 2024-01-09 | Musarubra Us Llc | Selective virtualization for security threat detection |
US11294705B1 (en) | 2015-03-31 | 2022-04-05 | Fireeye Security Holdings Us Llc | Selective virtualization for security threat detection |
US9846776B1 (en) | 2015-03-31 | 2017-12-19 | Fireeye, Inc. | System and method for detecting file altering behaviors pertaining to a malicious attack |
US10417031B2 (en) | 2015-03-31 | 2019-09-17 | Fireeye, Inc. | Selective virtualization for security threat detection |
US10474813B1 (en) | 2015-03-31 | 2019-11-12 | Fireeye, Inc. | Code injection technique for remediation at an endpoint of a network |
US9912681B1 (en) | 2015-03-31 | 2018-03-06 | Fireeye, Inc. | Injection of content processing delay in an endpoint |
US9483644B1 (en) | 2015-03-31 | 2016-11-01 | Fireeye, Inc. | Methods for detecting file altering malware in VM based analysis |
US10104102B1 (en) | 2015-04-13 | 2018-10-16 | Fireeye, Inc. | Analytic-based security with learning adaptability |
US10728263B1 (en) | 2015-04-13 | 2020-07-28 | Fireeye, Inc. | Analytic-based security monitoring system and method |
US9594904B1 (en) | 2015-04-23 | 2017-03-14 | Fireeye, Inc. | Detecting malware based on reflection |
US20160337394A1 (en) * | 2015-05-11 | 2016-11-17 | The Boeing Company | Newborn domain screening of electronic mail messages |
US11063985B2 (en) | 2015-06-22 | 2021-07-13 | Fireeye, Inc. | Methods and apparatus for graphical user interface environment for creating threat response courses of action for computer networks |
US10986134B2 (en) | 2015-06-22 | 2021-04-20 | Fireeye, Inc. | Methods and apparatus for graphical user interface environment for creating threat response courses of action for computer networks |
US10726127B1 (en) | 2015-06-30 | 2020-07-28 | Fireeye, Inc. | System and method for protecting a software component running in a virtual machine through virtual interrupts by the virtualization layer |
US10642753B1 (en) | 2015-06-30 | 2020-05-05 | Fireeye, Inc. | System and method for protecting a software component running in virtual machine using a virtualization layer |
US11113086B1 (en) | 2015-06-30 | 2021-09-07 | Fireeye, Inc. | Virtual system and method for securing external network connectivity |
US10395029B1 (en) | 2015-06-30 | 2019-08-27 | Fireeye, Inc. | Virtual system and method with threat protection |
US10454950B1 (en) | 2015-06-30 | 2019-10-22 | Fireeye, Inc. | Centralized aggregation technique for detecting lateral movement of stealthy cyber-attacks |
US10216927B1 (en) | 2015-06-30 | 2019-02-26 | Fireeye, Inc. | System and method for protecting memory pages associated with a process using a virtualization layer |
US11501369B2 (en) | 2015-07-30 | 2022-11-15 | Palantir Technologies Inc. | Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data |
US10223748B2 (en) | 2015-07-30 | 2019-03-05 | Palantir Technologies Inc. | Systems and user interfaces for holistic, data-driven investigation of bad actor behavior based on clustering and scoring of related data |
US9456000B1 (en) * | 2015-08-06 | 2016-09-27 | Palantir Technologies Inc. | Systems, methods, user interfaces, and computer-readable media for investigating potential malicious communications |
US9635046B2 (en) * | 2015-08-06 | 2017-04-25 | Palantir Technologies Inc. | Systems, methods, user interfaces, and computer-readable media for investigating potential malicious communications |
US10484407B2 (en) | 2015-08-06 | 2019-11-19 | Palantir Technologies Inc. | Systems, methods, user interfaces, and computer-readable media for investigating potential malicious communications |
EP3451201A1 (en) * | 2015-08-06 | 2019-03-06 | Palantir Technologies Inc. | Processing malicious communications |
EP3128449A1 (en) * | 2015-08-06 | 2017-02-08 | Palantir Technologies, Inc. | Processing malicious communications |
US10715542B1 (en) | 2015-08-14 | 2020-07-14 | Fireeye, Inc. | Mobile application risk analysis |
US10489391B1 (en) | 2015-08-17 | 2019-11-26 | Palantir Technologies Inc. | Systems and methods for grouping and enriching data items accessed from one or more databases for presentation in a user interface |
US10176321B2 (en) | 2015-09-22 | 2019-01-08 | Fireeye, Inc. | Leveraging behavior-based rules for malware family classification |
US10033759B1 (en) | 2015-09-28 | 2018-07-24 | Fireeye, Inc. | System and method of threat detection under hypervisor control |
US10033747B1 (en) | 2015-09-29 | 2018-07-24 | Fireeye, Inc. | System and method for detecting interpreter-based exploit attacks |
US10887328B1 (en) | 2015-09-29 | 2021-01-05 | Fireeye, Inc. | System and method for detecting interpreter-based exploit attacks |
US10873597B1 (en) | 2015-09-30 | 2020-12-22 | Fireeye, Inc. | Cyber attack early warning system |
US9825976B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Detection and classification of exploit kits |
US10706149B1 (en) | 2015-09-30 | 2020-07-07 | Fireeye, Inc. | Detecting delayed activation malware using a primary controller and plural time controllers |
US10601865B1 (en) | 2015-09-30 | 2020-03-24 | Fireeye, Inc. | Detection of credential spearphishing attacks using email analysis |
US9825989B1 (en) | 2015-09-30 | 2017-11-21 | Fireeye, Inc. | Cyber attack early warning system |
US11244044B1 (en) | 2015-09-30 | 2022-02-08 | Fireeye Security Holdings Us Llc | Method to detect application execution hijacking using memory protection |
US10210329B1 (en) | 2015-09-30 | 2019-02-19 | Fireeye, Inc. | Method to detect application execution hijacking using memory protection |
US10817606B1 (en) | 2015-09-30 | 2020-10-27 | Fireeye, Inc. | Detecting delayed activation malware using a run-time monitoring agent and time-dilation logic |
US9860346B2 (en) | 2015-10-14 | 2018-01-02 | Adp, Llc | Dynamic application programming interface builder |
US10348816B2 (en) | 2015-10-14 | 2019-07-09 | Adp, Llc | Dynamic proxy server |
US10623528B2 (en) | 2015-10-14 | 2020-04-14 | Adp, Llc | Enterprise application ecosystem operating system |
US11171924B2 (en) * | 2015-10-14 | 2021-11-09 | Adp, Inc. | Customized web services gateway |
US20170111321A1 (en) * | 2015-10-14 | 2017-04-20 | Adp, Llc | Customized Web Services Gateway |
US10572487B1 (en) | 2015-10-30 | 2020-02-25 | Palantir Technologies Inc. | Periodic database search manager for multiple data sources |
US10284575B2 (en) | 2015-11-10 | 2019-05-07 | Fireeye, Inc. | Launcher for setting analysis environment variations for malware detection |
US10834107B1 (en) | 2015-11-10 | 2020-11-10 | Fireeye, Inc. | Launcher for setting analysis environment variations for malware detection |
US9967274B2 (en) * | 2015-11-25 | 2018-05-08 | Symantec Corporation | Systems and methods for identifying compromised devices within industrial control systems |
US20170149811A1 (en) * | 2015-11-25 | 2017-05-25 | Symantec Corporation | Systems and methods for identifying compromised devices within industrial control systems |
US10447728B1 (en) | 2015-12-10 | 2019-10-15 | Fireeye, Inc. | Technique for protecting guest processes using a layered virtualization architecture |
US10846117B1 (en) | 2015-12-10 | 2020-11-24 | Fireeye, Inc. | Technique for establishing secure communication between host and guest processes of a virtualization architecture |
US10108446B1 (en) | 2015-12-11 | 2018-10-23 | Fireeye, Inc. | Late load technique for deploying a virtualization layer underneath a running operating system |
US11200080B1 (en) | 2015-12-11 | 2021-12-14 | Fireeye Security Holdings Us Llc | Late load technique for deploying a virtualization layer underneath a running operating system |
US10050998B1 (en) | 2015-12-30 | 2018-08-14 | Fireeye, Inc. | Malicious message analysis system |
US10581898B1 (en) | 2015-12-30 | 2020-03-03 | Fireeye, Inc. | Malicious message analysis system |
US10133866B1 (en) | 2015-12-30 | 2018-11-20 | Fireeye, Inc. | System and method for triggering analysis of an object for malware in response to modification of that object |
US10565378B1 (en) | 2015-12-30 | 2020-02-18 | Fireeye, Inc. | Exploit of privilege detection framework |
US10341365B1 (en) | 2015-12-30 | 2019-07-02 | Fireeye, Inc. | Methods and system for hiding transition events for malware detection |
US10872151B1 (en) | 2015-12-30 | 2020-12-22 | Fireeye, Inc. | System and method for triggering analysis of an object for malware in response to modification of that object |
US11552986B1 (en) | 2015-12-31 | 2023-01-10 | Fireeye Security Holdings Us Llc | Cyber-security framework for application of virtual features |
US10581874B1 (en) | 2015-12-31 | 2020-03-03 | Fireeye, Inc. | Malware detection system with contextual analysis |
US9824216B1 (en) | 2015-12-31 | 2017-11-21 | Fireeye, Inc. | Susceptible environment detection system |
US10445502B1 (en) * | 2015-12-31 | 2019-10-15 | Fireeye, Inc. | Susceptible environment detection system |
US10984103B2 (en) * | 2016-01-26 | 2021-04-20 | Hewlett Packard Enterprise Development Lp | Malware detection |
US20190026465A1 (en) * | 2016-01-26 | 2019-01-24 | Aruba Networks, Inc. | Malware Detection |
US10104100B1 (en) | 2016-03-03 | 2018-10-16 | Symantec Corporation | Systems and methods for detecting anomalies that are potentially indicative of malicious attacks |
US10476906B1 (en) | 2016-03-25 | 2019-11-12 | Fireeye, Inc. | System and method for managing formation and modification of a cluster within a malware detection system |
US10785255B1 (en) | 2016-03-25 | 2020-09-22 | Fireeye, Inc. | Cluster configuration within a scalable malware detection system |
US10601863B1 (en) | 2016-03-25 | 2020-03-24 | Fireeye, Inc. | System and method for managing sensor enrollment |
US10616266B1 (en) * | 2016-03-25 | 2020-04-07 | Fireeye, Inc. | Distributed malware detection system and submission workflow thereof |
US11632392B1 (en) | 2016-03-25 | 2023-04-18 | Fireeye Security Holdings Us Llc | Distributed malware detection system and submission workflow thereof |
US10671721B1 (en) | 2016-03-25 | 2020-06-02 | Fireeye, Inc. | Timeout management services |
US11979428B1 (en) | 2016-03-31 | 2024-05-07 | Musarubra Us Llc | Technique for verifying exploit/malware at malware detection appliance through correlation with endpoints |
US10893059B1 (en) | 2016-03-31 | 2021-01-12 | Fireeye, Inc. | Verification and enhancement using detection systems located at the network periphery and endpoint devices |
US11936666B1 (en) | 2016-03-31 | 2024-03-19 | Musarubra Us Llc | Risk analyzer for ascertaining a risk of harm to a network and generating alerts regarding the ascertained risk |
US10193903B1 (en) | 2016-04-29 | 2019-01-29 | Symantec Corporation | Systems and methods for detecting suspicious microcontroller messages |
US10169585B1 (en) | 2016-06-22 | 2019-01-01 | Fireeye, Inc. | System and methods for advanced malware detection through placement of transition events |
US10091077B1 (en) | 2016-06-27 | 2018-10-02 | Symantec Corporation | Systems and methods for detecting transactional message sequences that are obscured in multicast communications |
US10462173B1 (en) | 2016-06-30 | 2019-10-29 | Fireeye, Inc. | Malware detection verification and enhancement by coordinating endpoint and malware detection systems |
US11184391B2 (en) | 2016-06-30 | 2021-11-23 | Sophos Limited | Server-client authentication with integrated status update |
US12244641B2 (en) | 2016-06-30 | 2025-03-04 | Sophos Limited | Application firewall |
US11616811B2 (en) * | 2016-06-30 | 2023-03-28 | Sophos Limited | Tracking usage of corporate credentials |
US11258821B2 (en) | 2016-06-30 | 2022-02-22 | Sophos Limited | Application firewall |
US12166786B1 (en) | 2016-06-30 | 2024-12-10 | Musarubra Us Llc | Malware detection verification and enhancement by coordinating endpoint and malware detection systems |
US11240262B1 (en) | 2016-06-30 | 2022-02-01 | Fireeye Security Holdings Us Llc | Malware detection verification and enhancement by coordinating endpoint and malware detection systems |
US12273382B2 (en) | 2016-06-30 | 2025-04-08 | Sophos Limited | Multi-factor authentication |
US11184392B2 (en) | 2016-06-30 | 2021-11-23 | Sophos Limited | Detecting lateral movement by malicious applications |
US10986124B2 (en) | 2016-06-30 | 2021-04-20 | Sophos Limited | Baiting endpoints for improved detection of authentication attacks |
US11736522B2 (en) | 2016-06-30 | 2023-08-22 | Sophos Limited | Server-client authentication with integrated status update |
US11722521B2 (en) | 2016-06-30 | 2023-08-08 | Sophos Limited | Application firewall |
US10191861B1 (en) | 2016-09-06 | 2019-01-29 | Fireeye, Inc. | Technique for implementing memory views using a layered virtualization architecture |
US10592678B1 (en) | 2016-09-09 | 2020-03-17 | Fireeye, Inc. | Secure communications between peers using a verified virtual trusted platform module |
US10572664B2 (en) | 2016-09-19 | 2020-02-25 | Retarus Gmbh | Technique for detecting suspicious electronic messages |
EP3297221A1 (en) * | 2016-09-19 | 2018-03-21 | retarus GmbH | Technique for detecting suspicious electronic messages |
KR102119718B1 (en) * | 2016-09-19 | 2020-06-05 | 레타르우스 게엠베하 | Technique for Detecting Suspicious Electronic Messages |
KR20180031570A (en) * | 2016-09-19 | 2018-03-28 | 레타르우스 게엠베하 | Technique for Detecting Suspicious Electronic Messages |
US10200259B1 (en) | 2016-09-21 | 2019-02-05 | Symantec Corporation | Systems and methods for detecting obscure cyclic application-layer message sequences in transport-layer message sequences |
US10491627B1 (en) | 2016-09-29 | 2019-11-26 | Fireeye, Inc. | Advanced malware detection using similarity analysis |
US10795991B1 (en) | 2016-11-08 | 2020-10-06 | Fireeye, Inc. | Enterprise search |
US12130909B1 (en) | 2016-11-08 | 2024-10-29 | Musarubra Us Llc | Enterprise search |
US10318630B1 (en) | 2016-11-21 | 2019-06-11 | Palantir Technologies Inc. | Analysis of large bodies of textual data |
US10587647B1 (en) | 2016-11-22 | 2020-03-10 | Fireeye, Inc. | Technique for malware detection capability comparison of network security devices |
US9906545B1 (en) | 2016-11-22 | 2018-02-27 | Symantec Corporation | Systems and methods for identifying message payload bit fields in electronic communications |
US10620618B2 (en) | 2016-12-20 | 2020-04-14 | Palantir Technologies Inc. | Systems and methods for determining relationships between defects |
US11681282B2 (en) | 2016-12-20 | 2023-06-20 | Palantir Technologies Inc. | Systems and methods for determining relationships between defects |
US10552610B1 (en) | 2016-12-22 | 2020-02-04 | Fireeye, Inc. | Adaptive virtual machine snapshot update framework for malware behavioral analysis |
US10581879B1 (en) | 2016-12-22 | 2020-03-03 | Fireeye, Inc. | Enhanced malware detection for generated objects |
US10523609B1 (en) | 2016-12-27 | 2019-12-31 | Fireeye, Inc. | Multi-vector malware detection and analysis |
US9922191B1 (en) * | 2017-01-05 | 2018-03-20 | Votiro Cybersec Ltd. | Determining malware prevention based on retrospective content scan |
US10664602B2 (en) | 2017-01-05 | 2020-05-26 | Votiro Cybersec Ltd. | Determining malware prevention based on retrospective content scan |
CN108345795A (en) * | 2017-01-23 | 2018-07-31 | 西普霍特公司 | System and method for the Malware that detects and classify |
US10325224B1 (en) | 2017-03-23 | 2019-06-18 | Palantir Technologies Inc. | Systems and methods for selecting machine learning training data |
US12288143B2 (en) | 2017-03-23 | 2025-04-29 | Palantir Technologies Inc. | Systems and methods for selecting machine learning training data |
US10904286B1 (en) | 2017-03-24 | 2021-01-26 | Fireeye, Inc. | Detection of phishing attacks using similarity analysis |
US11570211B1 (en) | 2017-03-24 | 2023-01-31 | Fireeye Security Holdings Us Llc | Detection of phishing attacks using similarity analysis |
US11997111B1 (en) | 2017-03-30 | 2024-05-28 | Musarubra Us Llc | Attribute-controlled malware detection |
US10798112B2 (en) | 2017-03-30 | 2020-10-06 | Fireeye, Inc. | Attribute-controlled malware detection |
US12278834B1 (en) | 2017-03-30 | 2025-04-15 | Musarubra Us Llc | Subscription-based malware detection |
US11481410B1 (en) | 2017-03-30 | 2022-10-25 | Palantir Technologies Inc. | Framework for exposing network activities |
US11863581B1 (en) | 2017-03-30 | 2024-01-02 | Musarubra Us Llc | Subscription-based malware detection |
US10902119B1 (en) | 2017-03-30 | 2021-01-26 | Fireeye, Inc. | Data extraction system for malware analysis |
US10554507B1 (en) | 2017-03-30 | 2020-02-04 | Fireeye, Inc. | Multi-level control for enhanced resource and object evaluation management of malware detection system |
US10791138B1 (en) | 2017-03-30 | 2020-09-29 | Fireeye, Inc. | Subscription-based malware detection |
US10848397B1 (en) | 2017-03-30 | 2020-11-24 | Fireeye, Inc. | System and method for enforcing compliance with subscription requirements for cyber-attack detection service |
US11399040B1 (en) | 2017-03-30 | 2022-07-26 | Fireeye Security Holdings Us Llc | Subscription-based malware detection |
US10606866B1 (en) | 2017-03-30 | 2020-03-31 | Palantir Technologies Inc. | Framework for exposing network activities |
US11947569B1 (en) | 2017-03-30 | 2024-04-02 | Palantir Technologies Inc. | Framework for exposing network activities |
US11714869B2 (en) | 2017-05-02 | 2023-08-01 | Palantir Technologies Inc. | Automated assistance for generating relevant and valuable search results for an entity of interest |
US11210350B2 (en) | 2017-05-02 | 2021-12-28 | Palantir Technologies Inc. | Automated assistance for generating relevant and valuable search results for an entity of interest |
US10235461B2 (en) | 2017-05-02 | 2019-03-19 | Palantir Technologies Inc. | Automated assistance for generating relevant and valuable search results for an entity of interest |
US10326788B1 (en) | 2017-05-05 | 2019-06-18 | Symantec Corporation | Systems and methods for identifying suspicious controller area network messages |
US11954607B2 (en) | 2017-05-09 | 2024-04-09 | Palantir Technologies Inc. | Systems and methods for reducing manufacturing failure rates |
US11537903B2 (en) | 2017-05-09 | 2022-12-27 | Palantir Technologies Inc. | Systems and methods for reducing manufacturing failure rates |
US10482382B2 (en) | 2017-05-09 | 2019-11-19 | Palantir Technologies Inc. | Systems and methods for reducing manufacturing failure rates |
CN110637302A (en) * | 2017-05-19 | 2019-12-31 | 软件营地株式会社 | Checking Method and Checking System for Malicious Hyperlinks in E-mail Body |
JP2017168146A (en) * | 2017-06-28 | 2017-09-21 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Connection destination information determination device, connection destination information determination method, and program |
US10855700B1 (en) | 2017-06-29 | 2020-12-01 | Fireeye, Inc. | Post-intrusion detection of cyber-attacks during lateral movement within networks |
US10601848B1 (en) | 2017-06-29 | 2020-03-24 | Fireeye, Inc. | Cyber-security system and method for weak indicator detection and correlation to generate strong indicators |
US10503904B1 (en) | 2017-06-29 | 2019-12-10 | Fireeye, Inc. | Ransomware detection and mitigation |
US10893068B1 (en) | 2017-06-30 | 2021-01-12 | Fireeye, Inc. | Ransomware file modification prevention technique |
US10747872B1 (en) | 2017-09-27 | 2020-08-18 | Fireeye, Inc. | System and method for preventing malware evasion |
US10805346B2 (en) | 2017-10-01 | 2020-10-13 | Fireeye, Inc. | Phishing attack detection |
US10708308B2 (en) * | 2017-10-02 | 2020-07-07 | Servicenow, Inc. | Automated mitigation of electronic message based security threats |
US20190104155A1 (en) * | 2017-10-02 | 2019-04-04 | Servicenow, Inc. | Automated Mitigation of Electronic Message Based Security Threats |
US11637859B1 (en) | 2017-10-27 | 2023-04-25 | Mandiant, Inc. | System and method for analyzing binary code for malware classification using artificial neural network techniques |
US11108809B2 (en) | 2017-10-27 | 2021-08-31 | Fireeye, Inc. | System and method for analyzing binary code for malware classification using artificial neural network techniques |
US12069087B2 (en) | 2017-10-27 | 2024-08-20 | Google Llc | System and method for analyzing binary code for malware classification using artificial neural network techniques |
US20190166080A1 (en) * | 2017-11-27 | 2019-05-30 | Fuji Xerox Co.,Ltd. | Information processing apparatus and non-transitory computer readable medium |
US10812436B2 (en) * | 2017-11-27 | 2020-10-20 | Fuji Xerox Co., Ltd. | Information processing apparatus and non-transitory computer readable medium |
US10972483B2 (en) * | 2017-12-20 | 2021-04-06 | Sophos Limited | Electronic mail security using root cause analysis |
WO2019122832A1 (en) * | 2017-12-20 | 2019-06-27 | Sophos Limited | Electronic mail security using a user-based inquiry |
US11010473B2 (en) | 2017-12-20 | 2021-05-18 | F-Secure Corporation | Method of detecting malware in a sandbox environment |
GB2569567B (en) * | 2017-12-20 | 2020-10-21 | F Secure Corp | Method of detecting malware in a sandbox environment |
US20190188383A1 (en) * | 2017-12-20 | 2019-06-20 | F-Secure Corporation | Method of Detecting Malware in a Sandbox Environment |
GB2569567A (en) * | 2017-12-20 | 2019-06-26 | F Secure Corp | Method of detecting malware in a sandbox environment |
US20190190929A1 (en) * | 2017-12-20 | 2019-06-20 | Sophos Limited | Electronic mail security using root cause analysis |
US10868821B2 (en) * | 2017-12-20 | 2020-12-15 | Sophos Limited | Electronic mail security using a heartbeat |
US11240275B1 (en) | 2017-12-28 | 2022-02-01 | Fireeye Security Holdings Us Llc | Platform and method for performing cybersecurity analyses employing an intelligence hub with a modular architecture |
US11271955B2 (en) | 2017-12-28 | 2022-03-08 | Fireeye Security Holdings Us Llc | Platform and method for retroactive reclassification employing a cybersecurity-based global data store |
US11005860B1 (en) | 2017-12-28 | 2021-05-11 | Fireeye, Inc. | Method and system for efficient cybersecurity analysis of endpoint events |
US11949692B1 (en) | 2017-12-28 | 2024-04-02 | Google Llc | Method and system for efficient cybersecurity analysis of endpoint events |
US10826931B1 (en) | 2018-03-29 | 2020-11-03 | Fireeye, Inc. | System and method for predicting and mitigating cybersecurity system misconfigurations |
US10956477B1 (en) | 2018-03-30 | 2021-03-23 | Fireeye, Inc. | System and method for detecting malicious scripts through natural language processing modeling |
US11558401B1 (en) | 2018-03-30 | 2023-01-17 | Fireeye Security Holdings Us Llc | Multi-vector malware detection data sharing system for improved detection |
US11856011B1 (en) | 2018-03-30 | 2023-12-26 | Musarubra Us Llc | Multi-vector malware detection data sharing system for improved detection |
US11003773B1 (en) | 2018-03-30 | 2021-05-11 | Fireeye, Inc. | System and method for automatically generating malware detection rule recommendations |
US11314859B1 (en) | 2018-06-27 | 2022-04-26 | FireEye Security Holdings, Inc. | Cyber-security system and method for detecting escalation of privileges within an access token |
US11882140B1 (en) | 2018-06-27 | 2024-01-23 | Musarubra Us Llc | System and method for detecting repetitive cybersecurity attacks constituting an email campaign |
US11075930B1 (en) | 2018-06-27 | 2021-07-27 | Fireeye, Inc. | System and method for detecting repetitive cybersecurity attacks constituting an email campaign |
US11228491B1 (en) | 2018-06-28 | 2022-01-18 | Fireeye Security Holdings Us Llc | System and method for distributed cluster configuration monitoring and management |
US11316900B1 (en) | 2018-06-29 | 2022-04-26 | FireEye Security Holdings Inc. | System and method for automatically prioritizing rules for cyber-threat detection and mitigation |
US11483343B2 (en) | 2018-07-25 | 2022-10-25 | Cyren, Inc. | Phishing detection system and method of use |
EP3599753A1 (en) * | 2018-07-25 | 2020-01-29 | Cyren Inc. | Phishing detection system and method |
US11182473B1 (en) | 2018-09-13 | 2021-11-23 | Fireeye Security Holdings Us Llc | System and method for mitigating cyberattacks against processor operability by a guest process |
US11763004B1 (en) | 2018-09-27 | 2023-09-19 | Fireeye Security Holdings Us Llc | System and method for bootkit detection |
US12074887B1 (en) | 2018-12-21 | 2024-08-27 | Musarubra Us Llc | System and method for selectively processing content after identification and removal of malicious content |
US11743290B2 (en) | 2018-12-21 | 2023-08-29 | Fireeye Security Holdings Us Llc | System and method for detecting cyberattacks impersonating legitimate sources |
US11176251B1 (en) | 2018-12-21 | 2021-11-16 | Fireeye, Inc. | Determining malware via symbolic function hash analysis |
US11368475B1 (en) | 2018-12-21 | 2022-06-21 | Fireeye Security Holdings Us Llc | System and method for scanning remote services to locate stored objects with malware |
US11601444B1 (en) | 2018-12-31 | 2023-03-07 | Fireeye Security Holdings Us Llc | Automated system for triage of customer issues |
US11985149B1 (en) | 2018-12-31 | 2024-05-14 | Musarubra Us Llc | System and method for automated system for triage of cybersecurity threats |
US11063897B2 (en) | 2019-03-01 | 2021-07-13 | Cdw Llc | Method and system for analyzing electronic communications and customer information to recognize and mitigate message-based attacks |
US11310238B1 (en) | 2019-03-26 | 2022-04-19 | FireEye Security Holdings, Inc. | System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources |
US11750618B1 (en) | 2019-03-26 | 2023-09-05 | Fireeye Security Holdings Us Llc | System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources |
WO2020197570A1 (en) * | 2019-03-28 | 2020-10-01 | Vade Secure, Inc. | Optimal scanning parameters computation methods, devices and systems for malicious url detection |
US10686826B1 (en) | 2019-03-28 | 2020-06-16 | Vade Secure Inc. | Optical scanning parameters computation methods, devices and systems for malicious URL detection |
US11252176B2 (en) * | 2019-03-28 | 2022-02-15 | Vade Secure Inc. | Optimal scanning parameters computation methods, devices and systems for malicious URL detection |
US11677786B1 (en) | 2019-03-29 | 2023-06-13 | Fireeye Security Holdings Us Llc | System and method for detecting and protecting against cybersecurity attacks on servers |
US12248563B1 (en) | 2019-03-30 | 2025-03-11 | Musarubra Us Llc | System and method for cybersecurity analyzer update and concurrent management system |
US11636198B1 (en) | 2019-03-30 | 2023-04-25 | Fireeye Security Holdings Us Llc | System and method for cybersecurity analyzer update and concurrent management system |
US12063229B1 (en) | 2019-06-24 | 2024-08-13 | Google Llc | System and method for associating cybersecurity intelligence to cyberthreat actors through a similarity matrix |
US11258806B1 (en) | 2019-06-24 | 2022-02-22 | Mandiant, Inc. | System and method for automatically associating cybersecurity intelligence to cyberthreat actors |
US11556640B1 (en) | 2019-06-27 | 2023-01-17 | Mandiant, Inc. | Systems and methods for automated cybersecurity analysis of extracted binary string sets |
US11392700B1 (en) | 2019-06-28 | 2022-07-19 | Fireeye Security Holdings Us Llc | System and method for supporting cross-platform data verification |
US12200013B2 (en) | 2019-08-07 | 2025-01-14 | Musarubra Us Llc | System and method for detecting cyberattacks impersonating legitimate sources |
US11886585B1 (en) | 2019-09-27 | 2024-01-30 | Musarubra Us Llc | System and method for identifying and mitigating cyberattacks through malicious position-independent code execution |
US11637862B1 (en) | 2019-09-30 | 2023-04-25 | Mandiant, Inc. | System and method for surfacing cyber-security threats with a self-learning recommendation engine |
DE102019129253B4 (en) | 2019-10-30 | 2023-02-09 | Hans-Jürgen Kuhn | Method and computer system for defending against an attack by malicious software via electronic messages |
US11947669B1 (en) | 2019-12-24 | 2024-04-02 | Musarubra Us Llc | System and method for circumventing evasive code for cyberthreat detection |
US11436327B1 (en) | 2019-12-24 | 2022-09-06 | Fireeye Security Holdings Us Llc | System and method for circumventing evasive code for cyberthreat detection |
US11522884B1 (en) | 2019-12-24 | 2022-12-06 | Fireeye Security Holdings Us Llc | Subscription and key management system |
US11888875B1 (en) | 2019-12-24 | 2024-01-30 | Musarubra Us Llc | Subscription and key management system |
US11838300B1 (en) | 2019-12-24 | 2023-12-05 | Musarubra Us Llc | Run-time configurable cybersecurity system |
US11588840B2 (en) * | 2020-01-31 | 2023-02-21 | Salesforce, Inc. | Automated encryption degradation detection, reporting and remediation |
US11762990B2 (en) * | 2020-04-07 | 2023-09-19 | Microsoft Technology Licensing, Llc | Unstructured text classification |
US12003535B2 (en) | 2021-03-01 | 2024-06-04 | Microsoft Technology Licensing, Llc | Phishing URL detection using transformers |
CN113472765A (en) * | 2021-06-24 | 2021-10-01 | 北京卫达信息技术有限公司 | Method for detecting malicious network content |
CN114238970A (en) * | 2021-12-06 | 2022-03-25 | 北京天融信网络安全技术有限公司 | Malicious behavior detection optimization method and device, intrusion prevention equipment and storage medium |
US12231384B2 (en) * | 2022-05-26 | 2025-02-18 | Avaya Management L.P. | Reminder notification for permission/access to links in electronic mail transmissions |
US20230412546A1 (en) * | 2022-05-26 | 2023-12-21 | Avaya Management L.P. | Reminder notification for permission/access to links in electronic mail transmissions |
US12309200B2 (en) | 2023-03-02 | 2025-05-20 | Sophos Limited | Detecting phishing attacks |
Also Published As
Publication number | Publication date |
---|---|
JP6013455B2 (en) | 2016-10-25 |
US20160127393A1 (en) | 2016-05-05 |
EP2700009A1 (en) | 2014-02-26 |
US10757120B1 (en) | 2020-08-25 |
US10027690B2 (en) | 2018-07-17 |
JP2014513834A (en) | 2014-06-05 |
EP2700009A4 (en) | 2014-12-03 |
WO2012145066A1 (en) | 2012-10-26 |
EP3319005A1 (en) | 2018-05-09 |
US9106694B2 (en) | 2015-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10757120B1 (en) | Malicious network content detection | |
US10282548B1 (en) | Method for detecting malware within network content | |
US10348771B2 (en) | Learned behavior based security | |
US10523609B1 (en) | Multi-vector malware detection and analysis | |
US8539582B1 (en) | Malware containment and security analysis on connection | |
US11153341B1 (en) | System and method for detecting malicious network content using virtual environment components | |
US10033753B1 (en) | System and method for detecting malicious activity and classifying a network communication based on different indicator types | |
US8850571B2 (en) | Systems and methods for detecting malicious network content | |
US8239944B1 (en) | Reducing malware signature set size through server-side processing | |
US8719924B1 (en) | Method and apparatus for detecting harmful software | |
US10068091B1 (en) | System and method for malware containment | |
Souppaya et al. | Guide to malware incident prevention and handling for desktops and laptops | |
US7493654B2 (en) | Virtualized protective communications system | |
US7788723B2 (en) | Method and apparatus for identifying computer vulnerabilities using exploit probes and remote scanning | |
US10165000B1 (en) | Systems and methods for malware attack prevention by intercepting flows of information | |
US11381578B1 (en) | Network-based binary file extraction and analysis for malware detection | |
US20070289018A1 (en) | Resource indicator trap doors for detecting and stopping malware propagation | |
US7523501B2 (en) | Adaptive computer worm filter and methods of use thereof | |
US20070006311A1 (en) | System and method for managing pestware | |
US7757287B2 (en) | Systems and methods for computer security | |
CN113472765A (en) | Method for detecting malicious network content | |
US8407792B2 (en) | Systems and methods for computer security | |
WO2006124025A1 (en) | Method and apparatus for providing computer security |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FIREEYE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AZIZ, ASHAR;UYENO, HENRY;MANNI, JAY;AND OTHERS;SIGNING DATES FROM 20110823 TO 20110831;REEL/FRAME:026853/0896 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:FIREEYE SECURITY HOLDINGS US LLC;REEL/FRAME:057772/0791 Effective date: 20211008 Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:FIREEYE SECURITY HOLDINGS US LLC;REEL/FRAME:057772/0681 Effective date: 20211008 |
|
AS | Assignment |
Owner name: FIREEYE SECURITY HOLDINGS US LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MANDIANT, INC.;REEL/FRAME:061447/0039 Effective date: 20211008 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MANDIANT, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:FIREEYE, INC.;REEL/FRAME:062636/0058 Effective date: 20211004 |
|
AS | Assignment |
Owner name: STG PARTNERS, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:MUSARUBRA US LLC;SKYHIGH SECURITY LLC;REEL/FRAME:068324/0731 Effective date: 20240730 |
|
AS | Assignment |
Owner name: MUSARUBRA US LLC, TEXAS Free format text: MERGER;ASSIGNOR:FIREEYE SECURITY HOLDINGS US LLC;REEL/FRAME:068581/0279 Effective date: 20230509 |
|
AS | Assignment |
Owner name: MAGENTA SECURITY HOLDINGS LLC, TEXAS Free format text: INTELLECTUAL PROPERTY ASSIGNMENT AGREEMENT;ASSIGNOR:MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC;REEL/FRAME:068656/0920 Effective date: 20240814 Owner name: MAGENTA SECURITY HOLDINGS LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC;REEL/FRAME:068657/0843 Effective date: 20240814 Owner name: MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUSARUBRA US LLC;REEL/FRAME:068657/0764 Effective date: 20240814 Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:MAGENTA SECURITY HOLDINGS LLC;SKYHIGH SECURITY LLC;REEL/FRAME:068657/0666 Effective date: 20240814 Owner name: MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC, TEXAS Free format text: INTELLECTUAL PROPERTY ASSIGNMENT AGREEMENT;ASSIGNOR:MUSARUBRA US LLC;REEL/FRAME:068656/0098 Effective date: 20240814 |
|
AS | Assignment |
Owner name: SKYHIGH SECURITY LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STG PARTNERS, LLC;REEL/FRAME:068671/0435 Effective date: 20240814 Owner name: MUSARUBRA US LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STG PARTNERS, LLC;REEL/FRAME:068671/0435 Effective date: 20240814 |